1
|
Qi Q, Rajabal V, Ghaly TM, Tetu SG, Gillings MR. Identification of integrons and gene cassette-associated recombination sites in bacteriophage genomes. Front Microbiol 2023; 14:1091391. [PMID: 36744093 PMCID: PMC9892861 DOI: 10.3389/fmicb.2023.1091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,*Correspondence: Qin Qi, ✉
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Ghaly TM, Penesyan A, Pritchard A, Qi Q, Rajabal V, Tetu SG, Gillings MR. Methods for the targeted sequencing and analysis of integrons and their gene cassettes from complex microbial communities. Microb Genom 2022; 8. [PMID: 35298369 PMCID: PMC9176274 DOI: 10.1099/mgen.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of cassettes has promising applications, including: surveillance of clinically important genes, particularly antibiotic resistance determinants; investigating the functional diversity of integron-carrying bacteria; and novel enzyme discovery. Although gene cassettes can be directly recovered using PCR, there are no standardised methods for their amplification and, importantly, for validating sequences as genuine integron gene cassettes. Here, we present reproducible methods for the amplification, sequence processing, and validation of gene cassette amplicons from complex communities. We describe two different PCR assays that either amplify cassettes together with integron integrases, or gene cassettes together within cassette arrays. We compare the performance of Nanopore and Illumina sequencing, and present bioinformatic pipelines that filter sequences to ensure that they represent amplicons from genuine integrons. Using a diverse set of environmental DNAs, we show that our approach can consistently recover thousands of unique cassettes per sample and up to hundreds of different integron integrases. Recovered cassettes confer a wide range of functions, including antibiotic resistance, with as many as 300 resistance cassettes found in a single sample. In particular, we show that class one integrons are collecting and concentrating resistance genes out of the broader diversity of cassette functions. The methods described here can be applied to any environmental or clinical microbiome sample.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Alexander Pritchard
- Division of Food Sciences, University of Nottingham, Loughborough LE12 5RD, Australia
| | - Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
3
|
Ghaly TM, Gillings MR, Penesyan A, Qi Q, Rajabal V, Tetu SG. The Natural History of Integrons. Microorganisms 2021; 9:2212. [PMID: 34835338 PMCID: PMC8618304 DOI: 10.3390/microorganisms9112212] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022] Open
Abstract
Integrons were first identified because of their central role in assembling and disseminating antibiotic resistance genes in commensal and pathogenic bacteria. However, these clinically relevant integrons represent only a small proportion of integron diversity. Integrons are now known to be ancient genetic elements that are hotspots for genomic diversity, helping to generate adaptive phenotypes. This perspective examines the diversity, functions, and activities of integrons within both natural and clinical environments. We show how the fundamental properties of integrons exquisitely pre-adapted them to respond to the selection pressures imposed by the human use of antimicrobial compounds. We then follow the extraordinary increase in abundance of one class of integrons (class 1) that has resulted from its acquisition by multiple mobile genetic elements, and subsequent colonisation of diverse bacterial species, and a wide range of animal hosts. Consequently, this class of integrons has become a significant pollutant in its own right, to the extent that it can now be detected in most ecosystems. As human activities continue to drive environmental instability, integrons will likely continue to play key roles in bacterial adaptation in both natural and clinical settings. Understanding the ecological and evolutionary dynamics of integrons can help us predict and shape these outcomes that have direct relevance to human and ecosystem health.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.M.G.); (A.P.); (Q.Q.); (V.R.)
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.M.G.); (A.P.); (Q.Q.); (V.R.)
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia;
| | - Anahit Penesyan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.M.G.); (A.P.); (Q.Q.); (V.R.)
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia;
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Qin Qi
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.M.G.); (A.P.); (Q.Q.); (V.R.)
| | - Vaheesan Rajabal
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.M.G.); (A.P.); (Q.Q.); (V.R.)
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia;
| | - Sasha G. Tetu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia;
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Commun Biol 2021; 4:946. [PMID: 34373573 PMCID: PMC8352920 DOI: 10.1038/s42003-021-02489-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Integrons are bacterial genetic elements that can capture mobile gene cassettes. They are mostly known for their role in the spread of antibiotic resistance cassettes, contributing significantly to the global resistance crisis. These resistance cassettes likely originated from sedentary chromosomal integrons, having subsequently been acquired and disseminated by mobilised integrons. However, their taxonomic and environmental origins are unknown. Here, we use cassette recombination sites (attCs) to predict the origins of those resistance cassettes now spread by mobile integrons. We modelled the structure and sequence homology of 1,978 chromosomal attCs from 11 different taxa. Using these models, we show that at least 27% of resistance cassettes have attCs that are structurally conserved among one of three taxa (Xanthomonadales, Spirochaetes and Vibrionales). Indeed, we found some resistance cassettes still residing in sedentary chromosomal integrons of the predicted taxa. Further, we show that attCs cluster according to host environment rather than host phylogeny, allowing us to assign their likely environmental sources. For example, the majority of β-lactamases and aminoglycoside acetyltransferases, the two most prevalent resistance cassettes, appear to have originated from marine environments. Together, our data represent the first evidence of the taxonomic and environmental origins of resistance cassettes spread by mobile integrons.
Collapse
|
5
|
Buongermino Pereira M, Österlund T, Eriksson KM, Backhaus T, Axelson-Fisk M, Kristiansson E. A comprehensive survey of integron-associated genes present in metagenomes. BMC Genomics 2020; 21:495. [PMID: 32689930 PMCID: PMC7370490 DOI: 10.1186/s12864-020-06830-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Integrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging. Results Here, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants. Conclusions Our results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.
