1
|
Mu X, Lei R, Yan S, Deng Z, Liu R, Liu T. The LysR family transcriptional regulator ORF-L16 regulates spinosad biosynthesis in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:609-617. [PMID: 38784197 PMCID: PMC11108826 DOI: 10.1016/j.synbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Spinosad, a potent broad-spectrum bioinsecticide produced by Saccharopolyspora spinosa, has significant market potential. Despite its effectiveness, the regulatory mechanisms of spinosad biosynthesis remain unclear. Our investigation identified the crucial role of the LysR family transcriptional regulator ORF-L16, located upstream of spinosad biosynthetic genes, in spinosad biosynthesis. Through reverse transcription PCR (RT-PCR) and 5'-rapid amplification of cDNA ends (5'-Race), we unveiled that the spinosad biosynthetic gene cluster (BGC) contains six transcription units and seven promoters. Electrophoretic mobility shift assays (EMSAs) demonstrated that ORF-L16 bound to seven promoters within the spinosad BGC, indicating its involvement in regulating spinosad biosynthesis. Notably, deletion of ORF-L16 led to a drastic reduction in spinosad production from 1818.73 mg/L to 1.69 mg/L, accompanied by decreased transcription levels of spinosad biosynthetic genes, confirming its positive regulatory function. Additionally, isothermal titration calorimetry (ITC) and EMSA confirmed that spinosyn A, the main product of the spinosad BGC, served as an effector of ORF-L16. Specifically, it decreased the binding affinity between ORF-L16 and spinosad BGC promoters, thus exerting negative feedback regulation on spinosad biosynthesis. This research enhances our comprehension of spinosad biosynthesis regulation and lays the groundwork for future investigations on transcriptional regulators in S. spinosa.
Collapse
Affiliation(s)
- Xin Mu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Shuqing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ran Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
2
|
Lejeune C, Cornu D, Sago L, Redeker V, Virolle MJ. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor. Res Microbiol 2024; 175:104177. [PMID: 38159786 DOI: 10.1016/j.resmic.2023.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France; Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France.
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Song Y, Zhang X, Zhang Z, Shentu X, Yu X. Physiology and Transcriptional Analysis of ppGpp-Related Regulatory Effects in Streptomyces diastatochromogenes 1628. Microbiol Spectr 2023; 11:e0120022. [PMID: 36475882 PMCID: PMC9927088 DOI: 10.1128/spectrum.01200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ppGpp is a ubiquitous small nucleotide messenger that mediates cellular self-protective responses under environmental stress. However, the mechanisms of ppGpp that control transcription and other metabolic processes depend on the species, and ppGpp regulates the same process via different mechanisms. The level of ppGpp is regulated by RelA/SpoT homolog (RSH) enzymes that synthesize and hydrolyze the alarmone. Here, we constructed a ppGpp0 strain and monitored the effects of ppGpp on the transcriptional level, physiology, and secondary metabiotic production in the antibiotic producer Streptomyces diastatochromogenes 1628. The results showed the cell division and growth of ppGpp0 increased by measurement of gene transcription and DCWs. The utilization of nitrogen was affected depending on the nitrogen type with a significantly higher DCW of the ppGpp0 mutant in the medium supplied with the yeast extract and a lower growth rate in the inorganic nitrogen ammonium salt. The ppGpp-mediated stringent response could not affect the usage of carbon resources. More importantly, ppGpp0 inhibited the expression of antibiotic clusters and the production of toyocamycin and tetramycin P. The antibiotic resistance was also significantly downregulated in the ppGpp0 mutant. In conclusion, this study showed detailed changes in ppGpp-mediated stringent responses on S. diastatochromogenes 1628 cell growth, nutrient utilization, morphological characteristics, antibiotic production, and resistance, which will provide insights into the role of ppGpp in Streptomyces. IMPORTANCE The ppGpp-mediated stringent response is widely distributed in Escherichia coli, Bacillus subtilis, Streptomyces, Staphylococcus aureus, etc. Stringent responses give strains the ability to resist environmental stresses, and survival from nutrition starvation, virulence, long-term persistence, biofilm formation, and gut colonization. ppGpp has many targets in cells and can reprogram DNA replication, transcription, ribosome biogenesis and function, and lipid metabolism. However, the mechanism of ppGpp to control transcription and other metabolic processes depends on the bacterial species and regulates the same process via a different mechanism. In Streptomyces, how ppGpp regulates the transcription remains to be elucidated. However, because ppGpp regulates many genes involved in primary and secondary metabolism, we compared the transcription and cell division, cell growth, morphological differentiation, antibiotic resistance, and secondary synthesis in the wild-type S. diastatochromogenes and ppGpp0 strains.
Collapse
Affiliation(s)
- Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiangli Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
5
|
Ma M, Welch RD, Garza AG. The σ 54 system directly regulates bacterial natural product genes. Sci Rep 2021; 11:4771. [PMID: 33637792 PMCID: PMC7910581 DOI: 10.1038/s41598-021-84057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial-derived polyketide and non-ribosomal peptide natural products are crucial sources of therapeutics and yet little is known about the conditions that favor activation of natural product genes or the regulatory machinery controlling their transcription. Recent findings suggest that the σ54 system, which includes σ54-loaded RNA polymerase and transcriptional activators called enhancer binding proteins (EBPs), might be a common regulator of natural product genes. Here, we explored this idea by analyzing a selected group of putative σ54 promoters identified in Myxococcus xanthus natural product gene clusters. We show that mutations in putative σ54-RNA polymerase binding regions and in putative Nla28 EBP binding sites dramatically reduce in vivo promoter activities in growing and developing cells. We also show in vivo promoter activities are reduced in a nla28 mutant, that Nla28 binds to wild-type fragments of these promoters in vitro, and that in vitro binding is lost when the Nla28 binding sites are mutated. Together, our results indicate that M. xanthus uses σ54 promoters for transcription of at least some of its natural product genes. Interestingly, the vast majority of experimentally confirmed and putative σ54 promoters in M. xanthus natural product loci are located within genes and not in intergenic sequences.
