1
|
Sepúlveda VE, Goldman WE, Matute DR. Genotypic diversity, virulence, and molecular genetic tools in Histoplasma. Microbiol Mol Biol Rev 2024; 88:e0007623. [PMID: 38819148 PMCID: PMC11332355 DOI: 10.1128/mmbr.00076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.
Collapse
Affiliation(s)
- Victoria E. Sepúlveda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Van Dyke MCC, Teixeira MM, Barker BM. Fantastic yeasts and where to find them: the hidden diversity of dimorphic fungal pathogens. Curr Opin Microbiol 2019; 52:55-63. [PMID: 31181385 PMCID: PMC11227906 DOI: 10.1016/j.mib.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
Dimorphic fungal pathogens are a significant cause of human disease worldwide. Notably, the dimorphic fungal pathogens within the order Onygenales are considered primary pathogens, causing disease in healthy hosts. Current changes in taxonomy are underway due to advances in molecular phylogenetics, population genetics, and new emerging dimorphic fungal pathogens causing human disease. In this review, we highlight evolutionary relationships of dimorphic fungal pathogens that cause human disease within the order Onygenales and provide rationale to support increased investment in studies understanding the evolutionary relationships of these pathogens to improve rapid diagnostics, help identify mechanisms of antifungal resistance, understand adaptation to human host, and factors associated with virulence.
Collapse
Affiliation(s)
| | - Marcus M Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States; Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
4
|
Brown AJ, Gow NA, Warris A, Brown GD. Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends Microbiol 2019; 27:219-230. [DOI: 10.1016/j.tim.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
5
|
Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, Marty AJ, Carmen JC, Chen Z, Ding L, Gujja S, Magrini V, Misas E, Mitreva M, Priest M, Saif S, Whiston EA, Young S, Zeng Q, Goldman WE, Mardis ER, Taylor JW, McEwen JG, Clay OK, Klein BS, Cuomo CA. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. PLoS Genet 2015; 11:e1005493. [PMID: 26439490 PMCID: PMC4595289 DOI: 10.1371/journal.pgen.1005493] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces. Dimorphic fungal pathogens including Blastomyces are the cause of major fungal diseases in North and South America. The genus Emmonsia includes species infecting small mammals as well as a newly emerging pathogenic species recently reported in HIV-positive patients in South Africa. Here, we synthesize both genome sequencing of four isolates of Blastomyces and two species of Emmonsia as well as deep sequencing of Blastomyces RNA to draw major new insights into the evolution of this group and the pathogen response to infection. We investigate the trajectory of genome evolution of this group, characterizing the phylogenetic relationships of these species, a remarkable genome expansion that formed large isochore-like regions of low GC content in Blastomyces, and variation of gene content, related to host interaction, among the dimorphic fungal pathogens. Using RNA-Seq, we profile the response of Blastomyces to macrophage and mouse pulmonary infection, identifying key pathways and novel virulence factors. The identification of key fungal genes involved in adaptation to the host suggests targets for further study and therapeutic intervention in Blastomyces and related dimorphic fungal pathogens.
Collapse
Affiliation(s)
- José F. Muñoz
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | | | - Juan E. Gallo
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jason Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Thomas D. Sullivan
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - John C. Carmen
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Li Ding
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret Priest
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sakina Saif
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Emily A. Whiston
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - William E. Goldman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine R. Mardis
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Bruce S. Klein
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sterkel AK, Mettelman R, Wüthrich M, Klein BS. The unappreciated intracellular lifestyle of Blastomyces dermatitidis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1796-805. [PMID: 25589071 PMCID: PMC4373353 DOI: 10.4049/jimmunol.1303089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Blastomyces dermatitidis, a dimorphic fungus and the causative agent of blastomycosis, is widely considered an extracellular pathogen, with little evidence for a facultative intracellular lifestyle. We infected mice with spores, that is, the infectious particle, via the pulmonary route and studied intracellular residence, transition to pathogenic yeast, and replication inside lung cells. Nearly 80% of spores were inside cells at 24 h postinfection with 10(4) spores. Most spores were located inside of alveolar macrophages, with smaller numbers in neutrophils and dendritic cells. Real-time imaging showed rapid uptake of spores into alveolar macrophages, conversion to yeast, and intracellular multiplication during in vitro coculture. The finding of multiple yeast in a macrophage was chiefly due to intracellular replication rather than multiple phagocytic events or fusion of macrophages. Depletion of alveolar macrophages curtailed infection in mice infected with spores and led to a 26-fold reduction in lung CFU by 6 d postinfection versus nondepleted mice. Phase transition of the spores to yeast was delayed in these depleted mice over a time frame that correlated with reduced lung CFU. Spores cultured in vitro converted to yeast faster in the presence of macrophages than in medium alone. Thus, although advanced B. dermatitidis infection may exhibit extracellular residence in tissue, early lung infection with infectious spores reveals its unappreciated facultative intracellular lifestyle.
