1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Liu J, Zheng F, Xu M, Ogawa T, Mi H. CupAR negatively controls the key protein CupA in the carbon acquisition complex NDH-1MS in Synechocystis sp. PCC 6803. J Biol Chem 2024; 300:107716. [PMID: 39181331 PMCID: PMC11456788 DOI: 10.1016/j.jbc.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
The low CO2-inducible NDH complex (NDH-1MS) plays a crucial role in the cyanobacterial CO2-concentrating mechanism. However, the components in this complex and the regulation mechanism are still not completely understood. Using a mutant only with NDH-1MS as active Ci sequestration system, we identified a functional gene sll1736 named as cupAR (CupA Regulator). The cupAR deletion mutant, ΔcupAR, grew faster than the WT under high CO2 (HC) condition, more evidently at low pH. The activities of O2 evolution, CO2 uptake,NDH-1, and the building up of a transthylakoid proton were stimulated in this mutant under HC conditions. The cupAR gene is cotranscribed with the NDH-1S operon (ndhF3-ndhD3-cupA) and encoded protein, which specifically suppresses the transcription level of this operon under HC conditions. Mutation of cupAR significantly upregulated the accumulation of CupA, the key protein of NDH-1MS, under HC condition. CupAR interacted with NdhD3 and NdhF3, the membrane components of NDH-1MS, while accumulation of CupAR was reduced in the ΔndhD3 mutant. Furthermore, CupAR was colocated with CupA in both NDH-1MS complex and NDH-1S subcomplex. On the other hand, deletion of ndhR, a negative regulator of the NDH-1S operon, increased the accumulation of CupAR, whereas deletion of cupAR significantly lowered NdhR. Based on these results, we concluded that CupAR is a novel subunit of NDH-1MS, negatively regulating the activities of CupA and CO2 uptake dependent on NDH-1MS by positive regulation of NdhR under enriched CO2 conditions.
Collapse
Affiliation(s)
- Jiexi Liu
- CAS Center for Excellence in Molecular Plant Sciences, Graduate Courses of the Chinese Academy of Sciences, Shanghai, PR China
| | - Fangfang Zheng
- CAS Center for Excellence in Molecular Plant Sciences, Graduate Courses of the Chinese Academy of Sciences, Shanghai, PR China
| | - Min Xu
- CAS Center for Excellence in Molecular Plant Sciences, Graduate Courses of the Chinese Academy of Sciences, Shanghai, PR China
| | - Teruo Ogawa
- CAS Center for Excellence in Molecular Plant Sciences, Graduate Courses of the Chinese Academy of Sciences, Shanghai, PR China
| | - Hualing Mi
- CAS Center for Excellence in Molecular Plant Sciences, Graduate Courses of the Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
3
|
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1417680. [PMID: 39036361 PMCID: PMC11257934 DOI: 10.3389/fpls.2024.1417680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. Many cyanobacterial strains can live in different trophic modes, ranging from photoautotrophic and heterotrophic to mixotrophic growth. However, the regulatory mechanisms allowing a flexible switch between these lifestyles are poorly understood. As anabolic fixation of CO2 in the Calvin-Benson-Bassham (CBB) cycle and catabolic sugar-degradation pathways share intermediates and enzymatic capacity, a tight regulatory network is required to enable simultaneous opposed metabolic fluxes. The Entner-Doudoroff (ED) pathway was recently predicted as one glycolytic route, which cooperates with other pathways in glycogen breakdown. Despite low carbon flux through the ED pathway, metabolite analyses of mutants deficient in the ED pathway revealed a distinct phenotype pointing at a strong regulatory impact of this route. The small Cp12 protein downregulates the CBB cycle in darkness by inhibiting phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase. New results of metabolomic and redox level analyses on strains with Cp12 variants extend the known role of Cp12 regulation towards the acclimation to external glucose supply under diurnal conditions as well as to fluctuations in CO2 levels in the light. Moreover, carbon and nitrogen metabolism are closely linked to maintain an essential C/N homeostasis. The small protein PirC was shown to be an important regulator of phosphoglycerate mutase, which identified this enzyme as central branching point for carbon allocation from CBB cycle towards lower glycolysis. Altered metabolite levels in the mutant ΔpirC during nitrogen starvation experiments confirm this regulatory mechanism. The elucidation of novel mechanisms regulating carbon allocation at crucial metabolic branching points could identify ways for targeted redirection of carbon flow towards desired compounds, and thus help to further establish cyanobacteria as green cell factories for biotechnological applications with concurrent utilization of sunlight and CO2.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
5
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
6
|
Bolay P, Schlüter S, Grimm S, Riediger M, Hess WR, Klähn S. The transcriptional regulator RbcR controls ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes in the cyanobacterium Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2022; 235:432-445. [PMID: 35377491 DOI: 10.1111/nph.18139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Oxygenic photosynthesis evolved in cyanobacteria, primary producers of striking ecological importance. Like plants, cyanobacteria use the Calvin-Benson-Bassham cycle for CO2 fixation, fuelled by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In a competitive reaction this enzyme also fixes O2 which makes it rather ineffective. To mitigate this problem, cyanobacteria evolved a CO2 concentrating mechanism (CCM) to pool CO2 in the vicinity of RuBisCO. However, the regulation of these carbon (C) assimilatory systems is understood only partially. Using the model Synechocystis sp. PCC 6803 we characterized an essential LysR-type transcriptional regulator encoded by gene sll0998. Transcript profiling of a knockdown mutant revealed diminished expression of several genes involved in C acquisition, including rbcLXS, sbtA and ccmKL encoding RuBisCO and parts of the CCM, respectively. We demonstrate that the Sll0998 protein binds the rbcL promoter and acts as a RuBisCO regulator (RbcR). We propose ATTA(G/A)-N5 -(C/T)TAAT as the binding motif consensus. Our data validate RbcR as a regulator of inorganic C assimilation and define the regulon controlled by it. Biological CO2 fixation can sustain efforts to reduce its atmospheric concentrations and is fundamental for the light-driven production of chemicals directly from CO2 . Information about the involved regulatory and physiological processes is crucial to engineer cyanobacterial cell factories.
