1
|
Lander SM, Fisher G, Everett BA, Tran P, Prindle A. Secreted nucleases reclaim extracellular DNA during biofilm development. NPJ Biofilms Microbiomes 2024; 10:103. [PMID: 39375363 PMCID: PMC11458576 DOI: 10.1038/s41522-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.
Collapse
Affiliation(s)
- Stephen M Lander
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, 60611, IL, USA
| | - Garth Fisher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
- Department of Microbiology-Immunology, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA.
| |
Collapse
|
2
|
Fonseca DR, Day LA, Crone KK, Costa KC. An Extracellular, Ca 2+-Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon. Mol Microbiol 2024; 122:477-490. [PMID: 39214865 DOI: 10.1111/mmi.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in Methanococcus maripaludis, but few homologs of bacterial transformation-associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as ecnA), to be an extracellular nuclease. We show that EcnA is Ca2+-activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation-associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.
Collapse
Affiliation(s)
- Dallas R Fonseca
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Leslie A Day
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kyle C Costa
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Ryan ME, Damke PP, Shaffer CL. DNA Transport through the Dynamic Type IV Secretion System. Infect Immun 2023; 91:e0043622. [PMID: 37338415 PMCID: PMC10353360 DOI: 10.1128/iai.00436-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Natural transformation protein ComFA exhibits single-stranded DNA translocase activity. J Bacteriol 2022; 204:e0051821. [PMID: 35041498 DOI: 10.1128/jb.00518-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a handful of proteins required for natural transformation in gram-positive bacteria. Its structural resemblance to the DEAD-box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding in the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. Importance Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD-box helicase required for competence in gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD-box helicase-one with the capability of extended translocation on single-stranded DNA.
Collapse
|
6
|
Single molecule dynamics of DNA receptor ComEA, membrane permease ComEC and taken up DNA in competent Bacillus subtilis cells. J Bacteriol 2021; 204:e0057221. [PMID: 34928178 DOI: 10.1128/jb.00572-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In competent Gram-negative and Gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility as a protein, in spite of being a large polymer. DNA dynamics are similar within the periplasm as those of ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol. Importance Bacteria can take up DNA from the environment and incorporate it into their chromosome, termed "natural competence" that can result in the uptake of novel genetic information. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells, with similar dynamics as DNA receptor ComEA. This indicates that DNA can accumulate in the periplasm, likely bound by ComEA, and thus can be stored before uptake at the cell pole, via integral membrane DNA permease ComEC. Assembly of the latter assembles at the cell pole likely occurs by a diffusion-capture mechanism. DNA uptake into cells thus takes a detour through the entire periplasm, and involves a high degree of free diffusion along and within the cell membrane.
Collapse
|
7
|
Hahn J, DeSantis M, Dubnau D. Mechanisms of Transforming DNA Uptake to the Periplasm of Bacillus subtilis. mBio 2021; 12:e0106121. [PMID: 34126763 PMCID: PMC8262900 DOI: 10.1128/mbio.01061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
We demonstrate here that the acquisition of DNase resistance by transforming DNA, often assumed to indicate transport to the cytoplasm, reflects uptake to the periplasm, requiring a reevaluation of conclusions about the roles of several proteins in transformation. The new evidence suggests that the transformation pilus is needed for DNA binding to the cell surface near the cell poles and for the initiation of uptake. The cellular distribution of the membrane-anchored ComEA of Bacillus subtilis does not dramatically change during DNA uptake as does the unanchored ComEA of Vibrio and Neisseria. Instead, our evidence suggests that ComEA stabilizes the attachment of transforming DNA at localized regions in the periplasm and then mediates uptake, probably by a Brownian ratchet mechanism. Following that, the DNA is transferred to periplasmic portions of the channel protein ComEC, which plays a previously unsuspected role in uptake to the periplasm. We show that the transformation endonuclease NucA also facilitates uptake to the periplasm and that the previously demonstrated role of ComFA in the acquisition of DNase resistance derives from the instability of ComGA when ComFA is deleted. These results prompt a new understanding of the early stages of DNA uptake for transformation. IMPORTANCE Transformation is a widely distributed mechanism of bacterial horizontal gene transfer that plays a role in the spread of antibiotic resistance and virulence genes and more generally in evolution. Although transformation was discovered nearly a century ago and most, if not all the proteins required have been identified in several bacterial species, much remains poorly understood about the molecular mechanism of DNA uptake. This study uses epifluorescence microscopy to investigate the passage of labeled DNA into the compartment between the cell wall and the cell membrane of Bacillus subtilis, a necessary early step in transformation. The roles of individual proteins in this process are identified, and their modes of action are clarified.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
8
|
Silale A, Lea SM, Berks BC. The DNA transporter ComEC has metal-dependent nuclease activity that is important for natural transformation. Mol Microbiol 2021; 116:416-426. [PMID: 33772889 PMCID: PMC8579336 DOI: 10.1111/mmi.14720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
In the process of natural transformation bacteria import extracellular DNA molecules for integration into their genome. One strand of the incoming DNA molecule is degraded, whereas the remaining strand is transported across the cytoplasmic membrane. The DNA transport channel is provided by the protein ComEC. Many ComEC proteins have an extracellular C-terminal domain (CTD) with homology to the metallo-β-lactamase fold. Here we show that this CTD binds Mn2+ ions and exhibits Mn2+ -dependent phosphodiesterase and nuclease activities. Inactivation of the enzymatic activity of the CTD severely inhibits natural transformation in Bacillus subtilis. These data suggest that the ComEC CTD is a nuclease responsible for degrading the nontransforming DNA strand during natural transformation and that this process is important for efficient DNA import.