Collapse
Affiliation(s)
- Mariana Buongermino Pereira
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - K Martin Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Centre for Sustainable Development, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Backhaus
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends Microbiol 2020; 28:455-464. [PMID: 31948729 DOI: 10.1016/j.tim.2019.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes. They are best known for their role in disseminating antibiotic-resistance genes among pathogens. Their ability to rapidly spread resistance phenotypes makes it important to consider what other integron-mediated traits might impact human health in the future, such as increased virulence, pathogenicity, or resistance to novel antimicrobial strategies. Exploring the functional diversity of cassettes and understanding their de novo creation will allow better pre-emptive management of bacterial growth, while also facilitating development of technologies that could harness integron activity. If we can control integrons and cassette formation, we could use integrons as a platform for enzyme discovery and to construct novel biochemical pathways, with applications in bioremediation or biosynthesis of industrial and therapeutic molecules. Integron activity thus holds both peril and promise for humans.
Collapse
|
7
|
Overexpressed recombinant quorum quenching lactonase reduces the virulence, motility and biofilm formation of multidrug-resistant Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 2018; 102:10613-10622. [PMID: 30310963 DOI: 10.1007/s00253-018-9418-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
The increasing occurrence of resistance among Pseudomonas aeruginosa clinical isolates necessitates finding alternatives to antibiotics for controlling the infection of such pathogenic bacteria. In this study, lactonase gene ahl-1 from Bacillus weihenstephanensis isolate-P65 was successfully cloned and expressed in Escherichia coli BL21 (DE3) under the control of T7 promoter for utilizing its quorum quenching activity against three multidrug-resistant (MDR) P. aeruginosa clinical isolates. The biological activity of the overexpressed lactonase enzyme (Ahl-1), tested using a synthetic signal and Chromobacterium violaceum CV026 as a biosensor, displayed good catalytic activity using hexanoyl homoserine lactone (HHL) as a substrate and Chromobacterium violaceum (CV026) as a biosensor (77.2 and 133 nm min-1 for the crude and the purified Ahl-lactonase enzymes, respectively). Upon challenging its ability to inhibit the virulence of three MDR P. aeruginosa clinical isolates, recombinant Ahl-1 successfully prevented the accumulation of acylhomoserine lactone signals resulting in a significant reduction in the investigated virulence determinants; protease (from 40 up to 75.5%), pyocyanin (48-75.9%), and rhamnolipids (52.7-63.4%) (P value < 0.05). Ahl-1 also displayed significant inhibitory activities on the swarming motility and biofilm formation of the three tested MDR P. aeruginosa clinical isolates (P value < 0.05). Consequently, Ahl-1 lactonase enzyme in this study is considered a promising therapeutic agent to inhibit P. aeruginosa pathogenicity with no fear of emergence of resistance.
Collapse
|
8
|
Li Y, Yang L, Fu J, Yan M, Chen D, Zhang L. Genotyping and high flux sequencing of the bacterial pathogenic elements - integrons. Microb Pathog 2018; 116:22-25. [PMID: 29306009 DOI: 10.1016/j.micpath.2017.12.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/31/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Regarded as a common genetic element responsible for horizontal gene transfer and wide spread of antimicrobial resistance among a large variety of bacteria, integrons are commonly distributed and considered as a determinant in the acquisition and evolution of virulence and antibiotic resistance. To date, the surveillances of integrons have been widely conducted in clinic, community even husbandry. For exact and accurate integron screening, as well as resistant cassettes, reliable monitoring methods is need. Current methods applied on integron screening are mainly conducted by the screening of integrases, followed by the detection of various gene cassettes inserted into integrons. PCR and PCR-related methods (such as RFLP) are mainly employed under such circumstances. Matured LAMP and Sequencing technology have lowered cost and dramatically increased throughput in integron screening and possessed the advantages in similarity analysis of mutated resistant cassettes. This review focused on the classification and characterization of integrons, antimicrobial resistance of integron and genotyping methods for integrons. In methodology, PCR, LAMP and Sequencing technology were mainly introduced for the screening of various classes' integrons and the detection of resistant gene cassettes. Staphylococcus, Pseudomonas and Enterococcus were selected as typical integron-positive clinical and environmental pathogens screened with three methods mentioned above. With the surveillance of the occurrence of integron and resistance gene cassettes conducted in South China, the review also summarized the occurrence, pathogenicity and virulence mediated by integrons.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
9
|
Microbial pathogenicity and virulence mediated by integrons on Gram-positive microorganisms. Microb Pathog 2017; 111:481-486. [PMID: 28923605 DOI: 10.1016/j.micpath.2017.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
Gram-positive microorganisms are one of leading pathogenic microorganisms in public health, including several typical "Super Bugs" as methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae carbapenemase and vancomycin-resistant enterococci, which caused a increasement of infections, clinical failures and expenses. Regarded as a common genetic element responsible for horizontal gene transfer, integrons are widely distributed in various pathogens considered as a determinant in the acquisition and evolution of antibiotic resistance. Current investigations mainly focus on the distribution of integrons in Gram-negative microorganisms, while the role of integron in antibiotic resistance among Gram-positive microorganisms remains unclear and need investigation. To date, the surveillances of integrons in Gram-positive microorganism have been widely conducted in clinic, community even husbandry. China remains one of the worst country in antibiotics abuse worldwide and considered as a potential area for the prevalence of antimicrobial microorganisms and the occurrence of various 'Super Bugs'. Recently, the surveillance of the occurrence of integron and resistance gene cassettes was conducted in South China during the first 10 years of the 21st century. Referred to the surveillance in South China and other investigation in Asian countries, this review aims to summarize the occurrence, pathogenicity and virulence mediated by integrons in typical Gram-positive microorganisms (Staphylococcus, Enterococcus, Corynebacterium and Streptococcus) and the role of integrons in antibiotic resistance.
Collapse
|
10
|
Ravi A, Avershina E, Foley SL, Ludvigsen J, Storrø O, Øien T, Johnsen R, McCartney AL, L’Abée-Lund TM, Rudi K. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 2015; 5:15317. [PMID: 26507767 PMCID: PMC4623605 DOI: 10.1038/srep15317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023] Open
Abstract
Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.