Collapse
Affiliation(s)
- Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Susan Schlüter
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Samuel Grimm
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
7
|
Bantu L, Chauhan S, Srikumar A, Hirakawa Y, Suzuki I, Hagemann M, Prakash JSS. A membrane-bound cAMP receptor protein, SyCRP1 mediates inorganic carbon response in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194803. [PMID: 35272049 DOI: 10.1016/j.bbagrm.2022.194803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The availability of inorganic carbon (Ci) as the source for photosynthesis is fluctuating in aquatic environments. Despite the involvement of transcriptional regulators CmpR and NdhR in regulating genes encoding Ci transporters at limiting CO2, the Ci-sensing mechanism is largely unknown among cyanobacteria. Here we report that a cAMP-dependent transcription factor SyCRP1 mediates Ci response in Synechocystis. The mutant ∆sycrp1 exhibited a slow-growth phenotype and reduced maximum rate of bicarbonate-dependent photosynthetic electron transport (Vmax) compared to wild-type at the scarcity of CO2. The number of carboxysomes was decreased significantly in the ∆sycrp1 at low CO2 consistent with its reduced Vmax. The DNA microarray analysis revealed the upregulation of genes encoding Ci transporters in ∆sycrp1. The membrane-localized SyCRP1 was released into the cytosol in wild-type cells shifted from low to high CO2 or upon cAMP treatment. Soluble His-tagged SyCRP1 was shown to target DNA-binding sites upstream of the Ci-regulated genes sbtA and ccmK3. In addition, cAMP enhanced the binding of SyCRP1 to its target sites. Our data collectively suggest that the Ci is sensed through the second messenger cAMP releasing membrane-bound SyCRP1 into cytoplasm under sufficient CO2 conditions. Hence, SyCRP1 is a possible regulator of carbon concentrating mechanism, and such a regulation might be mediated via sensing Ci levels through cAMP in Synechocystis.
Collapse
Affiliation(s)
- Lingaswamy Bantu
- From the Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suraj Chauhan
- From the Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Afshan Srikumar
- From the Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Jogadhenu S S Prakash
- From the Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
8
|
Spät P, Barske T, Maček B, Hagemann M. Alterations in the CO 2 availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2021; 231:1123-1137. [PMID: 34058021 DOI: 10.1111/nph.17423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria are the only prokaryotes that perform plant-like oxygenic photosynthesis. They evolved an inorganic carbon-concentrating mechanism to adapt to low CO2 conditions. Quantitative phosphoproteomics was applied to analyze regulatory features during the acclimation to low CO2 conditions in the model cyanobacterium Synechocystis sp. PCC 6803. Overall, more than 2500 proteins were quantified, equivalent to c. 70% of the Synechocystis theoretical proteome. Proteins with changing abundances correlated largely with mRNA expression levels. Functional annotation of the noncorrelating proteins revealed an enrichment of key metabolic processes fundamental for maintaining cellular homeostasis. Furthermore, 105 phosphoproteins harboring over 200 site-specific phosphorylation events were identified. Subunits of the bicarbonate transporter BCT1 and the redox switch protein CP12 were among phosphoproteins with reduced phosphorylation levels at lower CO2 , whereas the serine/threonine protein kinase SpkC revealed increased phosphorylation levels. The corresponding ΔspkC mutant was characterized and showed decreased ability to acclimate to low CO2 conditions. Possible phosphorylation targets of SpkC including a BCT1 subunit were identified by phosphoproteomics. Collectively, our study highlights the importance of posttranscriptional regulation of protein abundances as well as posttranslational regulation by protein phosphorylation for the successful acclimation towards low CO2 conditions in Synechocystis and possibly among cyanobacteria.
Collapse
Affiliation(s)
- Philipp Spät
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, D-72076, Germany
| | - Thomas Barske
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, D-72076, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, D-18059, Germany
| |
Collapse
|
9
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
10
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
11
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
12
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
13
|
Veaudor T, Blanc-Garin V, Chenebault C, Diaz-Santos E, Sassi JF, Cassier-Chauvat C, Chauvat F. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life (Basel) 2020; 10:E71. [PMID: 32438704 PMCID: PMC7281370 DOI: 10.3390/life10050071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria constitute the only phylum of oxygen-evolving photosynthetic prokaryotes that shaped the oxygenic atmosphere of our planet. Over time, cyanobacteria have evolved as a widely diverse group of organisms that have colonized most aquatic and soil ecosystems of our planet and constitute a large proportion of the biomass that sustains the biosphere. Cyanobacteria synthesize a vast array of biologically active metabolites that are of great interest for human health and industry, and several model cyanobacteria can be genetically manipulated. Hence, cyanobacteria are regarded as promising microbial factories for the production of chemicals from highly abundant natural resources, e.g., solar energy, CO2, minerals, and waters, eventually coupled to wastewater treatment to save costs. In this review, we summarize new important discoveries on the plasticity of the photoautotrophic metabolism of cyanobacteria, emphasizing the coordinated partitioning of carbon and nitrogen towards growth or compound storage, and the importance of these processes for biotechnological perspectives. We also emphasize the importance of redox regulation (including glutathionylation) on these processes, a subject which has often been overlooked.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Victoire Blanc-Garin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Célia Chenebault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Encarnación Diaz-Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Jean-François Sassi
- Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre de Cadarache St Paul Lez, 13108 Durance, France;
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| |
Collapse
|
14
|
Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. TRENDS IN PLANT SCIENCE 2018; 23:1116-1130. [PMID: 30292707 DOI: 10.1016/j.tplants.2018.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Aix-Marseille Université, CNRS, LCB, France.