Collapse
Affiliation(s)
- Augustinas Silale
- Department of Biochemistry, University of Oxford, Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Gurung D, Blumenthal RM. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. MICROBIOLOGY-SGM 2020; 166:1047-1064. [PMID: 33085588 DOI: 10.1099/mic.0.000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
Collapse
Affiliation(s)
- Deepti Gurung
- Present address: Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA.,Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| |
Collapse
|
10
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 2019; 309:151354. [PMID: 31495663 DOI: 10.1016/j.ijmm.2019.151354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
New frontiers of therapy are being explored against the upcoming bacterial diseases rendered untreatable due to multiple, extreme and pan- antibiotic resistance. Nucleases are ubiquitous in bacterial pathogens performing various functions like acquiring nucleotide nutrients, allowing or preventing uptake of foreign DNA, controlling biofilm formation/dispersal/architecture, invading host by tissue damage, evading immune defence by degrading DNA matrix of neutrophil extracellular traps (NETs) and immunomodulating the host immune response. Secretory nucleases also provide means of survival to other bacteria like iron-reducing Shewanella and such functions help them adapt and survive proficiently. Other than their pro-pathogen roles in survival, nucleases can be used directly as therapeutics. One of the powerful armours of pathogens is the formation of biofilms, thus helping them resist and persist in the harshest of environments. As eDNA forms the structural and binding component of biofilm, nucleases can be used against the adhering component, thus increasing the permeability of antimicrobial agents. Nucleases have recently become a model system of intense study for their biological functions and medical applications in diagnosis, immunoprophylaxis and therapy. Rational implications of these enzymes can impact human medicine positively in future by opening new ways for therapeutics which have otherwise reached saturation due to multi drug resistance.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Nisha Garg
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravinder Singh
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
13
|
Tan A, Li WS, Verderosa AD, Blakeway LV, D Mubaiwa T, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep 2019; 9:2579. [PMID: 30796312 PMCID: PMC6384898 DOI: 10.1038/s41598-019-39374-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Abstract
Moraxella catarrhalis is a host-adapted bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. This study characterises the conserved M. catarrhalis extracellular nuclease, a member of the ββα metal finger family of nucleases, that we have named NucM. NucM shares conserved sequence motifs from the ββα nuclease family, including the DRGH catalytic core and Mg2+ co-ordination site, but otherwise shares little primary sequence identity with other family members, such as the Serratia Nuc and pneumococcal EndA nucleases. NucM is secreted from the cell and digests linear and circular nucleic acid. However, it appears that a proportion of NucM is also associated with the cell membrane and acts as an entry nuclease, facilitating transformation of M. catarrhalis cells. This is the first example of a ββα nuclease in a Gram negative bacteria that acts as an entry nuclease. In addition to its role in competence, NucM affects cell aggregation and biofilm formation by M. catarrhalis, with ΔnucM mutants having increased biofilm biomass. NucM is likely to increase the ability of cells to survive and persist in vivo, increasing the virulence of M. catarrhalis and potentially affecting the behaviour of other pathogens that co-colonise the otorhinolaryngological niche.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Wing-Sze Li
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Anthony D Verderosa
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Tsitsi D Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia.
| |
Collapse
|
14
|
Hölscher T, Schiklang T, Dragoš A, Dietel AK, Kost C, Kovács ÁT. Impaired competence in flagellar mutants of Bacillus subtilis is connected to the regulatory network governed by DegU. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:23-32. [PMID: 29124898 DOI: 10.1111/1758-2229.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The competent state is a developmentally distinct phase, in which bacteria are able to take up and integrate exogenous DNA into their genome. Bacillus subtilis is one of the naturally competent bacterial species and the domesticated laboratory strain 168 is easily transformable. In this study, we report a reduced transformation frequency of B. subtilis mutants lacking functional and structural flagellar components. This includes hag, the gene encoding the flagellin protein forming the filament of the flagellum. We confirm that the observed decrease of the transformation frequency is due to reduced expression of competence genes, particularly of the main competence regulator gene comK. The impaired competence is due to an increase in the phosphorylated form of the response regulator DegU, which is involved in regulation of both flagellar motility and competence. Altogether, our study identified a close link between motility and natural competence in B. subtilis suggesting that hindrance in motility has great impact on differentiation of this bacterium not restricted only to the transition towards sessile growth stage.