Collapse
Affiliation(s)
- Alana K Sterkel
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; and
| | - Robert Mettelman
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; and
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; and Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
7
|
Abstract
Morphogenesis in fungi is often induced by extracellular factors and executed by fungal genetic factors. Cell surface changes and alterations of the microenvironment often accompany morphogenetic changes in fungi. In this review, we will first discuss the general traits of yeast and hyphal morphotypes and how morphogenesis affects development and adaptation by fungi to their native niches, including host niches. Then we will focus on the molecular machinery responsible for the two most fundamental growth forms, yeast and hyphae. Last, we will describe how fungi incorporate exogenous environmental and host signals together with genetic factors to determine their morphotype and how morphogenesis, in turn, shapes the fungal microenvironment.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - J Andrew Alspaugh
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Steven Harris
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
8
|
Brandhorst TT, Roy R, Wüthrich M, Nanjappa S, Filutowicz H, Galles K, Tonelli M, McCaslin DR, Satyshur K, Klein B. Structure and function of a fungal adhesin that binds heparin and mimics thrombospondin-1 by blocking T cell activation and effector function. PLoS Pathog 2013; 9:e1003464. [PMID: 23853587 PMCID: PMC3708853 DOI: 10.1371/journal.ppat.1003464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 05/13/2013] [Indexed: 01/22/2023] Open
Abstract
Blastomyces adhesin-1 (BAD-1) is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1) type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1.
Collapse
Affiliation(s)
- T. Tristan Brandhorst
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - René Roy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- The Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- The Cell and Molecular Biology Graduate Training Program, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Som Nanjappa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Hanna Filutowicz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kevin Galles
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Marco Tonelli
- The Department of Biochemistry, The Biophysics Instrumentation Facility, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Darrell R. McCaslin
- The Department of Biochemistry, The Biophysics Instrumentation Facility, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kenneth Satyshur
- The Department of Bacteriology, The College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Pitangui NS, Sardi JCO, Silva JF, Benaducci T, Moraes da Silva RA, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM. Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. BIOFOULING 2012; 28:711-718. [PMID: 22784100 DOI: 10.1080/08927014.2012.703659] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pathogenic fungus, Histoplasma capsulatum, causes the respiratory and systemic disease 'histoplasmosis'. This disease is primarily acquired via inhalation of aerosolized microconidia or hyphal fragments of H. capsulatum. Evolution of this respiratory disease depends on the ability of H. capsulatum yeasts to survive and replicate within alveolar macrophages. It is known that adhesion to host cells is the first step in colonization and biofilm formation. Some microorganisms become attached to biological and non-biological surfaces due to the formation of biofilms. Based on the importance of biofilms and their persistence on host tissues and cell surfaces, the present study was designed to investigate biofilm formation by H. capsulatum yeasts, as well as their ability to adhere to pneumocyte cells. H. capsulatum biofilm assays were performed in vitro using two different clinical strains of the fungus and biofilms were characterized using scanning electron microscopy. The biofilms were measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay. The results showed that both the H. capsulatum strains tested were very efficient at adhering to host cells and forming biofilm. Therefore, this is a possible survival strategy adopted by this fungus.
Collapse
Affiliation(s)
- N S Pitangui
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gauthier GM, Sullivan TD, Gallardo SS, Brandhorst TT, Vanden Wymelenberg AJ, Cuomo CA, Suen G, Currie CR, Klein BS. SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLoS Pathog 2010; 6:e1000846. [PMID: 20368971 PMCID: PMC2848559 DOI: 10.1371/journal.ppat.1000846] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 03/04/2010] [Indexed: 11/19/2022] Open
Abstract
Blastomyces dermatitidis belongs to a group of human pathogenic fungi that exhibit thermal dimorphism. At 22 degrees C, these fungi grow as mold that produce conidia or infectious particles, whereas at 37 degrees C they convert to budding yeast. The ability to switch between these forms is essential for virulence in mammals and may enable these organisms to survive in the soil. To identify genes that regulate this phase transition, we used Agrobacterium tumefaciens to mutagenize B. dermatitidis conidia and screened transformants for defects in morphogenesis. We found that the GATA transcription factor SREB governs multiple fates in B. dermatitidis: phase transition from yeast to mold, cell growth at 22 degrees C, and biosynthesis of siderophores under iron-replete conditions. Insertional and null mutants fail to convert to mold, do not accumulate significant biomass at 22 degrees C, and are unable to suppress siderophore biosynthesis under iron-replete conditions. The defect in morphogenesis in the SREB mutant was independent of exogenous iron concentration, suggesting that SREB promotes the phase transition by altering the expression of genes that are unrelated to siderophore biosynthesis. Using bioinformatic and gene expression analyses, we identified candidate genes with upstream GATA sites whose expression is altered in the null mutant that may be direct or indirect targets of SREB and promote the phase transition. We conclude that SREB functions as a transcription factor that promotes morphogenesis and regulates siderophore biosynthesis. To our knowledge, this is the first gene identified that promotes the conversion from yeast to mold in the dimorphic fungi, and may shed light on environmental persistence of these pathogens.