Collapse
Affiliation(s)
- Muqing Ma
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| | - Roy D. Welch
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| | - Anthony G. Garza
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| |
Collapse
|
6
|
Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis. Microorganisms 2021; 9:microorganisms9020374. [PMID: 33673359 PMCID: PMC7917814 DOI: 10.3390/microorganisms9020374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.
Collapse
|
7
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2020; 20:983-994. [PMID: 31749345 DOI: 10.1631/jzus.b1900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-Yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
8
|
Martín JF, Liras P. The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Front Microbiol 2020; 10:3120. [PMID: 32038560 PMCID: PMC6988585 DOI: 10.3389/fmicb.2019.03120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Soil dwelling Streptomyces species are faced with large variations in carbon or nitrogen sources, phosphate, oxygen, iron, sulfur, and other nutrients. These drastic changes in key nutrients result in an unbalanced metabolism that have undesirable consequences for growth, cell differentiation, reproduction, and secondary metabolites biosynthesis. In the last decades evidence has accumulated indicating that mechanisms to correct metabolic unbalances in Streptomyces species take place at the transcriptional level, mediated by different transcriptional factors. For example, the master regulator PhoP and the large SARP-type regulator AfsR bind to overlapping sequences in the afsS promoter and, therefore, compete in the integration of signals of phosphate starvation and S-adenosylmethionine (SAM) concentrations. The cross-talk between phosphate control of metabolism, mediated by the PhoR-PhoP system, and the pleiotropic orphan nitrogen regulator GlnR, is very interesting; PhoP represses GlnR and other nitrogen metabolism genes. The mechanisms of control by GlnR of several promoters of ATP binding cassettes (ABC) sugar transporters and carbon metabolism are highly elaborated. Another important cross-talk that governs nitrogen metabolism involves the competition between GlnR and the transcriptional factor MtrA. GlnR and MtrA exert opposite effects on expression of nitrogen metabolism genes. MtrA, under nitrogen rich conditions, represses expression of nitrogen assimilation and regulatory genes, including GlnR, and competes with GlnR for the GlnR binding sites. Strikingly, these sites also bind to PhoP. Novel examples of interacting transcriptional factors, discovered recently, are discussed to provide a broad view of this interactions. Altogether, these findings indicate that cross-talks between the major transcriptional factors protect the cell metabolic balance. A detailed analysis of the transcriptional factors binding sequences suggests that the transcriptional factors interact with specific regions, either by overlapping the recognition sequence of other factors or by binding to adjacent sites in those regions. Additional interactions on the regulatory backbone are provided by sigma factors, highly phosphorylated nucleotides, cyclic dinucleotides, and small ligands that interact with cognate receptor proteins and with TetR-type transcriptional regulators. We propose to define the signal integration DNA regions (so called integrator sites) that assemble responses to different stress, nutritional or environmental signals. These integrator sites constitute nodes recognized by two, three, or more transcriptional factors to compensate the unbalances produced by metabolic stresses. This interplay mechanism acts as a safety net to prevent major damage to the metabolism under extreme nutritional and environmental conditions.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
9
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2019. [PMID: 31749345 PMCID: PMC6885405 DOI: 10.1631/jzus.b191900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China,†E-mail:
| |
Collapse
|
10
|
Kerr L, Hoskisson PA. Reconciling DNA replication and transcription in a hyphal organism: visualizing transcription complexes in live Streptomyces coelicolor. MICROBIOLOGY-SGM 2019; 165:1086-1094. [PMID: 31429818 DOI: 10.1099/mic.0.000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reconciling transcription and DNA replication in the growing hyphae of the filamentous bacterium Streptomyces presents several physical constraints on growth due to their apically extending and branching, multigenomic cells and chromosome replication being independent of cell division. Using a GFP translational fusion to the β'-subunit of RNA polymerase (rpoC-egfp), in its native chromosomal location, we observed growing Streptomyces hyphae using time-lapse microscopy throughout the lifecycle and under different growth conditions. The RpoC-eGFP fusion co-localized with DNA around 1.8 µm behind the extending tip, whereas replisomes localize around 4-5 µm behind the tip, indicating that at the growing tip, transcription and chromosome replication are to some degree spatially separated. Dual-labelled RpoC-egfp/DnaN-mCherry strains also indicate that there is limited co-localization of transcription and chromosome replication at the extending hyphal tip. This likely facilitates the use of the same DNA molecule for active transcription and chromosome replication in growing cells, independent of cell division. This represents a novel, but hitherto unknown mechanism for reconciling two fundamental processes that utilize the same macromolecular template that allows for rapid growth without compromising chromosome replication in filamentous bacteria and may have implications for evolution of filamentous growth in micro-organisms, where uncoupling of DNA replication from cell division is required.
Collapse
Affiliation(s)
- Leena Kerr
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
11
|
Sivapragasam S, Grove A. The Link between Purine Metabolism and Production of Antibiotics in Streptomyces. Antibiotics (Basel) 2019; 8:antibiotics8020076. [PMID: 31174282 PMCID: PMC6627660 DOI: 10.3390/antibiotics8020076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
12
|
Xu Z, You D, Tang LY, Zhou Y, Ye BC. Metabolic Engineering Strategies Based on Secondary Messengers (p)ppGpp and C-di-GMP To Increase Erythromycin Yield in Saccharopolyspora erythraea. ACS Synth Biol 2019; 8:332-345. [PMID: 30632732 DOI: 10.1021/acssynbio.8b00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Secondary messengers (such as (p)ppGpp and c-di-GMP) were proved to play important roles in antibiotic biosynthesis in actinobacteria. In this study, we found that transcription levels of erythromycin-biosynthetic ( ery) genes were upregulated in nutrient limitation, which depended on (p)ppGpp in Saccharopolyspora erythraea. Further study demonstrated that the expression of ery genes and intracellular concentrations of (p)ppGpp showed synchronization during culture process. The erythromycin yield was significantly improved (about 200%) by increasing intracellular concentration of (p)ppGpp through introduction of C-terminally truncated (p)ppGpp synthetase RelA (1.43 kb of the N-terminal segment) from Streptomyces coelicolor into S. erythraea strain NRRL2338 (named as WT/pIB-P BAD- relA1-489). As the intracellular concentration of (p)ppGpp in an industrial erythromycin-high-producing strain E3 was greatly higher (about 10- to 100-fold) than WT strain, the applications of the above-described strategy did not work in E3 strain. Further research revealed that low concentration of 2-oxoglutarate in E3 strain exerted a "nitrogen-rich" pseudosignal, leading to the downregulation of nitrogen metabolism genes, which limited the use of nitrogen sources and thus the high intracellular (p)ppGpp concentration. Furthermore, the secondary messenger, c-di-GMP, was proved to be able to activate ery genes transcription by enhancing binding of BldD to promoters of ery genes. Overexpressing the diguanylate cyclase CdgB from S. coelicolor in S. erythraea increased the intracellular c-di-GMP concentration, and improved erythromycin production. These findings demonstrated that increasing the concentration of intracellular secondary messengers can activate ery genes transcription, and provided new strategies for designing metabolic engineering based on secondary messengers to improve antibiotics yield in actinobacteria.