Collapse
Affiliation(s)
- Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Tina Schiklang
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Dragoš
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anne-Kathrin Dietel
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
15
|
Mitra SD, Afonina I, Kline KA. Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria. Trends Microbiol 2016; 24:611-621. [PMID: 27117048 DOI: 10.1016/j.tim.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/03/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
Abstract
Membrane proteins represent a significant proportion of total bacterial proteins and perform vital cellular functions ranging from exchanging metabolites and genetic material, secretion and sorting, sensing signal molecules, and cell division. Many of these functions are carried out at distinct foci on the bacterial membrane, and this subcellular localization can be coordinated by a number of factors, including lipid microdomains, protein-protein interactions, and membrane curvature. Elucidating the mechanisms behind focal protein localization in bacteria informs not only protein structure-function correlation, but also how to disrupt the protein function to limit virulence. Here we review recent advances describing a functional role for subcellular localization of membrane proteins involved in genetic transfer, secretion and sorting, cell division and growth, and signaling.
Collapse
Affiliation(s)
- Sumitra D Mitra
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Irina Afonina
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
16
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
17
|
Fagerlund A, Granum PE, Håvarstein LS. Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 2014; 94:557-79. [PMID: 25155269 DOI: 10.1111/mmi.12767] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus is a major human pathogen. Hospital infections caused by methicillin-resistant strains (MRSA), which have acquired resistance to a broad spectrum of antibiotics through horizontal gene transfer (HGT), are of particular concern. In S. aureus, virulence and antibiotic resistance genes are often encoded on mobile genetic elements that are disseminated by HGT. Conjugation and phage transduction have long been known to mediate HGT in this species, but it is unclear whether natural genetic transformation contributes significantly to the process. Recently, it was reported that expression of the alternative sigma factor SigH induces the competent state in S. aureus. The transformation efficiency obtained, however, was extremely low, indicating that the optimal conditions for competence development had not been found. We therefore used transcriptome sequencing to determine whether the full set of genes known to be required for competence in other naturally transformable bacteria is part of the SigH regulon. Our results show that several essential competence genes are not controlled by SigH. This presumably explains the low transformation efficiency previously reported, and demonstrates that additional regulating mechanisms must be involved. We found that one such mechanism involves ComK1, a transcriptional activator that acts synergistically with SigH.
Collapse
Affiliation(s)
- Annette Fagerlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
18
|
Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 2014; 9:e95574. [PMID: 24752186 PMCID: PMC3994088 DOI: 10.1371/journal.pone.0095574] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.
Collapse
Affiliation(s)
- Megan R. Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Heidi A. Crosby
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Frank J. Hernandez
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L. Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - James O. McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
19
|
Chimileski S, Dolas K, Naor A, Gophna U, Papke RT. Extracellular DNA metabolism in Haloferax volcanii. Front Microbiol 2014; 5:57. [PMID: 24600440 PMCID: PMC3929857 DOI: 10.3389/fmicb.2014.00057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Extracellular DNA is found in all environments and is a dynamic component of the microbial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA concentrations measured in nature–a potential rich source of carbon, nitrogen, and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration, and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent, and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA. Additionally, fluorescence microscopy showed that labeled DNA co-localized with H. volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in DNA processing at the cell surface, and deletion of Hvo_1477 created a strain deficient in the ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.
Collapse
Affiliation(s)
- Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Kunal Dolas
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Adit Naor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
20
|
Could DNA uptake be a side effect of bacterial adhesion and twitching motility? Arch Microbiol 2013; 195:279-89. [PMID: 23381940 PMCID: PMC3597990 DOI: 10.1007/s00203-013-0870-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 12/11/2022]
Abstract
DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.
Collapse
|
21
|
Kovács ÁT, Eckhardt TH, van Kranenburg R, Kuipers OP. Functional analysis of the ComK protein of Bacillus coagulans. PLoS One 2013; 8:e53471. [PMID: 23301076 PMCID: PMC3536758 DOI: 10.1371/journal.pone.0053471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Collapse
Affiliation(s)
- Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tom H. Eckhardt
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
23
|
Mirończuk AM, Maňu A, Kuipers OP, Kovács ÁT. Distinct roles of ComK1 and ComK2 in gene regulation in Bacillus cereus. PLoS One 2011; 6:e21859. [PMID: 21747963 PMCID: PMC3128618 DOI: 10.1371/journal.pone.0021859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022] Open
Abstract
The B. subtilis transcriptional factor ComK regulates a set of genes coding for DNA uptake from the environment and for its integration into the genome. In previous work we showed that Bacillus cereus expressing the B. subtilis ComK protein is able to take up DNA and integrate it into its own genome. To extend our knowledge on the effect of B. subtilis ComK overexpression in B. cereus we first determined which genes are significantly altered. Transcriptome analysis showed that only part of the competence gene cluster is significantly upregulated. Two ComK homologues can be identified in B. cereus that differ in their respective homologies to other ComK proteins. ComK1 is most similar, while ComK2 lacks the C-terminal region previously shown to be important for transcription activation by B. subtilis ComK. comK1 and comK2 overexpression and deletion studies using transcriptomics techniques showed that ComK1 enhances and ComK2 decreases expression of the comG operon, when B. subtilis ComK was overexpressed simultaneously.