Collapse
Affiliation(s)
- Gregory M Gauthier
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang JY, Li HY. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum. J Zhejiang Univ Sci B 2008; 9:823-8. [PMID: 18837111 PMCID: PMC2565747 DOI: 10.1631/jzus.b0860006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/22/2008] [Indexed: 11/11/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) system was assessed for conducting insertional mutagenesis in Penicillium digitatum, a major fungal pathogen infecting post-harvest citrus fruits. A transformation efficiency of up to 60 transformants per 10(6) conidia was achieved by this system. The integration of the hph gene into the fungal genome was verified by polymerase chain reaction (PCR) amplification and sequencing. These transformants tested were also shown to be mitotically stable. Southern blot analysis of 14 randomly selected transformants showed that the hph gene was randomly integrated as single copy into the fungal genome of P. digitatum. Thus, we conclude that ATMT of P. digitatum could be used as an alternatively practical genetic tool for conducting insertional mutagenesis in P. digitatum to study functional genomics.
Collapse
|
12
|
Nemecek JC, Wüthrich M, Klein BS. Detection and measurement of two-component systems that control dimorphism and virulence in fungi. Methods Enzymol 2008; 422:465-87. [PMID: 17628155 DOI: 10.1016/s0076-6879(06)22024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Systemic dimorphic fungi include six phylogenetically related ascomycetes. These organisms grow in a mold form in the soil on most continents around the world. After the mold spores, which are the infectious particles, are inhaled into the lung of a susceptible mammalian host, they undergo a morphological change into a pathogenic yeast form. The ability to convert to the yeast form is essential for this class of fungal agents to be pathogenic and produce disease. Temperature change is one key stimulus that triggers the phase transition from mold (25 degrees ) to yeast (37 degrees ). Genes that are expressed only in the pathogenic yeast form of these fungi have been identified to help explain how and why this phase transition is required for virulence. However, the regulators of yeast-phase specific genes, especially of phase transition from mold to yeast, have remained poorly understood. We used Agrobacterium-mediated gene transfer for insertional mutagenesis to create mutants that are defective in the phase transition and to identify genes that regulate this critical event. We discovered that a hybrid histidine kinase senses environmental signals such as temperature and regulates phase transition, dimorphism, and virulence in members of this fungal family. This chapter describes our approach to the identification and analysis of this global regulator.
Collapse
Affiliation(s)
- Julie C Nemecek
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | |
Collapse
|
13
|
Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol 2008; 46:749-72. [DOI: 10.1080/13693780802206435] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Klein BS, Tebbets B. Dimorphism and virulence in fungi. Curr Opin Microbiol 2007; 10:314-9. [PMID: 17719267 PMCID: PMC3412142 DOI: 10.1016/j.mib.2007.04.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/23/2007] [Indexed: 11/27/2022]
Abstract
The signature feature of systemic dimorphic fungi - a family of six primary fungal pathogens of humans - is a temperature-induced phase transition. These fungi grow as a mold in soil at ambient temperature and convert to yeast after infectious spores are inhaled into the lungs of a mammalian host. Seminal work 20 years ago established that a temperature-induced phase transition from mold to yeast is required for virulence. Several yeast-phase specific genes, identified one-by-one and studied by reverse genetics, have revealed mechanisms by which the phase transition promotes disease pathogenesis. Transcriptional profiling of microarrays built with genomic elements of Histoplasma capsulatum and ESTs of Paracoccidioides brasiliensis that represent partial genomes has identified 500 genes and 328 genes, respectively, that are differentially expressed upon the phase transition. The genomes of most of the dimorphic fungi are now in varying stages of being sequenced. The creation of additional microarrays and the application of new reverse genetic tools promise fresh insight into genes and mechanisms that regulate pathogenesis and morphogenesis. The use of insertional mutagenesis by Agrobacterium has uncovered a hybrid histidine kinase that regulates dimorphism and pathogenicity in Blastomyces dermatitidis and H. capsulatum. Two-component signaling appears to be a common strategy for model and pathogenic fungi to sense and respond to environmental stresses.