Collapse
Affiliation(s)
- Anuradha Ravi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway
| | - Ekaterina Avershina
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Division of Microbiology, Jefferson, AR 72079
| | - Jane Ludvigsen
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway
| | - Ola Storrø
- Department of Public Health and General Practice, Norwegian University of Science and Technology, 9491 Trondheim, Norway
| | - Torbjørn Øien
- Department of Public Health and General Practice, Norwegian University of Science and Technology, 9491 Trondheim, Norway
| | - Roar Johnsen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, 9491 Trondheim, Norway
| | - Anne L. McCartney
- Microbial Ecology & Health Group, Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Trine M. L’Abée-Lund
- Norwegian University of Life Sciences, Department of Food safety and Infection Biology, Campus Adamstuen, Oslo 0454, Norway
| | - Knut Rudi
- Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department (IKBM), Campus Ås, Ås 1432, Norway
| |
Collapse
|
11
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
12
|
Hatcher J, Dhillon R, Azadian BS. Antibiotic Resistance Mechanisms in the Intensive Care Unit. J Intensive Care Soc 2012. [DOI: 10.1177/175114371201300407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibiotic resistance is increasingly recognised as a major threat to global health, with few new antimicrobial agents in development. The intensive care unit provides a unique environment for the growth and spread of drug-resistant organisms. Knowledge of the pathogenesis and mechanisms of resistance of drug-resistant organisms provides a conceptual framework which underpins the clinical manifestation of infections caused by these organisms, and is crucial for the intensivist to understand. Particular importance lies in the prevention of infection and the control of drug-resistant pathogens. The major resistance mechanisms of these organisms will be highlighted, focusing on specific gram-positive (meticillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococci), gram-negative ( Pseudomonas aeruginosa, Acinetobacter baumannii and multi-drug resistant Enterobacteriaceae) organisms, and then placed in historical and clinical context.
Collapse
Affiliation(s)
- James Hatcher
- Specialty Registrar in Infectious Diseases and Medical Microbiology, Chelsea and Westminister NHS Foundation Trust
| | - Rishi Dhillon
- Specialist Registrar in Microbiology, Imperial College NHS Foundation Trust
| | - Berge S Azadian
- Consultant Microbiologist, Chelsea and Westminister NHS Foundation Trust
| |
Collapse
|
13
|
|
14
|
Gupta R, Capalash N, Sharma P. Restriction endonucleases: natural and directed evolution. Appl Microbiol Biotechnol 2012; 94:583-99. [PMID: 22398859 DOI: 10.1007/s00253-012-3961-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Type II restriction endonucleases (REs) are highly sequence-specific compared with other classes of nucleases. PD-(D/E)XK nucleases, initially represented by only type II REs, now comprise a large and extremely diverse superfamily of proteins and, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. Sequence similarity can only be observed in methylases and few isoschizomers. As a consequence, REs are classified according to combinations of functional properties rather than on the basis of genetic relatedness. New alignment matrices and classification systems based on structural core connectivity and cleavage mechanisms have been developed to characterize new REs and related proteins. REs recognizing more than 300 distinct specificities have been identified in RE database (REBASE: http://rebase.neb.com/cgi-bin/statlist ) but still the need for newer specificities is increasing due to the advancement in molecular biology and applications. The enzymes have undergone constant evolution through structural changes in protein scaffolds which include random mutations, homologous recombinations, insertions, and deletions of coding DNA sequences but rational mutagenesis or directed evolution delivers protein variants with new functions in accordance with defined biochemical or environmental pressures. Redesigning through random mutation, addition or deletion of amino acids, methylation-based selection, synthetic molecules, combining recognition and cleavage domains from different enzymes, or combination with domains of additional functions change the cleavage specificity or substrate preference and stability. There is a growing number of patents awarded for the creation of engineered REs with new and enhanced properties.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Biotechnology, Panjab University, Chandigarh, India 160014
| | | | | |
Collapse
|
15
|
Gestal AM, Liew EF, Coleman NV. Natural transformation with synthetic gene cassettes: new tools for integron research and biotechnology. Microbiology (Reading) 2011; 157:3349-3360. [DOI: 10.1099/mic.0.051623-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrons are genetic elements that can capture and express genes packaged as gene cassettes. Here we report new methods that allow integrons to be studied and manipulated in their native bacterial hosts. Synthetic gene cassettes encoding gentamicin resistance (aadB) and green fluorescence (gfp), or lactose metabolism (lacZY), were made by PCR and self-ligation, converted to large tandem arrays by multiple displacement amplification, and introduced into Escherichia coli or Pseudomonas stutzeri strains via electroporation or natural transformation. Recombinants (GmR or Lac+) were obtained at frequencies ranging from 101 to 106 c.f.u. (µg DNA)−1. Cassettes were integrated by site-specific recombination at the integron attI site in nearly all cases examined (370/384), including both promoterless and promoter-containing cassettes. Fluorometric analysis of gfp-containing recombinants revealed that expression levels from the integron-associated promoter PC were five- to 10-fold higher in the plasmid-borne integron In3 compared with the P. stutzeri chromosomal integrons. Integration of lacZY cassettes into P. stutzeri integrons allowed the bacteria to grow on lactose, and the lacZY gene cassette was stably maintained in the absence of selection. This study is believed to be the first to show natural transformation by gene cassettes, and integron-mediated capture of catabolic gene cassettes.