Collapse
Affiliation(s)
- Zhen Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ya Tang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Zhao YF, Lu DD, Bechthold A, Ma Z, Yu XP. Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145. J Zhejiang Univ Sci B 2019; 19:708-717. [PMID: 30178637 DOI: 10.1631/jzus.b1800046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.
Collapse
Affiliation(s)
- Yan-Fang Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Dan Lu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
14
|
SCO3129, a TetR family regulator, is responsible for osmotic stress in Streptomyces coelicolor. Synth Syst Biotechnol 2018; 3:261-267. [PMID: 30417142 PMCID: PMC6223229 DOI: 10.1016/j.synbio.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Streptomyces are the soil-dwelling bacteria with a complex lifecycle and a considerable ability to produce a variety of secondary metabolites. Osmoregulation is important for their lifecycle in nature. In the genome of Streptomyces coelicolor M145, SCO3128 (encodes a putative fatty acid desaturase), SCO3129 (encodes a putative TetR family regulator) and SCO3130 (encodes a putative l-carnitine dehydratase) constitute a transcriptional unit, and its transcript was found to be in response to osmotic stress. Disruption of SCO3130 led to a bald phenotype on MMG medium and the mycelia lysis on the edge of the colony when KCl/NaCl was added to the medium. These results indicated that SCO3130 is important for the osmotic stress resistance in S. coelicolor. Transcriptional analysis and electrophoretic mobility shift assays (EMSA) demonstrated that SCO3129 repressed the transcription of SCO3128-3130 operon through directly binding to the promoter region of SCO3128, indicating that SCO3129 regulates the transcription of SCO3128-3130 in response to osmotic stress.
Collapse
|
15
|
Hoskisson PA, Fernández‐Martínez LT. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:231-238. [PMID: 29457705 PMCID: PMC6001450 DOI: 10.1111/1758-2229.12629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 06/01/2023]
Abstract
The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications.
Collapse
Affiliation(s)
- Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde, 161 Cathedral StreetGlasgow G4 0REUK
| | | |
Collapse
|
16
|
Jones GH. Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces. Antibiotics (Basel) 2018; 7:antibiotics7010025. [PMID: 29562650 PMCID: PMC5872136 DOI: 10.3390/antibiotics7010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichiacoli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Kallifidas D, Jiang G, Ding Y, Luesch H. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb Cell Fact 2018; 17:25. [PMID: 29454348 PMCID: PMC5816538 DOI: 10.1186/s12934-018-0874-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing revealed that Streptomyces sp. can dedicate up to ~ 10% of their genomes for the biosynthesis of bioactive secondary metabolites. However, the majority of these biosynthetic gene clusters are only weakly expressed or not at all. Indeed, the biosynthesis of natural products is highly regulated through integrating multiple nutritional and environmental signals perceived by pleiotropic and pathway-specific transcriptional regulators. Although pathway-specific refactoring has been a proved, productive approach for the activation of individual gene clusters, the construction of a global super host strain by targeting pleiotropic-specific genes for the expression of multiple diverse gene clusters is an attractive approach. RESULTS Streptomyces albus J1074 is a gifted heterologous host. To further improve its secondary metabolite expression capability, we rationally engineered the host by targeting genes affecting NADPH availability, precursor flux, cell growth and biosynthetic gene transcriptional activation. These studies led to the activation of the native paulomycin pathway in engineered S. albus strains and importantly the upregulated expression of the heterologous actinorhodin gene cluster. CONCLUSIONS Rational engineering of Streptomyces albus J1074 yielded a series of mutants with improved capabilities for native and heterologous expression of secondary metabolite gene clusters.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Guangde Jiang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Yousong Ding
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
18
|
Genome-Wide Analysis Reveals the Secondary Metabolome in Streptomyces kanasensis ZX01. Genes (Basel) 2017; 8:genes8120346. [PMID: 29189712 PMCID: PMC5748664 DOI: 10.3390/genes8120346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022] Open
Abstract
Streptomyces kanasensis ZX01 produces some antibiotics and a glycoprotein with antiviral activity. To further evaluate its biosynthetic potential, here we sequenced the 7,026,279 bp draft genome of S. kanasensis ZX01 and analyzed all identifiable secondary gene clusters for controlling natural products. More than 60 putative clusters were found in S. kanasensis ZX01, the majority of these biosynthetic loci are novel. In addition, the regulators for secondary metabolism in S. kanasensis ZX01 were abundant. The global regulator nsdA not only controls biosynthesis of some antibiotics, but also enhances production of glycoprotein GP-1 with antiviral activity. This study importantly reveals the powerful interplay between genomic analysis and studies of traditional natural product purification/production increasing.