Collapse
Affiliation(s)
- Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | |
Collapse
|
15
|
Krajaejun T, Gauthier GM, Rappleye CA, Sullivan TD, Klein BS. Development and application of a green fluorescent protein sentinel system for identification of RNA interference in Blastomyces dermatitidis illuminates the role of septin in morphogenesis and sporulation. EUKARYOTIC CELL 2007; 6:1299-309. [PMID: 17496124 PMCID: PMC1951135 DOI: 10.1128/ec.00401-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 05/01/2007] [Indexed: 11/20/2022]
Abstract
A high-throughput strategy for testing gene function would accelerate progress in our understanding of disease pathogenesis for the dimorphic fungus Blastomyces dermatitidis, whose genome is being completed. We developed a green fluorescent protein (GFP) sentinel system of gene silencing to rapidly study genes of unknown function. Using Gateway technology to efficiently generate RNA interference plasmids, we cloned a target gene, "X," next to GFP to create one hairpin to knock down the expression of both genes so that diminished GFP reports target gene expression. To test this approach in B. dermatitidis, we first used LACZ and the virulence gene BAD1 as targets. The level of GFP reliably reported interference of their expression, leading to rapid detection of gene-silenced transformants. We next investigated a previously unstudied gene encoding septin and explored its possible role in morphogenesis and sporulation. A CDC11 septin homolog in B. dermatitidis localized to the neck of budding yeast cells. CDC11-silenced transformants identified with the sentinel system grew slowly as flat or rough colonies on agar. Microscopically, they formed ballooned, distorted yeast cells that failed to bud, and they sporulated poorly as mold. Hence, this GFP sentinel system enables rapid detection of gene silencing and has revealed a pronounced role for septin in morphogenesis, budding, and sporulation of B. dermatitidis.
Collapse
Affiliation(s)
- T Krajaejun
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Univaersity of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
16
|
Xi L, Xu X, Liu W, Li X, Liu Y, Li M, Zhang J, Li M. Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases. J Med Microbiol 2007; 56:298-304. [PMID: 17314357 DOI: 10.1099/jmm.0.46808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Penicillium marneffei is a dimorphic fungus endemic in southeast Asia. The incidence of P. marneffei infection has increased greatly in this region with the spread of human immunodeficiency virus, but the infection routes and pathogenic mechanisms of P. marneffei remain poorly understood. P. marneffei is an opportunistic human pathogen exhibiting a temperature-dependent dimorphic switch. At 25 degrees C it grows as filamentous hyphae, whilst at 37 degrees C it forms uninucleate yeast cells and divides by fission. Dimorphic fungal pathogenicity is frequently associated with the dimorphic switch, but the mechanism that regulates the switch has remained obscure. In this report, two-dimensional difference gel electrophoresis was used to investigate the proteins expressed differentially in the yeast and mycelial phases of a wild-type isolate of P. marneffei. Among thousands of protein molecules displayed, more than 500 showed differential expression between the two phases. In particular, 26 proteins were identified using matrix-assisted laser desorption/ionization time-of-flight MS. Expression of catalase-peroxidase, isocitrate lyase, Hsp90, binding protein and cytochrome P-450 increased significantly in the yeast phase, whereas levels of poly(A) polymerase and SNF22 were reduced.
Collapse
Affiliation(s)
- Liyan Xi
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Xiaorong Xu
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Wei Liu
- Center for Proteomics, School for Basic Medical Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Yulin Liu
- Center for Proteomics, School for Basic Medical Science, Sun Yat-Sen University, Guangzhou, China
| | - Mingtao Li
- Center for Proteomics, School for Basic Medical Science, Sun Yat-Sen University, Guangzhou, China
| | - Junmin Zhang
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Mengfeng Li
- Department of Microbiology, School for Basic Medical Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Abstract
Microbial pathogens that normally inhabit our environment can adapt to thrive inside mammalian hosts. There are six dimorphic fungi that cause disease worldwide, which switch from nonpathogenic molds in soil to pathogenic yeast after spores are inhaled and exposed to elevated temperature. Mechanisms that regulate this switch remain obscure. We show that a hybrid histidine kinase senses host signals and triggers the transition from mold to yeast. The kinase also regulates cell-wall integrity, sporulation, and expression of virulence genes in vivo. This global regulator shapes how dimorphic fungal pathogens adapt to the mammalian host, which has broad implications for treating and preventing systemic fungal disease.