Collapse
Affiliation(s)
- Alicia M. Gestal
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| | - Elissa F. Liew
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Group IIC intron with an unusual target of integration in Enterobacter cloacae. J Bacteriol 2011; 194:150-60. [PMID: 22020643 DOI: 10.1128/jb.05786-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A potential role of group IIC-attC introns in integron gene cassette formation, that is, the way in which they could provide the attC sequence essential for recombination, has been proposed. Group IIC introns usually target the attC site of gene cassettes and more specifically their inverse core. Here we characterized a novel group IIC intron targeting the core site of the aadA1 gene cassette attC site (aadA1-qacEΔ1 gene cassette junction) from enterobacterial isolates. Intron mobility (retrohoming) was analyzed using a two-plasmid assay performed in Escherichia coli. Intron mobility assays confirmed the mobilization-integration of the group II intron into the core site of the aadA2, bla(VIM-2), bla(CARB-2), aac(6')-Ib, dfrXVb, arr2, cmlA4, and aadB gene cassettes but not into the attI site. This mobility was dependent on maturase activity. Reverse transcriptase PCR showed that this intron was transcriptionally active, and an intermediate circular form was detected by inverse PCR. This element was linked to the bla(VEB-1) extended-spectrum β-lactamase gene in a high number of enterobacterial isolates. A phylogenetic tree showed that the identified element was located in a branch separate from group IIC-attC introns, being an IIC intron possessing the ability to integrate using the core site of the attC sites as target.
Collapse
|
17
|
Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011; 2:6. [PMID: 21529368 PMCID: PMC3108266 DOI: 10.1186/1759-8753-2-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Collapse
Affiliation(s)
- Guillaume Cambray
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Émilie Guerin
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Sandra Da Re
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria, and VISAVET, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie-Cécile Ploy
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Jordi Barbé
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| |
Collapse
|
18
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
19
|
Shen BW, Heiter DF, Chan SH, Wang H, Xu SY, Morgan RD, Wilson GG, Stoddard BL. Unusual target site disruption by the rare-cutting HNH restriction endonuclease PacI. Structure 2010; 18:734-43. [PMID: 20541511 DOI: 10.1016/j.str.2010.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/25/2010] [Accepted: 03/27/2010] [Indexed: 01/31/2023]
Abstract
The crystal structure of the rare-cutting HNH restriction endonuclease PacI in complex with its eight-base-pair target recognition sequence 5'-TTAATTAA-3' has been determined to 1.9 A resolution. The enzyme forms an extended homodimer, with each subunit containing two zinc-bound motifs surrounding a betabetaalpha-metal catalytic site. The latter is unusual in that a tyrosine residue likely initiates strand cleavage. PacI dramatically distorts its target sequence from Watson-Crick duplex DNA base pairing, with every base separated from its original partner. Two bases on each strand are unpaired, four are engaged in noncanonical A:A and T:T base pairs, and the remaining two bases are matched with new Watson-Crick partners. This represents a highly unusual DNA binding mechanism for a restriction endonuclease, and implies that initial recognition of the target site might involve significantly different contacts from those visualized in the DNA-bound cocrystal structures.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Michael CA, Labbate M. Gene cassette transcription in a large integron-associated array. BMC Genet 2010; 11:82. [PMID: 20843359 PMCID: PMC2945992 DOI: 10.1186/1471-2156-11-82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background The integron/gene cassette system is a diverse and effective adaptive resource for prokaryotes. Short cassette arrays, with less than 10 cassettes adjacent to an integron, provide this resource through the expression of cassette-associated genes by an integron-borne promoter. However, the advantage provided by large arrays containing hundreds of cassettes is less obvious. In this work, using the 116-cassette array of Vibrio sp. DAT722 as a model, we investigated the theory that the majority of genes contained within large cassette arrays are widely expressed by intra-array promoters in addition to the integron-borne promoter. Results We demonstrated that the majority of the cassette-associated genes in the subject array were expressed. We further showed that cassette expression was conditional and that the conditionality varied across the array. We finally showed that this expression was mediated by a diversity of cassette-borne promoters within the array capable of responding to environmental stressors. Conclusions Widespread expression within large gene cassette arrays could provide an adaptive advantage to the host in proportion to the size of the array. Our findings explained the existence and maintenance of large cassette arrays within many prokaryotes. Further, we suggested that repeated rearrangement of cassettes containing genes and/or promoters within large arrays could result in the assembly of operon-like groups of co-expressed cassettes within an array. These findings add to our understanding of the adaptive repertoire of the integron/gene cassette system in prokaryotes and consequently, the evolutionary impact of this system.
Collapse
Affiliation(s)
- Carolyn A Michael
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
21
|
Michael CA, Andrew NR. Co-assortment in integron-associated gene cassette assemblages in environmental DNA samples. BMC Genet 2010; 11:75. [PMID: 20698953 PMCID: PMC2927473 DOI: 10.1186/1471-2156-11-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/10/2010] [Indexed: 12/02/2022] Open
Abstract
Background It has been shown that integron-associated gene cassettes exist largely in tandem arrays of variable size, ranging from antibiotic resistance arrays of three to five cassettes up to arrays of more than 100 cassettes associated with the vibrios. Further, the ecology of the integron/gene cassette system has been investigated by showing that very many different cassettes are present in even small environmental samples. In this study, we seek to extend the ecological perspective on the integron/gene cassette system by investigating the way in which this diverse cassette metagenome is apportioned amongst prokaryote lineages in a natural environment. Results We used a combination of PCR-based techniques applied to environmental DNA samples and ecological analytical techniques to establish co-assortment within cassette populations, then establishing the relationship between this co-assortment and genomic structures. We then assessed the distribution of gene cassettes within the environment and found that the majority of gene cassettes existed in large co-assorting groups. Conclusions Our results suggested that the gene cassette diversity of a relatively pristine sampling environment was structured into co-assorting groups, predominantly containing large numbers of cassettes per group. These co-assorting groups consisted of different gene cassettes in stoichiometric relationship. Conservatively, we then attributed co-assorting cassettes to the gene cassette complements of single prokaryote lineages and by implication, to large integron-associated arrays. The prevalence of large arrays in the environment raises new questions about the assembly, maintenance and utility of large cassette arrays in prokaryote populations.