| | - Cong-Zhao Zhou
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France
| |
Collapse
|
15
|
Köbler C, Schultz SJ, Kopp D, Voigt K, Wilde A. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day-night transitions. Mol Microbiol 2018; 110:847-861. [PMID: 30216574 DOI: 10.1111/mmi.14129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023]
Abstract
Cyanobacteria exhibit rhythmic gene expression with a period length of 24 hours to adapt to daily environmental changes. In the model organism Synechococcuselongatus PCC 7942, the central oscillator consists of the three proteins KaiA, KaiB and KaiC and utilizes the histidine kinase SasA and its response regulator RpaA as output-signaling pathway. Synechocystis sp. PCC 6803 contains in addition to the canonical kaiAB1C1 gene cluster two further homologs of the kaiB and kaiC genes. Here, we demonstrate that the SasA-RpaA system interacts with the KaiAB1C1 core oscillator only. Interaction with KaiC2 and KaiC3 proteins was not detected, suggesting different signal transduction components for the clock homologs. Inactivation of rpaA in Synechocystis sp. PCC 6803 leads to reduced viability of the mutant in light-dark cycles, especially under mixotrophic growth conditions. Chemoheterotrophic growth of the ∆rpaA strain in the dark was abolished completely. Transcriptomic data revealed that RpaA is mainly involved in the regulation of genes related to CO2 - acclimation in the light and to carbon metabolism in the dark. Further, our results indicate a link between the circadian clock and phototaxis.
Collapse
Affiliation(s)
- Christin Köbler
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Siri-Jasmin Schultz
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Dominik Kopp
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Karsten Voigt
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
16
|
Liran O, Shemesh E, Tchernov D. Investigation into the CO2 concentrating step rates within the carbon concentrating mechanism of Synechocystis sp. PCC6803 at various pH and light intensities reveal novel mechanistic properties. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y, Zhang Y, Wang X, Xu W, He Q, Wang Y. Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium. Mol Cell Proteomics 2018; 16:1258-1274. [PMID: 28668777 DOI: 10.1074/mcp.m116.068080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/07/2017] [Indexed: 01/18/2023] Open
Abstract
The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.
Collapse
Affiliation(s)
- Haitao Ge
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
| | - Longfa Fang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiahe Huang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Jinlong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyang Chen
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Liu
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanya Zhang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Xiaorong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Xu
- ‖Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
| | - Qingfang He
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China; .,**Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas
| | - Yingchun Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China; .,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc Natl Acad Sci U S A 2017; 115:403-408. [PMID: 29279392 DOI: 10.1073/pnas.1716062115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.
Collapse
|
19
|
Holland SC, Artier J, Miller NT, Cano M, Yu J, Ghirardi ML, Burnap RL. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2232-2243. [PMID: 27638927 DOI: 10.1093/pcp/pcw146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Acclimation to low CO2 conditions in cyanobacteria involves the co-ordinated regulation of genes mainly encoding components of the carbon-concentrating mechanism (CCM). Making use of several independent microarray data sets, a core set of CO2-regulated genes was defined for the model strain Synechocystis sp. PCC 6803. On the transcriptional level, the CCM is mainly regulated by the well-characterized transcriptional regulators NdhR (= CcmR) and CmpR. However, the role of an additional regulatory protein, namely cyAbrB2 belonging to the widely distributed AbrB regulator family that was originally characterized in the genus Bacillus, is less defined. Here we present results of transcriptomic and metabolic profiling of the wild type and a ΔcyabrB2 mutant of Synechocystis sp. PCC 6803 after shifts from high CO2 (5% in air, HC) to low CO2 (0.04%, LC). Evaluation of the transcriptomic data revealed that cyAbrB2 is involved in the regulation of several CCM-related genes such as sbtA/B, ndhF3/ndhD3/cupA and cmpABCD under LC conditions, but apparently acts supplementary to NdhR and CmpR. Under HC conditions, cyAbrB2 deletion affects the transcript abundance of PSII subunits, light-harvesting components and Calvin-Benson-Bassham cycle enzymes. These changes are also reflected by down-regulation of primary metabolite pools. The data suggest a role for cyAbrB2 in adjusting primary carbon and nitrogen metabolism to photosynthetic activity under fluctuating environmental conditions. The findings were integrated into the current knowledge about the acquisition of inorganic carbon (Ci), the CCM and parts of its regulation on the transcriptional level.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Doreen Schwarz
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 2016; 100:3401-13. [DOI: 10.1007/s00253-016-7374-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
22
|
Krishnan A, Zhang S, Liu Y, Tadmori KA, Bryant DA, Dismukes CG. Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Bioeng 2016; 113:1448-59. [PMID: 26704377 DOI: 10.1002/bit.25913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/24/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023]
Abstract
CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress H2 uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 10(8) cells(-1) h(-1) and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation. Biotechnol. Bioeng. 2016;113: 1448-1459. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anagha Krishnan
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Shuyi Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Kinan A Tadmori
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - Charles G Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854. .,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.