Collapse
Affiliation(s)
- Aleksandra M. Mirończuk
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Amagoia Maňu
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
- * E-mail:
| | - Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Briley K, Dorsey-Oresto A, Prepiak P, Dias MJ, Mann JM, Dubnau D. The secretion ATPase ComGA is required for the binding and transport of transforming DNA. Mol Microbiol 2011; 81:818-30. [PMID: 21707789 DOI: 10.1111/j.1365-2958.2011.07730.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transformation requires specialized proteins to facilitate the binding and uptake of DNA. The genes of the Bacillus subtilis comG operon (comGA-G) are required for transformation and to assemble a structure, the pseudopilus, in the cell envelope. No role for the pseudopilus has been established and the functions of the individual comG genes are unknown. We show that among the comG genes, only comGA is absolutely required for DNA binding to the cell surface. ComEA, an integral membrane DNA-binding protein plays a minor role in the initial binding step, while an unidentified protein which communicates with ComGA must be directly responsible for binding to the cell. We show that the use of resistance to DNase to measure 'DNA uptake' reflects the movement of transforming DNA to a protected state in which it is not irreversibly associated with the protoplast, and presumably resides outside the cell membrane, in the periplasm or associated with the cell wall. We suggest that ComGA is needed for the acquisition of DNase resistance as well as for the binding of DNA to the cell surface. Finally, we show that the pseudopilus is required for DNA uptake and we offer a revised model for the transformation process.
Collapse
Affiliation(s)
- Kenneth Briley
- Public Health Research Institute Center, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
The three-layered DNA uptake machinery at the cell pole in competent Bacillus subtilis cells is a stable complex. J Bacteriol 2011; 193:1633-42. [PMID: 21278288 DOI: 10.1128/jb.01128-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many bacteria possess the ability to actively take up DNA from the environment and incorporate it into the chromosome. RecA protein is the key protein achieving homologous recombination. Several of the proteins involved in the transport of DNA across the cell envelope assemble at a single or both cell poles in competent Bacillus subtilis cells. We show that the presumed structure that transports DNA across the cell wall, the pseudopilus, also assembles at a single or both cell poles, while the membrane receptor, ComEA, forms a mobile layer throughout the cell membrane. All other known Com proteins, including the membrane permease, localize again to the cell pole, revealing that the uptake machinery has three distinct layers. In cells having two uptake machineries, one complex is occasionally mobile, with pairs of proteins moving together, suggesting that a complete complex may lose anchoring and become mobile. Overall, the cell pole provides stable anchoring. Only one of two uptake machineries assembles RecA protein, suggesting that only one is competent for DNA transfer. FRAP (fluorescence recovery after photobleaching) analyses show that in contrast to known multiprotein complexes, the DNA uptake machinery forms a highly stable complex, showing little or no exchange with unbound molecules. When cells are converted into round spheroplasts, the structure persists, revealing that the assembly is highly stable and does not require the cell pole for its maintenance. High stability may be important to fulfill the mechanical function in pulling DNA across two cell layers.
Collapse
|
27
|
Midon M, Schäfer P, Pingoud A, Ghosh M, Moon AF, Cuneo MJ, London RE, Meiss G. Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Res 2010; 39:623-34. [PMID: 20846957 PMCID: PMC3025545 DOI: 10.1093/nar/gkq802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.
Collapse
Affiliation(s)
- Marika Midon
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.
Collapse
Affiliation(s)
- Briana Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
29
|
Kovács AT, Smits WK, Mirończuk AM, Kuipers OP. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ Microbiol 2009; 11:1911-22. [PMID: 19453701 DOI: 10.1111/j.1462-2920.2009.01937.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural competence for genetic transformation, i.e. the ability to take up DNA and stably integrate it in the genome, has so far only been observed in the bacterial kingdom (both in gram-negative and gram-positive species) and may contribute to survival under adverse growth conditions. Bacillus subtilis, the model organism for the Bacillus genus, possesses a well-characterized competence machinery. Phylogenetic analysis of several genome sequences of different Bacillus species reveals the presence of many, but not all genes potentially involved in competence and its regulation. The recent demonstration of functional DNA uptake by B. cereus supports the significance of our genome analyses and shows that the ability for functional DNA uptake might be widespread among Bacilli.
Collapse
Affiliation(s)
- Akos T Kovács
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
30
|
Averhoff B. Shuffling genes around in hot environments: the unique DNA transporter ofThermus thermophilus. FEMS Microbiol Rev 2009; 33:611-26. [DOI: 10.1111/j.1574-6976.2008.00160.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 2009; 33:643-56. [DOI: 10.1111/j.1574-6976.2009.00164.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Allemand JF, Maier B. Bacterial translocation motors investigated by single molecule techniques. FEMS Microbiol Rev 2009; 33:593-610. [PMID: 19243443 DOI: 10.1111/j.1574-6976.2009.00166.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Translocation of DNA and protein fibers through narrow constrictions is a ubiquitous and crucial activity of bacterial cells. Bacteria use specialized machines to support macromolecular movement. A very important step toward a mechanistic understanding of these translocation machines is the characterization of their physical properties at the single molecule level. Recently, four bacterial transport processes have been characterized by nanomanipulation at the single molecule level, DNA translocation by FtsK and SpoIIIE, DNA import during transformation, and the related process of a type IV pilus retraction. With all four processes, the translocation rates, processivity, and stalling forces were remarkably high as compared with single molecule experiments with other molecular motors. Although substrates of all four processes proceed along a preferential direction of translocation, directionality has been shown to be controlled by distinct mechanisms.