Collapse
|
19
|
Future directions for the discovery of antibiotics from actinomycete bacteria. Emerg Top Life Sci 2017; 1:1-12. [PMID: 33525817 DOI: 10.1042/etls20160014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance (AMR) is a growing societal problem, and without new anti-infective drugs, the UK government-commissioned O'Neil report has predicted that infectious disease will claim the lives of an additional 10 million people a year worldwide by 2050. Almost all the antibiotics currently in clinical use are derived from the secondary metabolites of a group of filamentous soil bacteria called actinomycetes, most notably in the genus Streptomyces. Unfortunately, the discovery of these strains and their natural products (NPs) peaked in the 1950s and was then largely abandoned, partly due to the repeated rediscovery of known strains and compounds. Attention turned instead to rational target-based drug design, but this was largely unsuccessful and few new antibiotics have made it to clinic in the last 60 years. In the early 2000s, however, genome sequencing of the first Streptomyces species reinvigorated interest in NP discovery because it revealed the presence of numerous cryptic NP biosynthetic gene clusters that are not expressed in the laboratory. Here, we describe how the use of new technologies, including improved culture-dependent and -independent techniques, combined with searching underexplored environments, promises to identify a new generation of NP antibiotics from actinomycete bacteria.
Collapse
|
20
|
Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor. Sci Rep 2015; 5:15840. [PMID: 26527303 PMCID: PMC4630627 DOI: 10.1038/srep15840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
The lack of reliable reference genes (RGs) in the genus Streptomyces hampers effort to obtain the precise data of transcript levels. To address this issue, we aimed to identify reliable RGs in the model organism Streptomyces coelicolor. A pool of potential RGs containing 1,471 genes was first identified by determining the intersection of genes with stable transcript levels from four time-series transcriptome microarray datasets of S. coelicolor M145 cultivated in different conditions. Then, following a strict rational selection scheme including homology analysis, disturbance analysis, function analysis and transcript abundance analysis, 13 candidates were selected from the 1,471 genes. Based on real-time quantitative reverse transcription PCR assays, SCO0710, SCO6185, SCO1544, SCO3183 and SCO4758 were identified as the top five genes with the most stable transcript levels among the 13 candidates. Further analyses showed these five genes also maintained stable transcript levels in different S. coelicolor strains, as well as in Streptomyces avermitilis MA-4680 and Streptomyces clavuligerus NRRL 3585, suggesting they could fulfill the requirements of accurate data normalization in streptomycetes. Moreover, the systematic strategy employed in this work could be used for reference in other microorganism to select reliable RGs.
Collapse
|
21
|
Li S, Wang J, Li X, Yin S, Wang W, Yang K. Genome-wide identification and evaluation of constitutive promoters in streptomycetes. Microb Cell Fact 2015; 14:172. [PMID: 26515616 PMCID: PMC4625935 DOI: 10.1186/s12934-015-0351-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background Streptomycetes attract a lot of attention in metabolic engineering and synthetic biology because of their well-known ability to produce secondary metabolites. However, the available constitutive promoters are rather limited in this genus. Results In this work, constitutive promoters were selected from a pool of promoters whose downstream genes maintained constant expression profiles in various conditions. A total of 941 qualified genes were selected based on systematic analysis of five sets of time-series transcriptome microarray data of Streptomyces coelicolor M145 cultivated under different conditions. Then, 166 putative constitutive promoters were selected by following a rational selection workflow containing disturbance analysis, function analysis, genetic loci analysis, and transcript abundance analysis. Further, eight promoters with different strengths were chosen and subjected to experimental validation by green fluorescent protein reporter and real-time reverse-transcription quantitative polymerase chain reaction in S. coelicolor, Streptomyces venezuelae and Streptomyces albus. The eight promoters drove the stable expression of downstream genes in different conditions, implying that the 166 promoters that we identified might be constitutive under the genus Streptomyces. Four promoters were used in a plug-and-play platform to control the expression of the cryptic cluster of jadomycin B in S. venezuelae ISP5230 and resulted in different levels of the production of jadomycin B that corresponded to promoter strength. Conclusions This work identified and evaluated a set of constitutive promoters with different strengths in streptomycetes, and it enriched the presently available promoter toolkit in this genus. These promoters should be valuable in current platforms of metabolic engineering and synthetic biology for the activation of cryptic biosynthetic clusters and the optimization of pathways for the biosynthesis of important natural products in Streptomyces species. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0351-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
22
|
Walker MC, van der Donk WA. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 2015; 43:419-30. [PMID: 26323613 DOI: 10.1007/s10295-015-1665-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/25/2015] [Indexed: 12/20/2022]
Abstract
The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleotide, amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. Understanding glutamate's role in these various processes can aid in genome mining for novel metabolic pathways or the engineering of pathways for bioremediation or chemical production of valuable compounds.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
23
|
Fernández-Martínez LT, Gomez-Escribano JP, Bibb MJ. A relA-dependent regulatory cascade for auto-induction of microbisporicin production in Microbispora corallina. Mol Microbiol 2015; 97:502-14. [PMID: 25939852 PMCID: PMC4973701 DOI: 10.1111/mmi.13046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 01/21/2023]
Abstract
Microbisporicin is a potent type I lantibiotic produced by the rare actinomycete Microbispora corallina that is in preclinical trials for the treatment of infections caused by methicillin-resistant isolates of Staphylococcus aureus (MRSA). Analysis of the gene cluster for the biosynthesis of microbisporicin, which contains two unique post-translationally modified residues (5-chlorotryptophan and 3, 4-dihydroxyproline), has revealed an unusual regulatory mechanism that involves a pathway-specific extracytoplasmic function sigma factor (MibX)/anti-sigma factor (MibW) complex and an additional transcriptional regulator MibR. A model for the regulation of microbisporicin biosynthesis derived from transcriptional, mutational and quantitative reverse transcription polymerase chain reaction analyses suggests that MibR, which contains a C-terminal DNA-binding domain found in the LuxR family of transcriptional activators, functions as an essential master regulator to trigger microbisporicin production while MibX and MibW induce feed-forward biosynthesis and producer immunity. Moreover, we demonstrate that initial expression of mibR, and thus microbisporicin production, is dependent on the ppGpp synthetase gene (relA) of M. corallina. In addition, we show that constitutive expression of either of the two positively acting regulatory genes, mibR or mibX, leads to precocious and enhanced microbisporicin production.