| |
Collapse
|
23
|
D'Agostino PM, Song X, Neilan BA, Moffitt MC. Proteogenomics of a saxitoxin-producing and non-toxic strain ofAnabaena circinalis(cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 2016; 18:461-76. [DOI: 10.1111/1462-2920.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Paul M. D'Agostino
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| | - Xiaomin Song
- Australian Proteomics Analysis Facility; Macquarie University; Macquarie Park NSW 2109 Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
| | - Michelle C. Moffitt
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| |
Collapse
|
24
|
Sandrini G, Jakupovic D, Matthijs HCP, Huisman J. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels. Appl Environ Microbiol 2015; 81:7730-9. [PMID: 26319871 PMCID: PMC4616958 DOI: 10.1128/aem.02295-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dennis Jakupovic
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Klähn S, Orf I, Schwarz D, Matthiessen JKF, Kopka J, Hess WR, Hagemann M. Integrated Transcriptomic and Metabolomic Characterization of the Low-Carbon Response Using an ndhR Mutant of Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2015; 169:1540-56. [PMID: 25630438 PMCID: PMC4634042 DOI: 10.1104/pp.114.254045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/27/2015] [Indexed: 05/17/2023]
Abstract
The acquisition and assimilation of inorganic carbon (Ci) represents the largest flux of inorganic matter in photosynthetic organisms; hence, this process is tightly regulated. We examined the Ci-dependent transcriptional and metabolic regulation in wild-type Synechocystis sp. PCC 6803 compared with a mutant defective in the main transcriptional repressor for Ci acquisition genes, the NAD(P)H dehydrogenase transcriptional regulator NdhR. The analysis revealed that many protein-coding transcripts that are normally repressed in the presence of high CO2 (HC) concentrations were strongly expressed in ∆ndhR, whereas other messenger RNAs were strongly down-regulated in mutant cells, suggesting a potential activating role for NdhR. A conserved NdhR-binding motif was identified in the promoters of derepressed genes. Interestingly, the expression of some NdhR-regulated genes remained further inducible under low-CO2 conditions, indicating the involvement of additional NdhR-independent Ci-regulatory mechanisms. Intriguingly, we also observed that the abundance of 52 antisense RNAs and 34 potential noncoding RNAs was affected by Ci supply, although most of these molecules were not regulated through NdhR. Thus, antisense and noncoding RNAs could contribute to NdhR-independent carbon regulation. In contrast to the transcriptome, the metabolome in ∆ndhR cells was similar to that of wild-type cells under HC conditions. This observation and the delayed metabolic responses to the low-CO2 shift in ∆ndhR, specifically the lack of transient increases in the photorespiratory pathway intermediates 2-phosphoglycolate, glycolate, and glycine, suggest that the deregulation of gene expression in the ΔndhR mutant successfully preacclimates cyanobacterial cells to lowered Ci supply under HC conditions.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Isabel Orf
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Doreen Schwarz
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Jasper K F Matthiessen
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Joachim Kopka
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| | - Martin Hagemann
- Genetics and Experimental Bioinformatics, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany (S.K., J.K.F.M., W.R.H.);Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, D-14476 Potsdam-Golm, Germany (I.O., J.K.); andPlant Physiology Department, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany (D.S., M.H.)
| |
Collapse
|
26
|
Picossi S, Flores E, Herrero A. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation inAnabaena. Environ Microbiol 2015; 17:3341-51. [DOI: 10.1111/1462-2920.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/22/2015] [Accepted: 01/31/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 Seville E-41092 Spain
| |
Collapse
|
27
|
Burnap RL, Hagemann M, Kaplan A. Regulation of CO2 Concentrating Mechanism in Cyanobacteria. Life (Basel) 2015; 5:348-71. [PMID: 25636131 PMCID: PMC4390856 DOI: 10.3390/life5010348] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci) uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific "regulatory metabolites" whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Martin Hagemann
- Institute Biosciences, Department Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, Rostock D-18059, Germany.
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
28
|
Haimovich-Dayan M, Lieman-Hurwitz J, Orf I, Hagemann M, Kaplan A. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803? Environ Microbiol 2015; 17:1794-804. [PMID: 25297829 DOI: 10.1111/1462-2920.12638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved.
Collapse
Affiliation(s)
- Maya Haimovich-Dayan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
29
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Holland SC, Kappell AD, Burnap RL. Redox changes accompanying inorganic carbon limitation in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:355-363. [PMID: 25490207 DOI: 10.1016/j.bbabio.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/27/2022]
Abstract
Inorganic carbon (Ci) is the major sink for photosynthetic reductant in organisms capable of oxygenic photosynthesis. In the absence of abundant Ci, the cyanobacterium Synechocystis sp. strain PCC6803 expresses a high affinity Ci acquisition system, the CO2-concentrating mechanisms (CCM), controlled by the transcriptional regulator CcmR and the metabolites NADP+ and α-ketoglutarate, which act as co-repressors of CcmR by modulating its DNA binding. The CCM thus responds to internal cellular redox changes during the transition from Ci-replete to Ci-limited conditions. However, the actual changes in the metabolic state of the NADPH/NADP+ system that occur during the transition to Ci-limited conditions remain ill-defined. Analysis of changes in the redox state of cells experiencing Ci limitation reveals systematic changes associated with physiological adjustments and a trend towards the quinone and NADP pools becoming highly reduced. A rapid and persistent increase in F0 was observed in cells reaching the Ci-limited state, as was the induction of photoprotective fluorescence quenching. Systematic changes in the fluorescence induction transients were also observed. As with Chl fluorescence, a transient reduction of the NADPH pool ('M' peak), is assigned to State 2→State 1 transition associated with increased electron flow to NADP+. This was followed by a characteristic decline, which was abolished by Ci limitation or inhibition of the Calvin-Benson-Bassham (CBB) cycle and is thus assigned to the activation of the CBB cycle. The results are consistent with the proposed regulation of the CCM and provide new information on the nature of the Chl and NADPH fluorescence induction curves.