Collapse
|
33
|
Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in Campylobacter jejuni. Antimicrob Agents Chemother 2008; 52:2699-708. [PMID: 18505858 DOI: 10.1128/aac.01607-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni, an important food-borne human pathogen, is increasingly resistant to antimicrobials. Natural transformation is considered to be a main mechanism for mediating the transfer of genetic materials encoding antibiotic resistance determinants in C. jejuni, but direct evidence for this notion is still lacking. In this study, we determined the role of Cj1211 in natural transformation and in the development of antibiotic resistance in C. jejuni. Insertional mutagenesis of Cj1211, a Helicobacter pylori ComH3 homolog, abolished natural transformation in C. jejuni. In vitro coculture of C. jejuni strains carrying either kanamycin or tetracycline resistance markers demonstrated the development of progenies that were resistant to both antibiotics, indicating that the horizontal transfer of antibiotic resistance determinants actively occurs in mixed Campylobacter populations. A mutation of Cj1211 or the addition of DNase I in culture media completely inhibited the formation of progenies that were resistant to both antibiotics, indicating that the horizontal transfer of the resistance determinants is mediated by natural transformation. Interestingly, the mutation of Cj1211 also reduced the frequency of emergence of spontaneous mutants that were resistant to fluoroquinolone (FQ) and streptomycin but did not affect the outcome of FQ resistance development under FQ treatment, suggesting that natural transformation does not play a major role in the emergence of FQ-resistant Campylobacter strains during treatment with FQ antimicrobials. These results define Cj1211 as a competence factor in Campylobacter, prove the role of natural transformation in the horizontal transfer of antibiotic resistance determinants in Campylobacter, and provide new insights into the mechanism underlying the development of FQ-resistant Campylobacter strains.
Collapse
|
34
|
Accetto T, Avgustin G. Expression of nuclease gene nucA, a member of an operon putatively involved in uracil removal from DNA and its subsequent reuse in Prevotella bryantii. Arch Microbiol 2008; 190:111-7. [PMID: 18427783 DOI: 10.1007/s00203-008-0372-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
The genomic region of Prevotella bryantii TC1-1 that conferred an increased nucleolytic activity on Escherichia coli was characterized. It contains two divergent transcriptional units separated by an AT-rich promoter region. One unit is comprised of three genes involved in nucleotide metabolism. nucA, the first gene of this unit, whose product belongs to exonuclease/endonuclease/phosphatase Pfam family, was thought to be required for the increased nucleolytic activity and various expression strategies were employed to confirm its role. The nucA expression was only successful in cell free system where DNase and RNase activity was observed. Two genes downstream of nucA code for a putative uracil DNA glycosylase and uridine kinase which could be involved in the removal of misincorporated uracil from DNA and its reuse. Given that apurinic/apyrimidinic nuclease activity is required after uracil removal from DNA, it was somewhat surprising to find out that nucA, whose product belongs to protein family consisting mostly of apurinic/apyrimidinic nucleases, has no apurinic/apyrimidinic activity.
Collapse
Affiliation(s)
- Tomaz Accetto
- Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| | | |
Collapse
|
35
|
Accetto T, Avguštin G. Studies on Prevotella nuclease using a system for the controlled expression of cloned genes in P. bryantii TC1-1. MICROBIOLOGY-SGM 2007; 153:2281-2288. [PMID: 17600072 DOI: 10.1099/mic.0.2007/005850-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Available tools for genetic analysis in the anaerobic rumen bacterium Prevotella bryantii are limited to only two known systems for gene delivery, and no genes, with the exception of plasmid maintenance and selection genes, have been successfully expressed from plasmids in any species of the genus Prevotella until now. It is shown here that nucB, a newly cloned nuclease gene from P. bryantii, can be controllably expressed from shuttle vector pRH3 in P. bryantii strain TC1-1, depending on the tetracycline concentration in the growth medium. nucB expression is also growth-medium dependent and this regulation presumably takes place at the translational level. His-tagged NucB was purified from P. bryantii TC1-1 culture supernatant and was shown to degrade DNA as well as RNA; it is most likely a minor 36 kDa P. bryantii non-specific nuclease.