Collapse
Affiliation(s)
- Carolyn A Michael
- Department of Biology, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
22
|
Abstract
Integrons are natural expression vectors in which gene cassettes are integrated downstream of a promoter region by a site-specific recombinase. Gene cassettes usually consist of a single gene followed by a recombination site designated attC. A major unanswered question is how a gene becomes associated with an attC site. Here, we investigate the potential role of a specific lineage of group IIC introns, named group IIC-attC, in cassette formation. Group IIC-attC introns preferentially target attC while retaining the ability to target transcriptional terminators. We show using a PCR-based mobility assay with Escherichia coli that the S.ma.I2 intron from the genome of a clinical isolate of Serratia marcescens can target both attC site and putative terminator motifs of resistance genes. Quantitative results showed that S.ma.I2 is more efficient in targeting various attC sequences than three group IIC-attC introns (54 to 64% sequence identity) from the genomes of environmental isolates. We also show that purified group IIC-attC intron-encoded reverse transcriptases have both RNA-dependent and DNA-dependent DNA polymerase activities in vitro. These data permit us to suggest a new model for gene cassette formation, in which a group IIC-attC intron targets separately a transcriptional terminator adjoining a gene and an isolated attC, joins the gene and the attC by homologous recombination, and then splices and reverse transcribes a gene-attC RNA template, leading to the formation of a cassette.
Collapse
|
23
|
Abstract
Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.
Collapse
Affiliation(s)
- Dean A Rowe-Magnus
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario M4N 3N5, Canada.
| |
Collapse
|
24
|
Labbate M, Case RJ, Stokes HW. The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 2009; 532:103-25. [PMID: 19271181 DOI: 10.1007/978-1-60327-853-9_6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The integron includes a site-specific recombination system capable of integrating and expressing genes contained in structures called mobile gene cassettes. Integrons were originally identified on mobile elements from pathogenic bacteria and were found to be a major reservoir of antibiotic-resistance genes. Integrons are now known to be ancient structures that are phylogenetically diverse and, to date, have been found in approximately 9% of sequenced bacterial genomes. Overall, gene diversity in cassettes is extraordinarily high, suggesting that the integron/gene cassette system has a broad role in adaptation rather than being confined to simply conferring resistance to antibiotics. In this chapter, we provide a review of the integron/gene cassette system highlighting characteristics associated with this system, diversity of elements contained within it, and their importance in driving bacterial evolution and consequently adaptation. Ideas on the evolution of gene cassettes and gene cassette arrays are discussed.
Collapse
Affiliation(s)
- Maurizio Labbate
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
25
|
Nemergut DR, Robeson MS, Kysela RF, Martin AP, Schmidt SK, Knight R. Insights and inferences about integron evolution from genomic data. BMC Genomics 2008; 9:261. [PMID: 18513439 PMCID: PMC2426708 DOI: 10.1186/1471-2164-9-261] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/31/2008] [Indexed: 02/01/2023] Open
Abstract
Background Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. Results We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. Conclusion Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions.
Collapse
Affiliation(s)
- Diana R Nemergut
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
26
|
A family of insertion sequences that impacts integrons by specific targeting of gene cassette recombination sites, the IS1111-attC Group. J Bacteriol 2008; 190:4959-70. [PMID: 18487340 DOI: 10.1128/jb.00229-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons facilitate the evolution of complex phenotypes by physical and transcriptional linkage of genes. They can be categorized as chromosomal integrons (CIs) or mobile resistance integrons (MRIs). The significance of MRIs for the problem of multiple antibiotic resistance is well established. CIs are more widespread, but their only demonstrated significance is as a reservoir of gene cassettes for MRIs. In characterizing CIs associated with Pseudomonas, we discovered a subfamily of insertion sequences, termed the IS1111-attC group, that insert into the recombination sites of gene cassettes (attC site) by site-specific recombination. IS1111-attC elements appear to have recently spread from Pseudomonas species to clinical class 1 integrons. Such elements are expected to significantly impact integrons. To explore this further, we examined CIs in 24 strains representing multiple levels of evolutionary divergence within the genus Pseudomonas. Cassette arrays frequently had a degenerated "footprint" of an IS1111-attC group element at their terminus and in three cases were occupied by multiple functional IS1111-attC elements. Within Pseudomonas spp. the IS-integron interaction appears to follow an evolutionarily rapid cycle of infection, expansion, and extinction. The final outcome is extinction of the IS element and modification of the right-hand boundary of the integron. This system represents an unusual example of convergent evolution whereby heterologous families of site-specific recombinases of distinct genetic elements have adopted the same target site. The interactions described here represent a model for evolutionary processes that offer insights to a number of aspects of the biology of integrons and other mosaic genetic elements.
Collapse
|
27
|
Lang AS, Kelly A, Runstadler JA. Prevalence and diversity of avian influenza viruses in environmental reservoirs. J Gen Virol 2008; 89:509-519. [PMID: 18198382 DOI: 10.1099/vir.0.83369-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the ecology and evolution of avian influenza in the natural environment, despite how these affect the potential for transmission. Most work has focused on characterizing viruses isolated from hosts such as waterfowl, and there have also been several instances of isolation and detection from abiotic sources such as water and ice. We used RT-PCR to amplify and characterize the influenza virus sequences present in sediments of ponds that are used heavily by waterfowl. The detection rate of influenza virus was high (>50%). Characterization of the viruses present by sequencing part of the haemagglutinin (HA) gene showed that there is a diverse collection of viruses in these sediments. We sequenced 117 partial HA gene clones from 11 samples and detected four different HA subtypes (H3, H8, H11 and H12), with approximately 65% of clone sequences being unique. This culture-independent approach was also able to detect a virus subtype that was not found by sampling of birds in the same geographical region in the same year. Viruses were detected readily in the winter when the ponds were frozen, indicating that these sediments could be a year-to-year reservoir of viruses to infect birds using the ponds, although we have not shown that these viruses are viable. We demonstrate that this approach is a feasible and valuable way to assess the prevalence and diversity of viruses present in the environment, and can be a valuable complement to more difficult viral culturing in attempting to understand the ecology of influenza viruses.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Anke Kelly
- Institute of Arctic Biology, PO Box 757000, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Jonathan A Runstadler
- Institute of Arctic Biology, PO Box 757000, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
28
|
Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 2007; 15:301-9. [PMID: 17566739 DOI: 10.1016/j.tim.2007.05.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/13/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Integrons facilitate the capture of potentially adaptive exogenous genetic material by their host genomes. It is now clear that integrons are not limited to the clinical contexts in which they were originally discovered because approximately 10% of bacterial genomes that have been partially or completely sequenced harbour this genetic element. This wealth of sequence information has revealed that integrons are not only much more phylogenetically diverse than previously thought but also more mobilizable, with many integrons having been subjected to frequent lateral gene transfer throughout their evolutionary history. This indicates that the genetic characteristics that make integrons such efficient vectors for the spread of antibiotic resistance genes have been associated with these elements since their earliest origins. Here, we give an overview of the structural and phylogenetic diversity of integrons and describe evolutionary events that have contributed to the success of these genetic elements.