Collapse
Affiliation(s)
- Steven C Holland
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anthony D Kappell
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
31
|
Cassier-Chauvat C, Chauvat F. Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances. Life (Basel) 2014; 4:666-80. [PMID: 25387163 PMCID: PMC4284462 DOI: 10.3390/life4040666] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Ferredoxins (Fed), occurring in most organisms, are small proteins that use their iron-sulfur cluster to distribute electrons to various metabolic pathways, likely including hydrogen production. Here, we summarize the current knowledge on ferredoxins in cyanobacteria, the prokaryotes regarded as important producers of the oxygenic atmosphere and biomass for the food chain, as well as promising cell factories for biofuel production. Most studies of ferredoxins were performed in the model strain, Synechocystis PCC6803, which possesses nine highly-conserved ferredoxins encoded by monocistronic or operonic genes, some of which are localized in conserved genome regions. Fed1, encoded by a light-inducible gene, is a highly abundant protein essential to photosynthesis. Fed2-Fed9, encoded by genes differently regulated by trophic conditions, are low-abundant proteins that play prominent roles in the tolerance to environmental stresses. Concerning the selectivity/redundancy of ferredoxin, we report that Fed1, Fed7 and Fed9 belong to ferredoxin-glutaredoxin-thioredoxin crosstalk pathways operating in the protection against oxidative and metal stresses. Furthermore, Fed7 specifically interacts with a DnaJ-like protein, an interaction that has been conserved in photosynthetic eukaryotes in the form of a composite protein comprising DnaJ- and Fed7-like domains. Fed9 specifically interacts with the Flv3 flavodiiron protein acting in the photoreduction of O2 to H2O.
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France.
| | - Franck Chauvat
- UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France.
| |
Collapse
|
32
|
Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W. A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 2014; 13:3519-32. [PMID: 25239498 DOI: 10.1074/mcp.m113.035675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve ethanol production directly from CO2 in photosynthetic cyanobacterial systems, one key issue that needs to be addressed is the low ethanol tolerance of cyanobacterial cells. Our previous proteomic and transcriptomic analyses found that several regulatory proteins were up-regulated by exogenous ethanol in Synechocystis sp. PCC6803. In this study, through tolerance analysis of the gene disruption mutants of the up-regulated regulatory genes, we uncovered that one transcriptional regulator, Sll0794, was related directly to ethanol tolerance in Synechocystis. Using a quantitative iTRAQ-LC-MS/MS proteomics approach coupled with quantitative real-time reverse transcription-PCR (RT-qPCR), we further determined the possible regulatory network of Sll0794. The proteomic analysis showed that in the Δsll0794 mutant grown under ethanol stress a total of 54 and 87 unique proteins were down- and up-regulated, respectively. In addition, electrophoretic mobility shift assays demonstrated that the Sll0794 transcriptional regulator was able to bind directly to the upstream regions of sll1514, slr1512, and slr1838, which encode a 16.6 kDa small heat shock protein, a putative sodium-dependent bicarbonate transporter and a carbon dioxide concentrating mechanism protein CcmK, respectively. The study provided a proteomic description of the putative ethanol-tolerance network regulated by the sll0794 gene, and revealed new insights on the ethanol-tolerance regulatory mechanism in Synechocystis. As the first regulatory protein discovered related to ethanol tolerance, the gene may serve as a valuable target for transcription machinery engineering to further improve ethanol tolerance in Synechocystis. All MS data have been deposited in the ProteomeXchange with identifier PXD001266 (http://proteomecentral.proteomexchange.org/dataset/PXD001266).
Collapse
Affiliation(s)
- Zhongdi Song
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Lei Chen
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| | - Jiangxin Wang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Yinhua Lu
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weihong Jiang
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weiwen Zhang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| |
Collapse
|
33
|
Schwarz D, Orf I, Kopka J, Hagemann M. Effects of Inorganic Carbon Limitation on the Metabolome of the Synechocystis sp. PCC 6803 Mutant Defective in glnB Encoding the Central Regulator PII of Cyanobacterial C/N Acclimation. Metabolites 2014; 4:232-47. [PMID: 24957024 PMCID: PMC4101504 DOI: 10.3390/metabo4020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022] Open
Abstract
Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Non-diazotrophic strains such as the model Synechocystis sp. PCC 6803 depend on a balanced uptake and assimilation of inorganic carbon and nitrogen sources. The internal C/N ratio is sensed via the PII protein (GlnB). We analyzed metabolic changes of the ΔglnB mutant of Synechocystis sp. PCC 6803 under different CO2 availability. The identified metabolites provided a snapshot of the central C/N metabolism. Cells of the ΔglnB mutant shifted to carbon-limiting conditions, i.e. a decreased C/N ratio, showed changes in intermediates of the sugar storage and particularly of the tricarboxylic acid cycle, arginine, and glutamate metabolism. The changes of the metabolome support the notion that the PII protein is primarily regulating the N-metabolism whereas the changes in C-metabolism are probably secondary effects of the PII deletion.