Collapse
Affiliation(s)
- Julie C Nemecek
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | | | | |
Collapse
|
18
|
Burgess JW, Schwan WR, Volk TJ. PCR-based detection of DNA from the human pathogenBlastomyces dermatitidisfrom natural soil samples. Med Mycol 2006; 44:741-8. [PMID: 17127631 DOI: 10.1080/13693780600954749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Blastomyces dermatitidis is the dimorphic fungal agent of blastomycosis, a disease that primarily affects humans and dogs. The clinical appearance of this mycosis is well characterized, but there is still little known about its environmental niche, having been isolated from nature only 21 times. We have developed a PCR-based assay to detect B. dermatitidis from soil samples using primers specific to a portion of the promoter region of the BAD1 virulence gene. An internal standard control, pTJV2, was constructed to validate the results from soil samples. Amplification of this control indicated adequate removal of ambient soil inhibitors. The PCR detection limits for the control plasmid and B. dermatitidis genomic DNA were 0.1 and 500 femtograms, respectively. No PCR cross-reactivity was observed against bacteria, actinomycetes, and 13 other fungi that were genetically related or found in the same geographic areas. In spiked soil samples, this method was sensitive to 304 copies of pTJV2 DNA and 8,450 live B. dermatitidis yeast cells. Three of eight natural soil samples from a dog kennel near Lexington, KY in which dogs suffered from blastomycosis were positive using the described method, demonstrating its utility in detecting B. dermatitidis in its natural surroundings.
Collapse
Affiliation(s)
- J W Burgess
- Department of Microbiology, University of Wisconsin-La Crosse, Wisconsin, La Crosse, USA.
| | | | | |
Collapse
|
19
|
Rooney PJ, Klein BS. Sequence elements necessary for transcriptional activation of BAD1 in the yeast phase of Blastomyces dermatitidis. EUKARYOTIC CELL 2005; 3:785-94. [PMID: 15189999 PMCID: PMC420126 DOI: 10.1128/ec.3.3.785-794.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastomyces dermatitidis is a dimorphic fungal pathogen that converts from mycelia or conidia to a host-adapted yeast morphotype upon infection. Conversion to the yeast form is accompanied by the production of the virulence factor BAD1. Yeast-phase-specific expression of BAD1 is transcriptionally regulated, and its promoter shares homology with that of the yeast-phase-specific gene YPS3 of Histoplasma capsulatum. Serial truncations of the BAD1 upstream region were fused to the lacZ reporter to define functional areas in the promoter. Examination of PBAD1-lacZ fusions in B. dermatitidis indicated that BAD1 transcription is upregulated in the yeast phase. The 63-nucleotide box A region conserved in the YPS3 upstream region was shown to be an essential component of the minimal BAD1 promoter. A matched PYPS3-lacZ construct indicated that this same region was needed for minimal YPS3 promoter activity in B. dermatitidis transformants. Reporter activity in H. capsulatum transformants similarly showed a requirement for box A in the minimal BAD1 promoter. Several putative transcription factor binding sites were identified within box A of BAD1. Replacement of two of these predicted sites within box A--a cAMP responsive element and a Myb binding site--sharply reduced transcriptional activity, indicating that these regions are critical in dictating the yeast-phase-specific expression of this crucial virulence determinant of B. dermatitidis.
Collapse
Affiliation(s)
- Peggy J Rooney
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | |
Collapse
|
20
|
Bhabhra R, Askew DS. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med Mycol 2005; 43 Suppl 1:S87-93. [PMID: 16110798 DOI: 10.1080/13693780400029486] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ability to thrive at 37 degrees C is characteristic of all human pathogens and has long been suspected to play a role in the pathogenesis of aspergillosis. As a thermotolerant fungus, Aspergillus fumigatus is capable of growth at temperatures that approach the upper limit for all eukaryotes, suggesting that the organism has evolved unique mechanisms of stress resistance that may be relevant to its ability to adapt to the stress of growth in the host. High temperature is a strain on many biological systems, particularly those involved in complex macromolecular assemblies such as ribosomes. This review will discuss the relationship between thermotolerance and virulence in pathogenic fungi, emphasizing the link to ribosome biogenesis in A. fumigatus. Future work in this area will help determine how rapid growth is accomplished at elevated temperature and may offer new avenues for the development of novel antifungals that disrupt thermotolerant ribosome assembly.