Collapse
Affiliation(s)
- Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Zootechnical Department, Chair for Microbiology and Microbial Biotechnology, 1230 Domžale, Slovenia
| | - Gorazd Avguštin
- University of Ljubljana, Biotechnical Faculty, Zootechnical Department, Chair for Microbiology and Microbial Biotechnology, 1230 Domžale, Slovenia
| |
Collapse
|
36
|
Hamilton HL, Dillard JP. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 2006; 59:376-85. [PMID: 16390436 DOI: 10.1111/j.1365-2958.2005.04964.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gonococci undergo frequent and efficient natural transformation. Transformation occurs so often that the population structure is panmictic, with only one long-lived clone having been identified. This high degree of genetic exchange is likely necessary to generate antigenic diversity and allow the persistence of gonococcal infection within the human population. In addition to spreading different alleles of genes for surface markers and allowing avoidance of the immune response, transformation facilitates the spread of antibiotic resistance markers, a continuing problem for treatment of gonococcal infections. Transforming DNA is donated by neighbouring gonococci by two different mechanisms: autolysis or type IV secretion. All types of DNA are bound non-specifically to the cell surface. However, for DNA uptake, Neisseria gonorrhoeae recognizes only DNA containing a 10-base sequence (GCCGTCTGAA) present frequently in the chromosome of neisserial species. Type IV pilus components and several pilus-associated proteins are necessary for gonococcal DNA uptake. Incoming DNA is subject to restriction, making establishment of replicating plasmids difficult but not greatly affecting chromosomal transformation. Processing and integration of transforming DNA into the chromosome involves enzymes required for homologous recombination. Recent research on DNA donation mechanisms and extensive work on type IV pilus biogenesis and recombination proteins have greatly improved our understanding of natural transformation in N. gonorrhoeae. The completion of the gonococcal genome sequence has facilitated the identification of additional transformation genes and provides insight into previous investigations of gonococcal transformation. Here we review these recent developments and address the implications of natural transformation in the evolution and pathogenesis N. gonorrhoeae.
Collapse
Affiliation(s)
- Holly L Hamilton
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 53706, USA
| | | |
Collapse
|
37
|
Abstract
Transformation and conjugation permit the passage of DNA through the bacterial membranes and represent dominant modes for the transfer of genetic information between bacterial cells or between bacterial and eukaryotic cells. As such, they are responsible for the spread of fitness-enhancing traits, including antibiotic resistance. Both processes usually involve the recognition of double-stranded DNA, followed by the transfer of single strands. Elaborate molecular machines are responsible for negotiating the passage of macromolecular DNA through the layers of the cell surface. All or nearly all the machine components involved in transformation and conjugation have been identified, and here we present models for their roles in DNA transport.
Collapse
Affiliation(s)
- Inês Chen
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - David Dubnau
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Kidane D, Graumann PL. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. Cell 2005; 122:73-84. [PMID: 16009134 DOI: 10.1016/j.cell.2005.04.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/15/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
We have found that two DNA repair/recombination proteins localize differentially to the cell poles in competent Bacillus subtilis cells. RecA protein colocalized with competence protein ComGA, and its polar localization largely depended on ComGA and ComK activity, while RecN oscillated between the poles in a minute time frame, independent of any competence factor. Oscillation of RecN arrested upon addition of external DNA, suggesting that an interaction with incoming single-stranded (ss) DNA favors the localization of RecN at the pole containing the competence machinery. In agreement with this model, purified RecN protein showed ATP-dependent binding to ssDNA. Addition of DNA resulted in the formation of RecA threads emanating from the competence machinery. Our data show that in competent bacteria there exists a specifically positioned and dynamic ssDNA binding apparatus that accepts ssDNA taken up through the polar competence machinery and processes ssDNA for recombination with chromosomal DNA via extended RecA filaments.
Collapse
Affiliation(s)
- Dawit Kidane
- Institut für Mikrobiologie, Fachbereich Biologie II, Universität Freiburg, Verfügungsgebäude, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| | | |
Collapse
|
39
|
Draskovic I, Dubnau D. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol 2005; 55:881-96. [PMID: 15661011 PMCID: PMC3835657 DOI: 10.1111/j.1365-2958.2004.04430.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ComEC is a putative channel protein for DNA uptake in Bacillus subtilis and other genetically transformable bacteria. Membrane topology studies suggest a model of ComEC as a multispanning membrane protein with seven transmembrane segments (TMSs), and possibly with one laterally inserted amphipathic helix. We show that ComEC contains an intramolecular disulphide bond in its N-terminal extracellular loop (between the residues C131 and C172), which is required for the stability of the protein, and is probably introduced by BdbDC, a pair of competence-induced oxidoreductase proteins. By in vitro cross-linking using native cysteine residues we show that ComEC forms an oligomer. The oligomerization surface includes a transmembrane segment, TMS-G, near the cytoplasmic C-terminus of ComEC.