Collapse
Affiliation(s)
- Doreen Schwarz
- Universität Rostock, Institut Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Isabel Orf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Martin Hagemann
- Universität Rostock, Institut Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| |
Collapse
|
34
|
Burnap RL, Nambudiri R, Holland S. Regulation of the carbon-concentrating mechanism in the cyanobacterium Synechocystis sp. PCC6803 in response to changing light intensity and inorganic carbon availability. PHOTOSYNTHESIS RESEARCH 2013; 118:115-124. [PMID: 23990371 DOI: 10.1007/s11120-013-9912-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic organisms possess regulatory mechanisms to balance the various inputs of photosynthesis in a manner that minimizes over-excitation of the light-driven electron transfer apparatus, while maximizing the reductive assimilation of inorganic nutrients, most importantly inorganic carbon (Ci). Accordingly, the regulatory interactions coordinating responses to fluctuating light and responses to Ci availability are of fundamental significance. The inducible high affinity carbon-concentrating mechanism (CCM) in the cyanobacterium Synechocystis sp. PCC6803 has been studied in order to understand how it is integrated with the light and dark reactions of photosynthesis. To probe genetic regulatory mechanisms, genomic DNA microarrays were used to survey for differences in the expression of genes in response to a shift to high light conditions under conditions of either high or low Ci availability. Discrepancies in published experiments exist regarding the extent to which genes for the CCM are upregulated in response to high light treatment. These discrepancies may be due to critical differences in Ci availability existing during the different high light experiments. The present microarray experiments reexamine this by comparing high light treatment under two different Ci regimes: bubbling with air and bubbling with air enriched with CO2. While some transcriptional responses such as the downregulation of antenna proteins are quite similar, pronounced differences exist with respect to the differential expression of CCM and affiliated genes. The results are discussed in the context of a recent analysis revealing that small molecules that are intermediates of the light and dark reaction photosynthetic metabolism act as allosteric effectors of the DNA-binding proteins which modulate the expression of the CCM genes.
Collapse
Affiliation(s)
- Robert L Burnap
- Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA,
| | | | | |
Collapse
|
35
|
Carmel D, Dahlström KM, Holmström M, Allahverdiyeva Y, Battchikova N, Aro EM, Salminen TA, Mulo P. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch Microbiol 2013; 195:727-36. [PMID: 24043215 DOI: 10.1007/s00203-013-0924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
The slr0006 gene of Synechocystis sp. PCC 6803 is upregulated at mRNA and protein level under carbon limitation. The T(N11)A motif in the upstream region of slr0006 is a binding site for transcriptional regulator NdhR, and accumulation of the Slr0006 protein in ndhR deletion mutant grown in high CO2 suggests that NdhR may be a negative regulator of slr0006. Accumulation requires photosynthetic electron transfer, because no Slr0006 was detected in darkness or in the presence of electron transfer inhibitors DCMU and DBMIB. Structural modeling of the Slr0006 protein suggests that it adopts Sua5/YciO/YrdC family fold, which is an α/β twisted open-sheet structure. Similar to the structurally known members of this protein family, the surface of Slr0006 contains positively charged cavity indicating a possible binding site for RNA or nucleotides. Moreover, Slr0006 was co-localized with 30S ribosomal proteins and rRNA, suggesting involvement in processes linked to protein synthesis.
Collapse
Affiliation(s)
- Dalton Carmel
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 2012; 11:5286-300. [PMID: 23062023 DOI: 10.1021/pr300504w] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.
Collapse
Affiliation(s)
- Jianjun Qiao
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
| | | | | | | | | | | | | |
Collapse
|
37
|
Daley SME, Kappell AD, Carrick MJ, Burnap RL. Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. PLoS One 2012; 7:e41286. [PMID: 22911771 PMCID: PMC3401165 DOI: 10.1371/journal.pone.0041286] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Inorganic carbon is the major macronutrient required by organisms utilizing oxygenic photosynthesis for autotrophic growth. Aquatic photoautotrophic organisms are dependent upon a CO(2) concentrating mechanism (CCM) to overcome the poor CO(2)-affinity of the major carbon-fixing enzyme, ribulose-bisphosphate carboxylase/oxygenase (Rubisco). The CCM involves the active transport of inorganic forms of carbon (C(i)) into the cell to increase the CO(2) concentration around the active site of Rubisco. It employs both bicarbonate transporters and redox-powered CO(2)-hydration enzymes coupled to membranous NDH-type electron transport complexes that collectively produce C(i) concentrations up to a 1000-fold greater in the cytoplasm compared to the external environment. The CCM is regulated: a high affinity CCM comprised of multiple components is induced under limiting external Ci concentrations. The LysR-type transcriptional regulator CcmR has been shown to repress its own expression along with structural genes encoding high affinity C(i) transporters distributed throughout the genome of Synechocystis sp. PCC 6803. While much has been learned about the structural genes of the CCM and the identity of the transcriptional regulators controlling their expression, little is known about the physiological signals that elicit the induction of the high affinity CCM. Here CcmR is studied to identify metabolites that modulate its transcriptional repressor activity. Using surface plasmon resonance (SPR) α-ketoglutarate (α-KG) and the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP(+)) have been identified as the co-repressors of CcmR. Additionally, ribulose-1,5-bisphosphate (RuBP) and 2-phosphoglycolate (2-PG) have been confirmed as co-activators of CmpR which controls the expression of the ABC-type bicarbonate transporter.