Collapse
Affiliation(s)
| | - Juan P Gomez-Escribano
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
24
|
Mikulík K, Bobek J, Zídková J, Felsberg J. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2014; 98:7185-97. [DOI: 10.1007/s00253-014-5806-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
25
|
Rabyk MV, Ostash BO, Fedorenko VO. Gene networks regulating secondary metabolism in actinomycetes: Pleiotropic regulators. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Stevens DC, Conway KR, Pearce N, Villegas-Peñaranda LR, Garza AG, Boddy CN. Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli. PLoS One 2013; 8:e64858. [PMID: 23724102 PMCID: PMC3665592 DOI: 10.1371/journal.pone.0064858] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/22/2013] [Indexed: 02/03/2023] Open
Abstract
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products.
Collapse
Affiliation(s)
| | - Kyle R. Conway
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Nelson Pearce
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Anthony G. Garza
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher N. Boddy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Aldridge M, Facey P, Francis L, Bayliss S, Del Sol R, Dyson P. A novel bifunctional histone protein in Streptomyces: a candidate for structural coupling between DNA conformation and transcription during development and stress? Nucleic Acids Res 2013; 41:4813-24. [PMID: 23525459 PMCID: PMC3643593 DOI: 10.1093/nar/gkt180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-producing Streptomyces are complex bacteria that remodel global transcription patterns and their nucleoids during development. Here, we describe a novel developmentally regulated nucleoid-associated protein, DdbA, of the genus that consists of an N-terminal DNA-binding histone H1-like domain and a C-terminal DksA-like domain that can potentially modulate RNA polymerase activity in conjunction with ppGpp. Owing to its N-terminal domain, the protein can efficiently bind and condense DNA in vitro. Loss of function of this DNA-binding protein results in changes in both DNA condensation during development and the ability to adjust DNA supercoiling in response to osmotic stress. Initial analysis of the DksA-like activity of DdbA indicates that overexpression of the protein suppresses a conditional deficiency in antibiotic production of relA mutants that are unable to synthesise ppGpp, just as DksA overexpression in Escherichia coli can suppress ppGpp(0) phenotypes. The null mutant is also sensitive to oxidative stress owing to impaired upregulation of transcription of sigR, encoding an alternative sigma factor. Consequently, we propose this bifunctional histone-like protein as a candidate that could structurally couple changes in DNA conformation and transcription during the streptomycete life-cycle and in response to stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Dyson
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
28
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
29
|
Sanssouci É, Lerat S, Daigle F, Grondin G, Shareck F, Beaulieu C. Deletion of TerD-domain-encoding genes: effect on Streptomyces coelicolor development. Can J Microbiol 2012; 58:1221-9. [PMID: 23072443 DOI: 10.1139/w2012-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TerD-domain-encoding genes (tdd genes) are highly represented in the Streptomyces coelicolor genome. One of these, the tdd8 gene, was recently shown to have a crucial influence on growth, differentiation, and spore development of this filamentous bacterium. The investigation of the potential role of tdd genes has been extended here to tdd7 (SCO2367) and tdd13 (SCO4277). Both genes are highly expressed in bacteria grown in liquid-rich medium (tryptic soy broth). However, the deletion of these genes in S. coelicolor showed contrasting effects regarding developmental patterns, sporulation, and antibiotic production. Deletion of the tdd7 gene induced a reduction of growth in liquid medium, wrinkling of the mycelium on solid medium, and poor spore and actinorhodin production. On the other hand, deletion of the tdd13 gene did not significantly affect growth in liquid medium but induced a small colony phenotype on solid medium with abundant sporulation and overproduction of undecylprodigiosin. Although their exact functions remain undefined, the present data suggest a major involvement of TerD proteins in the proper development of S. coelicolor.
Collapse
Affiliation(s)
- Édith Sanssouci
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Ochi K, Nishizawa T, Inaoka T, Yamada A, Hashimoto K, Hosaka T, Okamoto S, Ozeki Y. Heterologous expression of a plant RelA-SpoT homologue results in increased stress tolerance in Saccharomyces cerevisiae by accumulation of the bacterial alarmone ppGpp. MICROBIOLOGY-SGM 2012; 158:2213-2224. [PMID: 22679107 DOI: 10.1099/mic.0.057638-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial alarmone ppGpp is present only in bacteria and the chloroplasts of plants, but not in mammalian cells or eukaryotic micro-organisms such as yeasts and fungi. The importance of the ppGpp signalling system in eukaryotes has therefore been largely overlooked. Here, we demonstrated that heterologous expression of a relA-spoT homologue (Sj-RSH) isolated from the halophilic plant Suaeda japonica in the yeast Saccharomyces cerevisiae results in accumulation of ppGpp, accompanied by enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, high temperature and freezing. Unlike bacterial ppGpp accumulation, ppGpp was accumulated in the early growth phase but not in the late growth phase. Moreover, nutritional downshift resulted in a decrease in ppGpp level, suggesting that the observed Sj-RSH activity to synthesize ppGpp is not starvation-dependent, contrary to our expectations based on bacteria. Accumulated ppGpp was found to be present solely in the cytosolic fraction and not in the mitochondrial fraction, perhaps reflecting the ribosome-independent ppGpp synthesis in S. cerevisiae cells. Unlike bacterial inosine monophosphate (IMP) dehydrogenases, the IMP dehydrogenase of S. cerevisiae was insensitive to ppGpp. Microarray analysis showed that ppGpp accumulation gave rise to marked changes in gene expression, with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the hypothetical gene YBR072C-A of unknown function, followed by many other known stress-responsive genes. S. cerevisiae may provide new opportunities to uncover and analyse the ppGpp signalling system in eukaryotic cells.