Collapse
Affiliation(s)
- Yan Boucher
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
29
|
Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 2007; 189:6276-83. [PMID: 17573473 PMCID: PMC1951913 DOI: 10.1128/jb.00348-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two environmental strains, Delftia acidovorans C17 and Delftia tsuruhatensis A90, were found to carry class 3 integrons, which have seldom been reported and then only from pathogens in which they are associated with antibiotic resistance genes. The Delftia integrons comprised a highly conserved class 3 integrase gene, upstream and oppositely oriented from a set of three or four gene cassettes that encoded unidentified functions. The A90 integron had one more gene cassette than the C17 integron, but the two were otherwise the same; furthermore, they were located within regions of sequence identity in both strains and linked to chromosomal genes. A screen of other Delftia and related strains did not reveal the presence of additional class 3 integrons. The observations suggest that these integrons were horizontally transferred to Delftia as part of a larger region and reside as chromosomal elements that probably predate transposon dissemination, as has been proposed for certain class 1 integrons.
Collapse
Affiliation(s)
- Hai Xu
- Department of Microbiology and Immunology, Life Science Centre, University of British Columbia, 2350 Life Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
30
|
|
31
|
Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13:560-78. [PMID: 17266725 DOI: 10.1111/j.1469-0691.2007.01681.x] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections. This organism shows a remarkable capacity to resist antibiotics, either intrinsically (because of constitutive expression of beta-lactamases and efflux pumps, combined with low permeability of the outer-membrane) or following acquisition of resistance genes (e.g., genes for beta-lactamases, or enzymes inactivating aminoglycosides or modifying their target), over-expression of efflux pumps, decreased expression of porins, or mutations in quinolone targets. Worryingly, these mechanisms are often present simultaneously, thereby conferring multiresistant phenotypes. Susceptibility testing is therefore crucial in clinical practice. Empirical treatment usually involves combination therapy, selected on the basis of known local epidemiology (usually a beta-lactam plus an aminoglycoside or a fluoroquinolone). However, therapy should be simplified as soon as possible, based on susceptibility data and the patient's clinical evolution. Alternative drugs (e.g., colistin) have proven useful against multiresistant strains, but innovative therapeutic options for the future remain scarce, while attempts to develop vaccines have been unsuccessful to date. Among broad-spectrum antibiotics in development, ceftobiprole, sitafloxacin and doripenem show interesting in-vitro activity, although the first two molecules have been evaluated in clinics only against Gram-positive organisms. Doripenem has received a fast track designation from the US Food and Drug Administration for the treatment of nosocomial pneumonia. Pump inhibitors are undergoing phase I trials in cystic fibrosis patients. Therefore, selecting appropriate antibiotics and optimising their use on the basis of pharmacodynamic concepts currently remains the best way of coping with pseudomonal infections.
Collapse
Affiliation(s)
- N Mesaros
- Unité de Pharmacologie cellulaire and moléculaire, Université catholique de Louvain, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stokes HW, Nesbø CL, Holley M, Bahl MI, Gillings MR, Boucher Y. Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 2006; 188:5722-30. [PMID: 16885440 PMCID: PMC1540074 DOI: 10.1128/jb.01950-05] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era."
Collapse
Affiliation(s)
- H W Stokes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Integrons are assembly platforms - DNA elements that acquire open reading frames embedded in exogenous gene cassettes and convert them to functional genes by ensuring their correct expression. They were first identified by virtue of their important role in the spread of antibiotic-resistance genes. More recently, our understanding of their importance in bacterial genome evolution has broadened with the discovery of larger integron structures, termed superintegrons. These DNA elements contain hundreds of accessory genes and constitute a significant fraction of the genomes of many bacterial species. Here, the basic biology of integrons and superintegrons, their evolutionary history and the evidence for the existence of a novel recombination pathway is reviewed.
Collapse
Affiliation(s)
- Didier Mazel
- Unité Plasticité du Génome Bactérien- CNRS URA 2171, Department Génomes et Génétique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
34
|
Alonso H, Gready JE. Integron-sequestered dihydrofolate reductase: a recently redeployed enzyme. Trends Microbiol 2006; 14:236-42. [PMID: 16584884 DOI: 10.1016/j.tim.2006.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/01/2006] [Accepted: 03/21/2006] [Indexed: 11/21/2022]
Abstract
The introduction and wide use of antibacterial drugs has resulted in the emergence of resistant organisms. DfrB dihydrofolate reductase (DHFR) is a bacterial enzyme that is uniquely associated with mobile gene cassettes within integrons, and confers resistance to the drug trimethoprim. This enzyme has intrigued microbiologists since it was discovered more than thirty years ago because of its simple structure, enzymatic inefficiency and its virtual insensitivity to trimethoprim. Here, for the first time, a comprehensive discussion of genetic, evolutionary, structural and functional studies of this enzyme is presented together. This information supports the ideas that DfrB DHFR is a poorly adapted catalyst and has recently been recruited to perform a novel enzymatic activity in response to selective pressure.