Collapse
Affiliation(s)
| | - David Dubnau
- For correspondence. ; Tel. (+1) 973 854 3400; Fax (+1) 973 854 3401
| |
Collapse
|
40
|
Moscoso M, Claverys JP. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 2005; 54:783-94. [PMID: 15491367 DOI: 10.1111/j.1365-2958.2004.04305.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The release of chromosomal DNA into culture media has been reported for several naturally transformable bacterial species, but a direct link between competence development and the liberation of DNA is generally lacking. Based on the analysis of strains with mutations in competence-regulatory genes and the use of conditions favouring or preventing competence, we provide evidence that DNA release is triggered by the induction of competence in Streptococcus pneumoniae. Kinetic analyses revealed that whereas competence was maximal 20 min after addition of competence-stimulating peptide, and then decreased, the amount of liberated DNA continued to increase and reached a maximum in stationary phase, when cells are no longer competent for DNA uptake. These data are not consistent with the proposal that release of DNA by a fraction of the population is coordinated with uptake by the remainder. Moreover, we observed that an unidentified DNase was specifically induced or released in competent cultures, and that together with the major pneumococcal endonuclease, EndA, it could degrade released DNA. Nearby complete abolition of release in a mutant lacking both the major autolysin, LytA, and the autolytic lysozyme, LytC, indicated that DNA liberation occurs by LytA-LytC-dependent cell lysis. These observations suggest that competence-dependent DNA release is one facet of a more general phenomenon of sensitization to autolysis that reaches its maximum in stationary phase.
Collapse
Affiliation(s)
- Miriam Moscoso
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | |
Collapse
|
41
|
Redon E, Loubiere P, Cocaign-Bousquet M. Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J Bacteriol 2005; 187:3589-92. [PMID: 15866950 PMCID: PMC1111995 DOI: 10.1128/jb.187.10.3589-3592.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of Lactococcus lactis towards progressive carbon starvation is mediated by three different types of transcriptomic responses: (i) global responses, i.e., general decreases of functions linked to bacterial growth and lack of induction of the general stress response; (ii) specific responses functionally related to glucose exhaustion, i.e., underexpression of central metabolism genes, induction of alternative sugar transport and metabolism, and induction of the arginine deiminase pathway; and (iii) other responses never described previously during carbon starvation.
Collapse
Affiliation(s)
- Emma Redon
- Laboratoire Biotechnologie-Bioprocédés, UMR 5504 INSA/CNRS and UMR792 INSA/INRA, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Inês Chen
- Public Health Research Institute, Newark, New Jersey 07103, USA
| | | |
Collapse
|
43
|
Maier B, Chen I, Dubnau D, Sheetz MP. DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat Struct Mol Biol 2004; 11:643-9. [PMID: 15184891 PMCID: PMC3832999 DOI: 10.1038/nsmb783] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/12/2004] [Indexed: 11/08/2022]
Abstract
Bacteria can acquire genetic diversity, including antibiotic resistance and virulence traits, by horizontal gene transfer. In particular, many bacteria are naturally competent for uptake of naked DNA from the environment in a process called transformation. Here, we used optical tweezers to demonstrate that the DNA transport machinery in Bacillus subtilis is a force-generating motor. Single DNA molecules were processively transported in a linear fashion without observable pausing events. Uncouplers inhibited DNA uptake immediately, suggesting that the transmembrane proton motive force is needed for DNA translocation. We found an uptake rate of 80 +/- 10 bp s(-1) that was force-independent at external forces <40 pN, indicating that a powerful molecular machine supports DNA transport.
Collapse
Affiliation(s)
- Berenike Maier
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, New York 10027, USA.
| | | | | | | |
Collapse
|
44
|
O'Rourke EJ, Pinto AV, Petroni EA, Tolmasky ME, Ielpi L. Evidence for the active role of a novel nuclease from Helicobacter pylori in the horizontal transfer of genetic information. J Bacteriol 2004; 186:2586-93. [PMID: 15090498 PMCID: PMC387795 DOI: 10.1128/jb.186.9.2586-2593.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach, causes gastritis, and is associated with ulcers and gastric cancer. H. pylori is naturally competent for transformation. Natural genetic transformation is believed to be essential for the genetic plasticity observed in this species. While the relevance of horizontal gene transfer in H. pylori adaptiveness and antibiotic resistance is well documented, the DNA transformation machinery components are barely known. No enzymatic activity associated with the transformation process has been determined experimentally and described. We isolated, microsequenced, and cloned a major DNA nuclease from H. pylori. This protein, encoded by the open reading frame hp0323, was expressed in Escherichia coli. The purified protein, NucT, has a cation-independent thermostable nuclease activity that preferentially cleaves single-stranded DNA. NucT is associated with the membrane. NucT-deficient H. pylori strains are one or more orders of magnitude less efficient than the parental strain for transformation with either chromosomal or self-replicating plasmid DNA. To the best of our knowledge, NucT is the first nuclease identified in a gram-negative natural transformation system, and its existence suggests that there is a mechanism of DNA processing and uptake similar to the mechanisms in well-studied gram-positive systems.