Collapse
Affiliation(s)
- Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan.,Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | | | - Takashi Inaoka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Akiyo Yamada
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Kohsuke Hashimoto
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | - Takeshi Hosaka
- International Young Researchers Empowerment Center, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan
| | - Susumu Okamoto
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
31
|
Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008. Bioprocess Biosyst Eng 2012; 35:1201-8. [PMID: 22382443 DOI: 10.1007/s00449-012-0707-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
Abstract
Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.
Collapse
|
32
|
McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36:206-31. [PMID: 22092088 PMCID: PMC3285474 DOI: 10.1111/j.1574-6976.2011.00317.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 10/29/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022] Open
Abstract
Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in the production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae first to form specialized aerial hyphae and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from '-omics' studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve.
Collapse
Affiliation(s)
| | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Expression of a polycistronic messenger RNA involved in antibiotic production in an rnc mutant of Streptomyces coelicolor. Arch Microbiol 2011; 194:147-55. [PMID: 21830128 DOI: 10.1007/s00203-011-0740-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.
Collapse
|
34
|
Repression of the antifungal activity of Pseudomonas sp. strain DF41 by the stringent response. Appl Environ Microbiol 2011; 77:5635-42. [PMID: 21705548 DOI: 10.1128/aem.02875-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response (SR) enables bacteria to adapt to nutrient limitation through production of the nucleotides guanosine tetraphosphate and guanosine pentaphosphate, collectively known as (p)ppGpp. Two enzymes are responsible for the intracellular pools of (p)ppGpp: RelA acts as a synthetase, while SpoT can function as either a synthetase or a hydrolase. We investigated how the SR affects the ability of the biological control agent Pseudomonas sp. strain DF41 to inhibit the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary. Strain DF41 relA and relA spoT mutants were generated and found to exhibit increased antifungal activity. Strain DF41 produces a lipopeptide (LP) molecule that is essential for Sclerotinia biocontrol. LP production and protease activity were both elevated in the relA and relA spoT mutants. Addition of relA but not spoT in trans restored the mutant phenotype to that of the parent. Next, we investigated whether an association exists between the SR and known regulators of biocontrol, including the Gac system and RpoS. A gacS mutant of strain DF41 produced less (p)ppGpp and exhibited a 1.7-fold decrease in relA expression compared to the wild type, suggesting that relA forms part of the Gac regulon. We discovered that rpoS transcription was reduced significantly in the SR mutants. Furthermore, rpoS provided in trans restored protease activity to wild-type levels but did not attenuate antifungal activity. Finally, relA expression was decreased in the mutants, indicating that the SR is required for maximum expression of relA.
Collapse
|
35
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
36
|
(p)ppGpp inhibits polynucleotide phosphorylase from streptomyces but not from Escherichia coli and increases the stability of bulk mRNA in Streptomyces coelicolor. J Bacteriol 2010; 192:4275-80. [PMID: 20581211 DOI: 10.1128/jb.00367-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.
Collapse
|
37
|
Wang G, Tanaka Y, Ochi K. The G243D mutation (afsB mutation) in the principal sigma factor sigmaHrdB alters intracellular ppGpp level and antibiotic production in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2010; 156:2384-2392. [PMID: 20488875 DOI: 10.1099/mic.0.039834-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deficient antibiotic production in an afsB mutant, BH5, of Streptomyces coelicolor A3(2) was recently shown to be due to a mutation (G243D) in region 1.2 of the primary sigma factor sigma(HrdB). Here we show that intracellular ppGpp levels during growth, as well as after amino acid depletion, in the mutant BH5 are lower than those of the afsB(+) parent strain. The introduction of certain rifampicin resistance (rif) mutations, which bypassed the requirement of ppGpp for transcription of pathway-specific regulatory genes, actII-ORF4 and redD, for actinorhodin and undecylprodigiosin, respectively, completely restored antibiotic production by BH5. Antibiotic production was restored also by introduction of a new class of thiostrepton-resistance (tsp) mutations, which provoked aberrant accumulation of intracellular ppGpp. Abolition of ppGpp synthesis in the afsB tsp mutant Tsp33 again abolished antibiotic production. These results indicate that intracellular ppGpp level is finely tuned for successful triggering of antibiotic production in the wild-type strain, and that this fine tuning was absent from the afsB mutant BH5, resulting in a failure to initiate antibiotic production in this strain.
Collapse
Affiliation(s)
- Guojun Wang
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Yukinori Tanaka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Kozo Ochi
- Hiroshima Institute of Technology, Department of Health Science, Faculty of Applied Information Science, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan.,National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
38
|
Jones GH. RNA degradation and the regulation of antibiotic synthesis in Streptomyces. Future Microbiol 2010; 5:419-29. [PMID: 20210552 DOI: 10.2217/fmb.10.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptomyces are Gram-positive, soil-dwelling bacteria that are prolific producers of antibiotics. Most of the antibiotics used in clinical and veterinary medicine worldwide are produced as natural products by members of the genus Streptomyces. The regulation of antibiotic production in Streptomyces is complex and there is a hierarchy of regulatory systems that extends from the level of individual biosynthetic pathways to global regulators that, at least in some streptomycetes, control the production of all the antibiotics produced by that organism. Ribonuclease III, a double-strand specific endoribonuclease, appears to be a global regulator of antibiotic production in Streptomyces coelicolor, the model organism for the study of streptomycete biology. In this review, the enzymology of RNA degradation in Streptomyces is reviewed in comparison with what is known about the degradation pathways in Escherichia coli and other bacteria. The evidence supporting a role for RNase III as a global regulator of antibiotic production in S. coelicolor is reviewed and possible mechanisms by which this regulation is accomplished are considered.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30319, USA.
| |
Collapse
|
39
|
Hesketh A, Kock H, Mootien S, Bibb M. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 2009; 74:1427-44. [PMID: 19906184 DOI: 10.1111/j.1365-2958.2009.06941.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The availability of zinc was shown to have a marked influence on the biosynthesis of actinorhodin in Streptomyces coelicolor A3(2). Production of actinorhodin and undecylprodigiosin was abolished when a novel pleiotropic regulatory gene, absC, was deleted, but only when zinc concentrations were low. AbsC was shown to control expression of the gene cluster encoding production of coelibactin, an uncharacterized non-ribosomally synthesized peptide with predicted siderophore-like activity, and the observed defect in antibiotic production was found to result from elevated expression of this gene cluster. Promoter regions in the coelibactin cluster contain predicted binding motifs for the zinc-responsive regulator Zur, and dual regulation of coelibactin expression by zur and absC was demonstrated using strains engineered to contain deletions in either or both of these genes. An AbsC binding site was identified in a divergent promoter region within the coelibactin biosynthetic gene cluster, adjacent to a putative Zur binding site. Repression of the coelibactin gene cluster by both AbsC and Zur appears to be required to maintain appropriate intracellular levels of zinc in S. coelicolor.