Collapse
Affiliation(s)
- Shawn M. E. Daley
- Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Anthony D. Kappell
- Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Marla J. Carrick
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Robert L. Burnap
- Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
38
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
39
|
Hackenberg C, Huege J, Engelhardt A, Wittink F, Laue M, Matthijs HCP, Kopka J, Bauwe H, Hagemann M. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology (Reading) 2012; 158:398-413. [DOI: 10.1099/mic.0.054544-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Claudia Hackenberg
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Jan Huege
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Annerose Engelhardt
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Floyd Wittink
- Microarray Department, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Michael Laue
- Universität Rostock, Institut für Pathologie, Elektronenmikroskopisches Zentrum, Strempelstr. 14, D-18055 Rostock, Germany
| | - Hans C. P. Matthijs
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| |
Collapse
|
40
|
López-Igual R, Picossi S, López-Garrido J, Flores E, Herrero A. N and C control of ABC-type bicarbonate transporter Cmp and its LysR-type transcriptional regulator CmpR in a heterocyst-forming cyanobacterium, Anabaena sp. Environ Microbiol 2012; 14:1035-48. [PMID: 22221957 DOI: 10.1111/j.1462-2920.2011.02683.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the model, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, gene cluster alr2877-alr2880, which encodes an ABC-type transport system, was induced under conditions of carbon limitation and its inactivation impaired the uptake of bicarbonate. Thus, this gene cluster encodes a Cmp bicarbonate transporter. ORF all0862, encoding a LysR-type transcriptional regulator, was expressed under carbon limitation and at higher levels in the absence than in the presence of combined nitrogen, with a positive effect of the N-control transcription factor NtcA. all0862 was expressed from two putative transcription start sites located 164 and 64 bp upstream from the gene respectively. The latter was induced under carbon limitation and was dependent on positive autoregulation by All0862. All0862 was required for the induction of the Cmp bicarbonate transporter, thus representing a CmpR regulator of Anabaena sp. These results show a novel mode of co-regulation by C and N availability through the concerted action of N- and C-responsive transcription factors.
Collapse
Affiliation(s)
- Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | | | | | | | | |
Collapse
|
41
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Minoda A, Weber AP, Tanaka K, Miyagishima SY. Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. PLANT PHYSIOLOGY 2010; 154:1532-40. [PMID: 20813908 PMCID: PMC2971626 DOI: 10.1104/pp.110.163188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chloroplasts originated from a cyanobacterium, which was engulfed by a primitive eukaryotic host cell. During evolution, chloroplasts have largely lost their autonomy due to the loss of many genes from their own genomes. Consequently, expression of genes encoded in the chloroplast genome is mainly controlled by the factors transferred from the cytosol to chloroplasts. However, chloroplast genomes of glaucophytes and red algae have retained some transcription factors (hypothetical chloroplast open reading frame 27 to 30 [Ycf27-Ycf30]) that are absent from green algae and land plants. Here, we show that the red algal chloroplast up-regulates transcription of the Rubisco operon rbcLS-cbbX via Ycf30 independently of nuclear control. Light-induced transcriptional activation of the Rubisco operon was observed in chloroplasts isolated from the red alga Cyanidioschyzon merolae. The activation was suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results suggest that chloroplast autonomously regulates transcription of the Rubisco operon in response to the activation of photosynthesis driven by the light. Transcriptional activation of the Rubisco operon was specifically repressed by the addition of anti-Ycf30 antibodies. Furthermore, reduced NADP, ribulose-1,5-bisphosphate, and 3-phosphoglyceric acid triggered the up-regulation of Rubisco transcription in the dark, and the activation was dependent on Ycf30. Thus, red algal chloroplasts have retained a nucleus-independent transcriptional regulation of the Rubisco operon to respond to environmental changes. The autonomous system would have been necessary for the initial fixation of cyanobacterial photosynthesis in the ancient nonphotosynthetic eukaryotic host. It has remained functional in the red algal chloroplast over evolutionary time.
Collapse
|
43
|
Battchikova N, Eisenhut M, Aro EM. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:935-44. [PMID: 21035426 DOI: 10.1016/j.bbabio.2010.10.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | | | | |
Collapse
|
44
|
Huang HH, Camsund D, Lindblad P, Heidorn T. Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 2010; 38:2577-93. [PMID: 20236988 PMCID: PMC2860132 DOI: 10.1093/nar/gkq164] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cyanobacteria are suitable for sustainable, solar-powered biotechnological applications. Synthetic biology connects biology with computational design and an engineering perspective, but requires efficient tools and information about the function of biological parts and systems. To enable the development of cyanobacterial Synthetic Biology, several molecular tools were developed and characterized: (i) a broad-host-range BioBrick shuttle vector, pPMQAK1, was constructed and confirmed to replicate in Escherichia coli and three different cyanobacterial strains. (ii) The fluorescent proteins Cerulean, GFPmut3B and EYFP have been demonstrated to work as reporter proteins in cyanobacteria, in spite of the strong background of photosynthetic pigments. (iii) Several promoters, like PrnpB and variants of PrbcL, and a version of the promoter Ptrc with two operators for enhanced repression, were developed and characterized in Synechocystis sp. strain PCC6803. (iv) It was shown that a system for targeted protein degradation, which is needed to enable dynamic expression studies, is working in Synechocystis sp. strain PCC6803. The pPMQAK1 shuttle vector allows the use of the growing numbers of BioBrick parts in many prokaryotes, and the other tools herein implemented facilitate the development of new parts and systems in cyanobacteria.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
45
|
Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus. PLoS One 2009; 4:e5135. [PMID: 19352512 PMCID: PMC2663038 DOI: 10.1371/journal.pone.0005135] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/19/2009] [Indexed: 01/11/2023] Open
Abstract
The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night— metabolic processes that share some of the same enzymes — appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a ‘deficient’ circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.