Collapse
Affiliation(s)
- Eyleen J O'Rourke
- Fundación Instituto Leloir, University of Buenos Aires and CONICET, Av. Patricias Argentinas 435, C1405BWE-Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
45
|
Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 2002; 30:5517-28. [PMID: 12490720 PMCID: PMC140081 DOI: 10.1093/nar/gkf698] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Generally, the presence of a consensus sequence in the promoter of a gene is taken as indication for regulation by the transcription factor that binds to this sequence. In light of the recent developments in genome research, we were interested to what extent this supposition is valid. We examined the relationship between the presence of a binding site for ComK, the competence transcription factor of Bacillus subtilis, and actual transcriptional activation by ComK. Bacillus subtilis contains 1062 putative ComK-binding sites (K-boxes) in its genome. We employed DNA macroarrays to identify ComK-activated genes, and found that the presence of a K-box is an unreliable predictor for regulation. Only approximately 8% of the genes containing a K-box in the putative promoter region are regulated by ComK. The predictive value of a K-box could be improved by taking into consideration the degree of deviation from the K-box consensus sequence, the presence of extra ComK-binding motifs and the positions of RNA polymerase-binding sites. Finally, many of the ComK-activated genes show no apparent function related to the competence process. Based on our findings, we propose that the ComK-dependent activation of several genes might serve no biological purpose and can be considered 'evolutionary noise'.
Collapse
Affiliation(s)
- Leendert W Hamoen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Bergé M, Moscoso M, Prudhomme M, Martin B, Claverys JP. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol Microbiol 2002; 45:411-21. [PMID: 12123453 DOI: 10.1046/j.1365-2958.2002.03013.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a working model for the uptake of transforming DNA based on evidence taken from both Bacillus subtilis and Streptococcus pneumoniae, the ComG proteins are proposed to form a structure that provides access for DNA to the ComEA receptor through the peptidoglycan. DNA would then be delivered to the ComEC-ComFA transport complex. A DNA strand would be degraded by a nuclease, while its complement is pulled into the cell by ComFA through an aqueous pore formed by ComEC. The nuclease is known in S. pneumoniae only as EndA. We have examined the processing (i.e. binding, degradation and internalization) of DNA in S. pneumoniae strains lacking candidate uptake proteins. Mutants were generated by transposon insertion in endA, comEA/C, comFA/C, comGA and dprA. Processing of DNA was abolished only in a comGA mutant. As significant binding was measured in comEA mutants, we suggest the existence of two stages in binding: surface attachment (abolished in a comGA mutant) required for and preceding deep binding (by ComEA). Abolition of degradation in comGA and comEA mutants indicated that, despite its membrane location, EndA cannot access donor DNA by itself. We propose that ComEA is required to deliver DNA to EndA. DNA was still bound and degraded in comEC and comFA mutants. We conclude that recruitment of EndA can occur in the absence of ComEC or ComFA and that EndA is active even when the single strands it produces are not pulled into the cell. Finally, inactivation of dprA had no effect on the internalization of DNA, indicating that DprA is required at a later stage in transformation.
Collapse
Affiliation(s)
- Mathieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS-Université Paul, Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 2002; 184:2344-51. [PMID: 11948146 PMCID: PMC134994 DOI: 10.1128/jb.184.9.2344-2351.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis competence transcription factor ComK is required for establishment of competence for genetic transformation. In an attempt to study the ComK factor further, we explored the genes regulated by ComK using the DNA microarray technique. In addition to the genes known to be dependent on ComK for expression, we found many genes or operons whose ComK dependence was not known previously. Among these genes, we confirmed the ComK dependence of 16 genes by using lacZ fusions, and three genes were partially dependent on ComK. Transformation efficiency was significantly reduced in an smf disruption mutant, although disruption of the other ComK-dependent genes did not result in significant decreases in transformation efficiency. Nucleotide sequences similar to that of the ComK box were found for most of the newly discovered genes regulated by ComK.
Collapse
Affiliation(s)
- Mitsuo Ogura
- School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Meima R, Eschevins C, Fillinger S, Bolhuis A, Hamoen LW, Dorenbos R, Quax WJ, van Dijl JM, Provvedi R, Chen I, Dubnau D, Bron S. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J Biol Chem 2002; 277:6994-7001. [PMID: 11744713 DOI: 10.1074/jbc.m111380200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of genetic competence in the Gram-positive eubacterium Bacillus subtilis is a complex postexponential process. Here we describe a new bicistronic operon, bdbDC, required for competence development, which was identified by the B. subtilis Systematic Gene Function Analysis program. Inactivation of either the bdbC or bdbD genes of this operon results in the loss of transformability without affecting recombination or the synthesis of ComK, the competence transcription factor. BdbC and BdbD are orthologs of enzymes known to be involved in extracytoplasmic disulfide bond formation. Consistent with this, BdbC and BdbD are needed for the secretion of the Escherichia coli disulfide bond-containing alkaline phosphatase, PhoA, by B. subtilis. Similarly, the amount of the disulfide bond-containing competence protein ComGC is severely reduced in bdbC or bdbD mutants. In contrast, the amounts of the competence proteins ComGA and ComEA remain unaffected by bdbDC mutations. Taken together, these observations imply that in the absence of either BdbC or BdbD, ComGC is unstable and that BdbC and BdbD catalyze the formation of disulfide bonds that are essential for the DNA binding and uptake machinery.
Collapse
Affiliation(s)
- Rob Meima
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|