Collapse
Affiliation(s)
- R Bhabhra
- Department of Pathology & Laboratory Medicine, University of Cincinnati, 231 Bethesda Ave., Cincinnati, OH 45267-0529, USA
| | | |
Collapse
|
21
|
Nosanchuk JD, van Duin D, Mandal P, Aisen P, Legendre AM, Casadevall A. Blastomyces dermatitidis produces melanin in vitro and during infection. FEMS Microbiol Lett 2004; 239:187-93. [PMID: 15451118 DOI: 10.1016/j.femsle.2004.08.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/25/2004] [Accepted: 08/29/2004] [Indexed: 11/30/2022] Open
Abstract
Melanin is made by several important pathogenic fungi and is implicated in the pathogenesis of a number of mycoses. This study investigates whether the thermally dimorphic fungal pathogen Blastomyces dermatitidis produces melanin. Using techniques developed to study melanization in other fungi, we demonstrate that B. dermatitidis conidia and yeast produce melanin in vitro and that yeast cells synthesize melanin or melanin-like pigment in vivo. Melanization reduced susceptibility to amphotericin B, but not to itraconazole or voriconazole. Since melanin is an important virulence factor in other pathogenic fungi, this pigment may affect the pathogenesis of blastomycosis.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
22
|
dos Reis MC, Pelegrinelli Fungaro MH, Delgado Duarte RT, Furlaneto L, Furlaneto MC. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods 2004; 58:197-202. [PMID: 15234517 DOI: 10.1016/j.mimet.2004.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/23/2004] [Accepted: 03/23/2004] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation (agro-transformation) was successfully applied to the entomogenous fungus Beauveria bassiana. Conidia of B. bassiana were transformed to hygromycin B resistance using the hph gene of Escherichia coli as the selective trait, under the control of a heterologous fungal promoter and the Aspergillus nidulans trpC terminator. The efficiency of transformation was up to 28 and 96 transformants per 10(4) and 10(5) target conidia, respectively, using three distinct vectors. High mitotic stability of the transformants (80-100%) was demonstrated after five successive transfers on a nonselective medium. Abortive transformants were observed for all the hph(r) vectors used. Putative transformants were analysed for the presence of the hph gene by PCR and Southern analysis. The latter analysis revealed the integration of two or more copies of the hph gene in the genome. The agro-transformation method was found to be effective for the isolation of B. bassiana hygromycin resistant transformants and may represent a useful tool for insertional mutagenesis studies in this fungus.
Collapse
Affiliation(s)
- Maria Cecília dos Reis
- Departamento de Microbiologia, Universidade Estadual de Londrina, P.O. Box 6001, Londrina 86051-990, Brazil
| | | | | | | | | |
Collapse
|
23
|
Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell 2003; 14:2314-26. [PMID: 12808032 PMCID: PMC194881 DOI: 10.1091/mbc.e03-01-0027] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A fundamental feature of the fungal pathogen Histoplasma capsulatum is its ability to shift from a mycelial phase in the soil to a yeast phase in its human host. Each form plays a critical role in infection and disease, but little is understood about how these two morphologic phases are established and maintained. To identify phase-regulated genes of H. capsulatum, we carried out expression analyses by using a genomic shotgun microarray representing approximately one-third of the genome, and identified 500 clones that were differentially expressed. Genes induced in the mycelial phase included several involved in conidiation, cell polarity, and melanin production in other organisms. Genes induced in the yeast phase included several involved in sulfur metabolism, extending previous observations that sulfur metabolism influences morphology in H. capsulatum. Other genes with increased expression in the yeast phase were implicated in nutrient acquisition and cell cycle regulation. Unexpectedly, differential regulation of the site of transcript initiation was also observed in the two phases. These findings identify genes that may determine some of the major characteristics of the mycelial and yeast phases.