Collapse
Affiliation(s)
- Andy Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
40
|
Bibb M, Hesketh A. Chapter 4. Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 2009; 458:93-116. [PMID: 19374980 DOI: 10.1016/s0076-6879(09)04804-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter outlines the approaches and techniques that can be used to analyze the regulation of antibiotic production in streptomycetes. It describes how to isolate antibiotic nonproducing and overproducing mutants by UV, nitrosoguanidine (NTG), transposon, and insertion mutagenesis, and then how to use those mutants to identify regulatory genes. Other approaches to identify both pathway-specific and pleiotropic regulatory genes include overexpression and genome scanning. A variety of methods used to characterize pathway-specific regulatory genes for antibiotic biosynthesis are then covered, including transcriptional analysis and techniques that can be used to distinguish between direct and indirect regulation. Finally, genome-wide approaches that can be taken to characterize pleiotropic regulatory genes, including microarray and ChIP-on-Chip technologies, are described.
Collapse
Affiliation(s)
- Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | |
Collapse
|
41
|
A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Natl Acad Sci U S A 2008; 105:11346-51. [PMID: 18685110 DOI: 10.1073/pnas.0803622105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharopolyspora erythraea makes erythromycin, an antibiotic commonly used in human medicine. Unusually, the erythromycin biosynthetic (ery) cluster lacks a pathway-specific regulatory gene. We isolated a transcriptional regulator of the ery biosynthetic genes from S. erythraea and found that this protein appears to directly link morphological changes caused by impending starvation to the synthesis of a molecule that kills other bacteria, i.e., erythromycin. DNA binding assays, liquid and affinity chromatography, MALDI-MS analysis, and de novo sequencing identified this protein (M(r) = 18 kDa) as the S. erythraea ortholog of BldD, a key regulator of development in Streptomyces coelicolor. Recombinant S. erythraea BldD bound to all five regions containing promoters in the ery cluster as well as to its own promoter, the latter with an order-of-magnitude stronger than to the ery promoters. Deletion of bldD in S. erythraea decreased the erythromycin titer in a liquid culture 7-fold and blocked differentiation on a solid medium. Moreover, an industrial strain of S. erythraea with a higher titer of erythromycin expressed more BldD than a wild-type strain during erythromycin synthesis. Together, these results suggest that BldD concurrently regulates the synthesis of erythromycin and morphological differentiation. The ery genes are the first direct targets of a BldD ortholog to be identified that are positively regulated.
Collapse
|
42
|
Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 2008; 35:667-76. [DOI: 10.1007/s10295-008-0351-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
|
43
|
Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 2008; 74:2834-40. [PMID: 18310410 DOI: 10.1128/aem.02800-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a new method to activate antibiotic production in bacteria by introducing a mutation conferring resistance to a drug such as streptomycin, rifampin, paromomycin, or gentamicin. This method, however, enhanced antibiotic production by only up to an order of magnitude. Working with Streptomyces coelicolor A3(2), we established a method for the dramatic activation of antibiotic production by the sequential introduction of multiple drug resistance mutations. Septuple and octuple mutants, C7 and C8, thus obtained by screening for resistance to seven or eight drugs, produced huge amounts (1.63 g/liter) of the polyketide antibiotic actinorhodin, 180-fold higher than the level produced by the wild type. This dramatic overproduction was due to the acquisition of mutant ribosomes, with aberrant protein and ppGpp synthesis activity, as demonstrated by in vitro protein synthesis assays and by the abolition of antibiotic overproduction with relA disruption. This new approach, called "ribosome engineering," requires less time, cost, and labor than other methods and may be widely utilized for bacterial strain improvement.
Collapse
|
44
|
Kawai K, Wang G, Okamoto S, Ochi K. The rare earth, scandium, causes antibiotic overproduction inStreptomycesspp. FEMS Microbiol Lett 2007; 274:311-5. [PMID: 17645525 DOI: 10.1111/j.1574-6968.2007.00846.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite their importance in the chemical industry, the significance of rare earths in biology has been largely overlooked. Here, it is reported that the rare earth, scandium (Sc), causes antibiotic overproduction by 2-25-fold when added at a low concentration (10-100 microM) to cultures of Streptomyces coelicolor A3(2) (actinorhodin producer), Streptomyces antibioticus (actinomycin producer), and Streptomyces griseus (streptomycin producer). Not just for enhancement of antibiotic production, scandium was also effective in activating the dormant ability to produce actinorhodin in Streptomyces lividans. The effects of scandium were exerted at the level of transcription of pathway-specific positive regulatory genes, as demonstrated by marked up-regulation of actII-ORF4 in S. coelicolor cells exposed to this element. The bacterial alarmone, guanosine 5'-diphosphate 3'-diphosphate, was essential for actinorhodin overproduction provoked by scandium.