Collapse
Affiliation(s)
- Erik R. Zinser
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Debbie Lindell
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zackary I. Johnson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Matthias E. Futschik
- Institute of Theoretical Biology, Humboldt University, Berlin, Germany
- Center for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - Claudia Steglich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Maureen L. Coleman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew A. Wright
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Trent Rector
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Steen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nathan McNulty
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Luke R. Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A. A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2by modulating low-CO2-induced gene expression. Environ Microbiol 2009; 11:927-36. [DOI: 10.1111/j.1462-2920.2008.01818.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Cardona T, Battchikova N, Zhang P, Stensjö K, Aro EM, Lindblad P, Magnuson A. Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:252-63. [DOI: 10.1016/j.bbabio.2009.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
48
|
Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda SI, Omata T. Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 2008; 68:98-109. [PMID: 18312274 DOI: 10.1111/j.1365-2958.2008.06137.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cmp operon of the cyanobacterium Synechococcus elongatus strain PCC 7942, encoding the subunits of the ABC-type bicarbonate transporter, is activated under CO2-limited growth conditions in a manner dependent on CmpR, a LysR family transcription factor of CbbR subfamily. The 0.7 kb long regulatory region of the operon carried a single promoter, which responded to CO2 limitation. Using the luxAB reporter system, three cis-acting elements involved in the low-CO2 activation of transcription, each consisting of a pair of LysR recognition signatures overlapping at their ends, were identified in the regulatory region. CmpR was shown to bind to the regulatory region, yielding several DNA-protein complexes in gel shift assays. Addition of ribulose-1,5-bisphosphate (> 1 mM) or 2-phosphoglycolate (> 10 microM) enhanced the binding of CmpR in a concentration-dependent manner, promoting formation of large DNA-protein complexes. Given the involvement of O2 in adaptive responses of cyanobacteria to low-CO2 conditions, our results suggest that 2-phosphoglycolate, which is produced by oxygenation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of ribulose-1,5-bisphosphate under CO2-limited conditions, acts as the co-inducer in the activation of the cmp operon by CmpR.
Collapse
Affiliation(s)
- Takashi Nishimura
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Price GD, Badger MR, Woodger FJ, Long BM. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1441-61. [PMID: 17578868 DOI: 10.1093/jxb/erm112] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes. Cyanobacteria can possess up to five distinct transport systems for Ci uptake. Through database analysis of some 33 complete genomic DNA sequences for cyanobacteria it is evident that considerable diversity exists in the composition of transporters employed, although in many species this diversity is yet to be confirmed by comparative phenomics. In addition, two types of carboxysomes are known within the cyanobacteria that have apparently arisen by parallel evolution, and considerable progress has been made towards understanding the proteins responsible for carboxysome assembly and function. Progress has also been made towards identifying the primary signal for the induction of the subset of CCM genes known as CO(2)-responsive genes, and transcriptional regulators CcmR and CmpR have been shown to regulate these genes. Finally, some prospects for introducing cyanobacterial CCM components into higher plants are considered, with the objective of engineering plants that make more efficient use of water and nitrogen.
Collapse
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, PO Box 475, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
50
|
Houot L, Floutier M, Marteyn B, Michaut M, Picciocchi A, Legrain P, Aude JC, Cassier-Chauvat C, Chauvat F. Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC6803, under the control of the Slr1738 regulator. BMC Genomics 2007; 8:350. [PMID: 17910763 PMCID: PMC2190772 DOI: 10.1186/1471-2164-8-350] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 10/02/2007] [Indexed: 11/11/2022] Open
Abstract
Background Cadmium is a persistent pollutant that threatens most biological organisms, including cyanobacteria that support a large part of the biosphere. Using a multifaceted approach, we have investigated the global responses to Cd and other relevant stresses (H2O2 and Fe) in the model cyanobacterium Synechocystis PCC6803. Results We found that cells respond to the Cd stress in a two main temporal phases process. In the "early" phase cells mainly limit Cd entry through the negative and positive regulation of numerous genes operating in metal uptake and export, respectively. As time proceeds, the number of responsive genes increases. In this "massive" phase, Cd downregulates most genes operating in (i) photosynthesis (PS) that normally provides ATP and NADPH; (ii) assimilation of carbon, nitrogen and sulfur that requires ATP and NAD(P)H; and (iii) translation machinery, a major consumer of ATP and nutrients. Simultaneously, many genes are upregulated, such as those involved in Fe acquisition, stress tolerance, and protein degradation (crucial to nutrients recycling). The most striking common effect of Cd and H2O2 is the disturbance of both light tolerance and Fe homeostasis, which appeared to be interdependent. Our results indicate that cells challenged with H2O2 or Cd use different strategies for the same purpose of supplying Fe atoms to Fe-requiring metalloenzymes and the SUF machinery, which synthesizes or repairs Fe-S centers. Cd-stressed cells preferentially breakdown their Fe-rich PS machinery, whereas H2O2-challenged cells preferentially accelerate the intake of Fe atoms from the medium. Conclusion We view the responses to Cd as an integrated "Yin Yang" reprogramming of the whole metabolism, we found to be controlled by the Slr1738 regulator. As the Yin process, the ATP- and nutrients-sparing downregulation of anabolism limits the poisoning incorporation of Cd into metalloenzymes. As the compensatory Yang process, the PS breakdown liberates nutrient assimilates for the synthesis of Cd-tolerance proteins, among which we found the Slr0946 arsenate reductase enzyme.
Collapse
Affiliation(s)
- Laetitia Houot
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| | - Martin Floutier
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2096 CEA Saclay, F-91191 Gif sur Yvette CEDEX, France
| | - Benoit Marteyn
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| | - Magali Michaut
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| | - Antoine Picciocchi
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| | - Pierre Legrain
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2096 CEA Saclay, F-91191 Gif sur Yvette CEDEX, France
| | - Jean-Christophe Aude
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| | - Corinne Cassier-Chauvat
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2096 CEA Saclay, F-91191 Gif sur Yvette CEDEX, France
| | - Franck Chauvat
- Commissariat à l'Energie Atomique, Institut de Biologie et Tecnologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, CEA Saclay F-91191 Gif sur Yvette CEDEX, France
| |
Collapse
|