Collapse
Affiliation(s)
- Lena Hwang
- Department of Molecular and Cellular Biology, University of California Berkeley, 94720, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sullivan TD, Rooney PJ, Klein BS. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. EUKARYOTIC CELL 2002; 1:895-905. [PMID: 12477790 PMCID: PMC138753 DOI: 10.1128/ec.1.6.895-905.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dimorphic fungi Blastomyces dermatitidis and Histoplasma capsulatum cause systemic mycoses in humans and other animals. Forward genetic approaches to generating and screening mutants for biologically important phenotypes have been underutilized for these pathogens. The plant-transforming bacterium Agrobacterium tumefaciens was tested to determine whether it could transform these fungi and if the fate of transforming DNA was suited for use as an insertional mutagen. Yeast cells from both fungi and germinating conidia from B. dermatitidis were transformed via A. tumefaciens by using hygromycin resistance for selection. Transformation frequencies up to 1 per 100 yeast cells were obtained at high effector-to-target ratios of 3,000:1. B. dermatitidis and H. capsulatum ura5 lines were complemented with transfer DNA vectors expressing URA5 at efficiencies 5 to 10 times greater than those obtained using hygromycin selection. Southern blot analyses indicated that in 80% of transformants the transferred DNA was integrated into chromosomal DNA at single, unique sites in the genome. Progeny of B. dermatitidis transformants unexpectedly showed that a single round of colony growth under hygromycin selection or visible selection of transformants by lacZ expression generated homokaryotic progeny from multinucleate yeast. Theoretical analysis of random organelle sorting suggests that the majority of B. dermatitidis cells would be homokaryons after the ca. 20 generations necessary for colony formation. Taken together, the results demonstrate that A. tumefaciens efficiently transfers DNA into B. dermatitidis and H. capsulatum and has the properties necessary for use as an insertional mutagen in these fungi.
Collapse
Affiliation(s)
- Thomas D Sullivan
- Department of Pediatrics, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| | | | | |
Collapse
|
25
|
Ignatov A, Keath EJ. Molecular cell biology and molecular genetics of Histoplasma capsulatum. Int J Med Microbiol 2002; 292:349-61. [PMID: 12452281 DOI: 10.1078/1438-4221-00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic ascomycete which is capable of producing a broad spectrum of disease ranging from mild asymptomatic, pulmonary illness to severe, life-threatening systemic mycosis. Regulatory mechanisms that use temperature and other environmental cues are paramount to the successful adaptation of the organism as an effective intracellular pathogenic yeast. Although the biochemistry and phenomenology of reversible morphogenesis have been well examined in Histoplasma, the identification and functional characterization of genes and their products that are required for early establishment or maintenance of the parasitic yeast phase in intracellular host compartments have only recently been fruitful. Advances in the molecular biology of Histoplasma, including approaches to introduce telomeric plasmids, reporter fusion constructs, and gene disruption cassettes into the fungus are poised to solidify the pre-eminence of this fungus as a model system which can be applied to other dimorphic fungal pathogens that exhibit similar cellular and immunological complexities. This review centers on recent developments in the molecular cell biology and molecular genetics of Histoplasma capsulatum that provide important new avenues for examining the mold-to-yeast phase transition beyond the historical, binary view of dimorphism and the implications that these successful approaches may have on seminal issues in fungal pathogenesis.
Collapse
Affiliation(s)
- Atanas Ignatov
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| | | |
Collapse
|
26
|
Brandhorst TT, Rooney PJ, Sullivan TD, Klein B. Molecular genetic analysis of Blastomyces dermatitidis reveals new insights about pathogenic mechanisms. Int J Med Microbiol 2002; 292:363-71. [PMID: 12452282 DOI: 10.1078/1438-4221-00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal pathogens have emerged as a public health menace owing to the expanding population of vulnerable patients and to a heightened exposure to fungi in our environment, particularly for the systemic dimorphic fungi that inhabit soil worldwide. A better understanding of these microbes and their pathogenic mechanisms is badly needed to further research into therapeutic options. Advances in the molecular tools for genetic manipulation of Blastomyces dermatitidis have enhanced our ability to study this poorly understood dimorphic fungal pathogen. Recent refinements in gene-transfer technique, new selection markers, reliable reporter fusions and successes in gene targeting have shed light upon the importance of the mycelium-to-yeast transition and the crucial and complex role the BAD1 adhesin plays in pathogenesis.
Collapse
Affiliation(s)
- T Tristan Brandhorst
- Departments of Pediatrics, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
27
|
Ignatov A, Keath EJ. Gel shift assay of nuclear extracts from Histoplasma capsulatum demonstrates the presence of several DNA binding proteins. Infect Immun 2002; 70:2238-41. [PMID: 11895995 PMCID: PMC127865 DOI: 10.1128/iai.70.4.2238-2241.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gel shift assay was optimized to detect several general DNA binding proteins from Histoplasma capsulatum strain G217B. The electrophoretic mobility shift assay (EMSA) technique also detected protein(s) recognizing a pyrimidine-rich motif found in several Histoplasma promoters. Establishment of EMSA conditions provides an important framework to evaluate regulation of homeostatic or phase-specific genes that may influence virulence in Histoplasma and other dimorphic fungal pathogens.