Collapse
Affiliation(s)
- Keiichi Kawai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | | | | |
Collapse
|
45
|
Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M. The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 2007; 8:R161. [PMID: 17683547 PMCID: PMC2374992 DOI: 10.1186/gb-2007-8-8-r161] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/11/2007] [Accepted: 08/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulation of production of the translational apparatus via the stringent factor ppGpp in response to amino acid starvation is conserved in many bacteria. However, in addition to this core function, it is clear that ppGpp also exhibits genus-specific regulatory effects. In this study we used Affymetrix GeneChips to more fully characterize the regulatory influence of ppGpp synthesis on the biology of Streptomyces coelicolor A3(2), with emphasis on the control of antibiotic biosynthesis and morphological differentiation. RESULTS Induction of ppGpp synthesis repressed transcription of the major sigma factor hrdB, genes with functions associated with active growth, and six of the thirteen conservons present in the S. coelicolor genome. Genes induced following ppGpp synthesis included the alternative sigma factor SCO4005, many for production of the antibiotics CDA and actinorhodin, the regulatory genes SCO4198 and SCO4336, and two alternative ribosomal proteins. Induction of the CDA and actinorhodin clusters was accompanied by an increase in transcription of the pathway regulators cdaR and actII-ORF4, respectively. Comparison of transcriptome profiles of a relA null strain, M570, incapable of ppGpp synthesis with its parent M600 suggested the occurrence of metabolic stress in the mutant. The failure of M570 to sporulate was associated with a stalling between production of the surfactant peptide SapB, and of the hydrophobins: it overproduced SapB but failed to express the chaplin and rodlin genes. CONCLUSION In S. coelicolor, ppGpp synthesis influences the expression of several genomic elements that are particularly characteristic of streptomycete biology, notably antibiotic gene clusters, conservons, and morphogenetic proteins.
Collapse
Affiliation(s)
- Andrew Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Wenqiong Joan Chen
- Verenium Corporation, San Diego, CA 92121, USA
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | | | - Sherman Chang
- Verenium Corporation, San Diego, CA 92121, USA
- Dermtech International, San Diego, CA 92121, USA
| | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
46
|
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 2007; 24:162-90. [PMID: 17268612 DOI: 10.1039/b507395m] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers advances in understanding of the biosynthesis of polyketides produced by type II PKS systems at the genetic, biochemical and structural levels.
Collapse
Affiliation(s)
- Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
47
|
Hong B, Phornphisutthimas S, Tilley E, Baumberg S, McDowall KJ. Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade. Biotechnol Lett 2006; 29:57-64. [PMID: 17120093 DOI: 10.1007/s10529-006-9216-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
In Streptomyces coelicolor, AtrA is an activator of transcription of the actinorhodin cluster-situated regulator gene actII-ORF4. In previous work, we showed that S. coelicolor AtrA binds in vitro to the promoter of S. griseus strR, the streptomycin cluster-situated regulator. We show here that S. griseus carries a single close homologue of atrA and that expression of S. coelicolor AtrA in S. griseus causes a DNA binding-dependent reduction in streptomycin production and in the mRNA levels of strR and genes of streptomycin biosynthesis. However, there is no effect on the level of the mRNA of adpA, which is the only transcription factor that has so far been characterised for strR. The adpA gene is directly regulated by ArpA, the receptor protein for the gamma-butyrolactone signalling molecule A-factor. Therefore, to our knowledge, our results provide the first in vivo evidence that A-factor-ArpA-AdpA-StrR regulatory cascade represents only part of the full complexity of regulation of streptomycin biosynthesis in S. griseus. The potential biotechnological application of our findings is discussed.
Collapse
Affiliation(s)
- Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
48
|
Saito N, Xu J, Hosaka T, Okamoto S, Aoki H, Bibb MJ, Ochi K. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 2006; 188:4952-61. [PMID: 16788203 PMCID: PMC1483009 DOI: 10.1128/jb.00343-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase beta subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 2006; 58:131-50. [PMID: 16164554 DOI: 10.1111/j.1365-2958.2005.04817.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Streptomyces produce a plethora of secondary metabolites including antibiotics and undergo a complex developmental cycle. As a means of establishing the pathways that regulate secondary metabolite production by this important bacterial genus, the model species Streptomyces coelicolor and its relatives have been the subject of several genetic screens. However, despite the identification and characterization of numerous genes that affect antibiotic production, there is still no overall understanding of the network that integrates the various environmental and growth signals to bring about changes in the expression of biosynthetic genes. To establish new links, we are taking a biochemical approach to identify transcription factors that regulate antibiotic production in S. coelicolor. Here we describe the identification and characterization of a transcription factor, designated AtrA, that regulates transcription of actII-ORF4, the pathway-specific activator of the actinorhodin biosynthetic gene cluster in S. coelicolor. Disruption of the corresponding atrA gene, which is not associated with any antibiotic gene cluster, reduced the production of actinorhodin, but had no detectable effect on the production of undecylprodigiosin or the calcium-dependent antibiotic. These results indicate that atrA has specificity with regard to the biosynthetic genes it influences. An orthologue of atrA is present in the genome of Streptomyces avermitilis, the only other streptomycete for which there is a publicly available complete sequence. We also show that S. coelicolor AtrA can bind in vitro to the promoter of strR, a transcriptional activator unrelated to actII-ORF4 that is the final regulator of streptomycin production in Streptomyces griseus. These findings provide further evidence that the path leading to the expression of pathway-specific activators of antibiotic biosynthesis genes in disparate Streptomyces may share evolutionarily conserved components in at least some cases, even though the final activators are not related, and suggests that the regulation of streptomycin production, which serves an important paradigm, may be more complex than represented by current models.
Collapse
Affiliation(s)
- Gabriel C Uguru
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
While the biological functions of most of the secondary metabolites made by streptomycetes are not known, it is inconceivable that they do not play an adaptive ecological role. The biosynthesis of secondary metabolites under laboratory conditions usually occurs in a growth phase or developmentally controlled manner, but is also influenced by a wide variety of environmental and physiological signals, presumably reflecting the range of conditions that trigger their production in nature. The expression of secondary metabolic gene clusters is controlled by many different families of regulatory proteins, some of which are found only in actinomycetes, and is elicited by both extracellular and intracellular signalling molecules. The application of a variety of genetic and molecular approaches is now beginning to reveal fascinating insights into the complex regulatory cascades that govern this process.
Collapse
Affiliation(s)
- Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| |
Collapse
|