Collapse
Affiliation(s)
- Atanas Ignatov
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | | |
Collapse
|
28
|
Woods JP. Histoplasma capsulatum molecular genetics, pathogenesis, and responsiveness to its environment. Fungal Genet Biol 2002; 35:81-97. [PMID: 11848673 DOI: 10.1006/fgbi.2001.1311] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histoplasma capsulatum is a thermally dimorphic ascomycete that is a significant cause of respiratory and systemic disease in mammals including humans, especially immunocompromised individuals such as AIDS patients. As an environmental mold found in the soil, it is a successful member of a competitive polymicrobial ecosystem. Its host-adapted yeast form is a facultative intracellular pathogen of mammalian macrophages. H. capsulatum faces a variety of environmental changes during the course of infection and must survive under harsh conditions or modulate its microenvironment to achieve success as a pathogen. Histoplasmosis may be considered the fungal homolog of the bacterial infection tuberculosis, since both H. capsulatum and Mycobacterium tuberculosis exploit the macrophage as a host cell and can cause acute or persistent pulmonary and disseminated infection and reactivation disease. The identification and functional analysis of biologically or pathogenically important H. capsulatum genes have been greatly facilitated by the development of molecular genetic experimental capabilities in this organism. This review focuses on responsiveness of this fungus to its environment, including differential expression of genes and adaptive phenotypic traits.
Collapse
Affiliation(s)
- Jon P Woods
- Department of Medical Microbiology & Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706-1532, USA
| |
Collapse
|
29
|
Brandhorst TT, Rooney PJ, Sullivan TD, Klein BS. Using new genetic tools to study the pathogenesis of Blastomyces dermatitidis. Trends Microbiol 2002; 10:25-30. [PMID: 11755082 DOI: 10.1016/s0966-842x(01)02258-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fungal pathogens have emerged as a public health menace owing to the expanding population of vulnerable patients and a heightened exposure to fungi in our environment, particularly for the systemic dimorphic fungi that inhabit soil worldwide. A better understanding of these invaders and their pathogenic mechanisms is badly needed to further research into therapeutic options. Advances in the molecular tools available for genetic manipulation of Blastomyces dermatitidis have enhanced our ability to study this poorly understood dimorphic fungal pathogen. Recent refinements in gene-transfer techniques, new selection markers, reliable reporter fusions and successes in gene targeting have shed light upon the importance of the mycelium-to-yeast transition and the crucial and complex role the BAD1 adhesin plays in pathogenesis.
Collapse
Affiliation(s)
- T Tristan Brandhorst
- Department of Pediatrics, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
30
|
Zhang MX, Brandhorst TT, Kozel TR, Klein BS. Role of glucan and surface protein BAD1 in complement activation by Blastomyces dermatitidis yeast. Infect Immun 2001; 69:7559-64. [PMID: 11705933 PMCID: PMC98847 DOI: 10.1128/iai.69.12.7559-7564.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies showed that Blastomyces dermatitidis yeast activates the human complement system, leading to deposition of opsonic complement fragments onto the yeast surface. This report examines the influence of altered surface expression of glucan or BAD1 protein (formerly WI-1) on the yeast's ability to activate and bind C3. Compared to the wild type, a glucan-deficient mutant yeast delayed initiation of C3 deposition and reduced C3-binding capacity by 50%. Linkage of baker's-yeast beta-glucan to the glucan-deficient yeast restored initial C3 deposition kinetics to the wild-type level and partially restored C3-binding capacity, suggesting that beta-glucan is an initiator of complement activation and a C3 acceptor. The role of BAD1 in B. dermatitidis yeast-complement interaction was also assessed. BAD1 knockout yeast initiated faster C3 deposition and increased C3-binding capacity compared to the wild-type yeast or a BAD1-reconstituted yeast, suggesting either a lack of an intrinsic ability in BAD1 or an inhibitory role of BAD1 in complement activation and binding. However, both complement activation and the capacity for C3 binding by the wild-type yeast were enhanced in normal human serum supplemented with an anti-BAD1 monoclonal antibody (MAb) or in immune sera from blastomycosis patients. Microscopic analysis revealed that more initial C3-binding sites were formed on yeast in the presence of both naturally occurring complement initiators and exogenous anti-BAD1 MAb, suggesting that anti-BAD1 antibody enhanced the ability of B. dermatitidis yeast to interact with the host complement system. Thus, glucan and BAD1 have distinctly different regulatory effects on complement activation by B. dermatitidis.
Collapse
Affiliation(s)
- M X Zhang
- Department of Microbiology and Cell and Molecular Biology Program, School of Medicine, University of Nevada, Reno, Nevada 89557, USA.
| | | | | | | |
Collapse
|
31
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|