Collapse
Affiliation(s)
- Hernán Alonso
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
35
|
Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2006; 49:4485-91. [PMID: 16251286 PMCID: PMC1280121 DOI: 10.1128/aac.49.11.4485-4491.2005] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenem resistance mediated by acquired carbapenemase genes has been increasingly reported, particularly for clinical isolates of Pseudomonas aeruginosa and Acinetobacter spp. Of 1,234 non-duplicate isolates of carbapenem-resistant Pseudomonas spp. and Acinetobacter spp. isolated at a tertiary-care hospital in Seoul, Korea, 211 (17%) were positive for metallo-beta-lactamase (MBL). Of these, 204 (96%) had either the bla(IMP-1) or bla(VIM-2) allele. In addition, seven Acinetobacter baumannii isolates were found to have a novel MBL gene, which was designated bla(SIM-1). The SIM-1 protein has a pI of 7.2, is a new member of subclass B1, and exhibits 64 to 69% identity with the IMP-type MBLs, which are its closest relatives. All SIM-1-producing isolates exhibited relatively low imipenem and meropenem MICs (8 to 16 microg/ml) and had a multidrug resistance phenotype. Expression of the cloned bla(SIM-1) gene in Escherichia coli revealed that the encoded enzyme is capable of hydrolyzing a broad array of beta-lactams, including penicillins, narrow- to expanded-spectrum cephalosporins, and carbapenems. The bla(SIM-1) gene was carried on a gene cassette inserted into a class 1 integron, which included three additional cassettes (arr-3, catB3, and aadA1). The strains were isolated from sputum and urine specimens from patients with pneumonia and urinary tract infections, respectively. All patients had various underlying diseases. Pulsed-field gel electrophoresis of SmaI-digested genomic DNAs showed that the strains belonged to two different clonal lineages, indicating that horizontal transfer of this gene had occurred and suggesting the possibility of further spread of resistance in the future.
Collapse
Affiliation(s)
- Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, 134 Shinchondong, Seodaemunku, Seoul 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Coleman NV, Holmes AJ. The native Pseudomonas stutzeri strain Q chromosomal integron can capture and express cassette-associated genes. Microbiology (Reading) 2005; 151:1853-1864. [PMID: 15941993 DOI: 10.1099/mic.0.27854-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The integron-gene cassette system contributes to multiple antibiotic resistance in bacteria and is likely to be of broader evolutionary significance. However, the majority of integron diversity consists of chromosomal integrons (CIs), with mostly unknown phenotypes, which are poorly characterized. A pUC-based reporter plasmid (pUS23) was developed containing a recombination site [aadB59 base element (59-be)] upstream of promoterlessaadB[gentamicin (Gm) resistance] andgfp(green fluorescence) genes, and this construct was used to investigate the recombination and expression activities of the CI inPseudomonas stutzeristrain Q. Electroporation of pUS23 intoP. stutzeriQ gave ampicillin-resistant transformants, which yielded GmRgreen fluorescent recombinants after plating on Gm medium. Site-specific integration of pUS23 atattIwas detected by PCR in 8 % of GmRcolonies and the frequency ofattIintegration was estimated as 2·0×10−8perP. stutzeriQ(pUS23) cell. RT-PCR confirmed integron-mediated expression ofaadBin one recombinant strain (Q23-17) and a promoter (Pc) was localized to the 5′ end of theintIgene. The integrated pUS23 and flanking integron DNA were cloned from genomic DNA of strain Q23-17 and sequenced, confirming that site-specific integration of the entire reporter plasmid had occurred at theattIsite. An insertion sequence (ISPst5; IS5family) was discovered in the vector backbone of the reporter plasmid integrated atattIand also in a pUS23 derivative recovered as a plasmid inEscherichia coliJM109. This is the first demonstration that wild-type CIs can capture gene cassettes and express cassette-associated genes.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| | - Andrew J Holmes
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
37
|
Coleman N, Tetu S, Wilson N, Holmes A. An unusual integron in Treponema denticola. MICROBIOLOGY-SGM 2005; 150:3524-3526. [PMID: 15528643 DOI: 10.1099/mic.0.27569-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nick Coleman
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| | - Sasha Tetu
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| | - Neil Wilson
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| | - Andrew Holmes
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
38
|
Gillings MR, Holley MP, Stokes HW, Holmes AJ. Integrons in Xanthomonas: a source of species genome diversity. Proc Natl Acad Sci U S A 2005; 102:4419-24. [PMID: 15755815 PMCID: PMC555480 DOI: 10.1073/pnas.0406620102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Indexed: 11/18/2022] Open
Abstract
Integrons are best known for assembling antibiotic resistance genes in clinical bacteria. They capture genes by using integrase-mediated site-specific recombination of mobile gene cassettes. Integrons also occur in the chromosomes of many bacteria, notably beta- and gamma-Proteobacteria. In a survey of Xanthomonas, integrons were found in all 32 strains representing 12 pathovars of two species. Their chromosomal location was downstream from the acid dehydratase gene, ilvD, suggesting that an integron was present at this site in the ancestral xanthomonad. There was considerable sequence and structural diversity among the extant integrons. The majority of integrase genes were predicted to be inactivated by frameshifts, stop codons, or large deletions, suggesting that the associated gene cassettes can no longer be mobilized. In support, groups of strains with the same deletions or stop codons/frameshifts in their integrase gene usually contained identical arrays of gene cassettes. In general, strains within individual pathovars had identical cassettes, and these exhibited no similarity to cassettes detected in other pathovars. The variety and characteristics of contemporary gene cassettes suggests that the ancestral integron had access to a diverse pool of these mobile elements, and that their genes originated outside the Xanthomonas genome. Subsequent inactivation of the integrase gene in particular lineages has largely fixed the gene cassette arrays in particular pathovars during their differentiation and specialization into ecological niches. The acquisition of diverse gene cassettes by different lineages within Xanthomonas has contributed to the species-genome diversity of the genus. The role of gene cassettes in survival on plant surfaces is currently unknown.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | | | | | | |
Collapse
|
39
|
Biskri L, Bouvier M, Guérout AM, Boisnard S, Mazel D. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol 2005; 187:1740-50. [PMID: 15716446 PMCID: PMC1063995 DOI: 10.1128/jb.187.5.1740-1750.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superintegrons (SIs) and multiresistant integrons (MRIs) have two main structural differences: (i) the SI platform is sedentary, while the MRI platform is commonly associated with mobile DNA elements and (ii) the recombination sites (attC) of SI gene cassette clusters are highly homogeneous, while those of MRI cassette arrays are highly variable in length and sequence. In order to determine if the latter difference was correlated with a dissimilarity in the recombination activities, we conducted a comparative study of the integron integrases of the class 1 MRI (IntI1) and the Vibrio cholerae SI (VchIntIA). We developed two assays that allowed us to independently measure the frequencies of cassette deletion and integration at the cognate attI sites. We demonstrated that the range of attC sites efficiently recombined by VchIntIA is narrower than the range of attC sites efficiently recombined by IntI1. Introduction of mutations into the V. cholerae repeats (VCRs), the attC sites of the V. cholerae SI cassettes, allowed us to map positions that affected the VchIntIA and IntI1 activities to different extents. Using a cointegration assay, we established that in E. coli, attI1-x-VCR recombination catalyzed by IntI1 was 2,600-fold more efficient than attIVch-x-VCR recombination catalyzed by VchIntIA. We performed the same experiments in V. cholerae and established that the attIVch-x-VCR recombination catalyzed by VchIntIA was 2,000-fold greater than the recombination measured in E. coli. Taken together, our results indicate that in the V. cholerae SI, the substrate recognition and recombination reactions mediated by VchIntIA might differ from the class 1 MRI paradigm.
Collapse
Affiliation(s)
- Latefa Biskri
- Unité Postulante Plasticité du Génome Bactérien, CNRS URA 2171, Département Structure et Dynamique des Génomes, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 2005; 33:966-76. [PMID: 15718296 PMCID: PMC549392 DOI: 10.1093/nar/gki201] [Citation(s) in RCA: 716] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prokaryotic chromosomes code for toxin–antitoxin (TA) loci, often in multiple copies. In E.coli, experimental evidence indicates that TA loci are stress-response elements that help cells survive unfavorable growth conditions. The first gene in a TA operon codes for an antitoxin that combines with and neutralizes a regulatory ‘toxin’, encoded by the second gene. RelE and MazF toxins are regulators of translation that cleave mRNA and function, in interplay with tmRNA, in quality control of gene expression. Here, we present the results from an exhaustive search for TA loci in 126 completely sequenced prokaryotic genomes (16 archaea and 110 bacteria). We identified 671 TA loci belonging to the seven known TA gene families. Surprisingly, obligate intracellular organisms were devoid of TA loci, whereas free-living slowly growing prokaryotes had particularly many (38 in Mycobacterium tuberculosis and 43 in Nitrosomonas europaea). In many cases, TA loci were clustered and closely linked to mobile genetic elements. In the most extreme of these cases, all 13 TA loci of Vibrio cholerae were bona fide integron elements located in the V.cholerae mega-integron. These observations strongly suggest that TA loci are mobile cassettes that move frequently within and between chromosomes and also lend support to the hypothesis that TA loci function as stress-response elements beneficial to free-living prokaryotes.
Collapse
Affiliation(s)
| | - Kenn Gerdes
- To whom correspondence should be addressed. Tel: +45 6550 2413; Fax: +45 6550 2769;
| |
Collapse
|
41
|
Abstract
The understanding of microbial resistance to the beta-lactam class of antibiotics in the form of beta-lactamases has come a long way since the early discoveries of narrow-spectrum penicillinases. Integron-borne beta-lactamases co-occurring with a wide array of non-beta-lactam resistance genes, particularly pose an increasing threat to the nosocomial environment, giving rise to multi-drug resistant microbes with complex resistance patterns. Selection of potent beta-lactamases through the use of non-beta-lactam agents may be possible through integron-mediated resistance. It has become imperative that we should continuously strive to understand these complex mechanisms of antimicrobial resistance, not only to overcome them, but to avoid them from evolving further.
Collapse
Affiliation(s)
- Gerhard F Weldhagen
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service, P.O. Box 2034, Pretoria 0001, South Africa.
| |
Collapse
|
42
|
Abstract
Integrons are genetic elements composed of a gene encoding an integrase, gene cassettes and an integration site for the gene cassettes (att). The integrase excises and integrates the gene cassettes from and into the integron, but integrons themselves are not mobile. Two groups of integrons are known: resistance integrons and super-integrons. Nearly all known gene cassettes from resistance integrons encode resistance to antibiotics or disinfectants. These integrons are found on transposons, plasmids and the bacterial chromosome. Gene cassettes in super-integrons encode a variety of different functions. Super-integrons are located on the bacterial chromosome. More than 100 gene cassettes may be present, in contrast to resistance integrons where less than ten cassettes are present. Many species harbour super-integrons, which are species-specific, whereas particular resistance integrons can be found in a variety of species. The gene cassettes in resistance integrons probably originated from super-integrons. In the last few years, a variety of new gene cassettes have been described. Many of these encode resistance against newer antibiotics such as cephalosporins and carbapenems. Resistance integrons have been found in isolates from a wide variety of sources, including food.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman-Winkler Center, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | |
Collapse
|
43
|
Nemergut DR, Martin AP, Schmidt SK. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 2004; 70:1160-8. [PMID: 14766601 PMCID: PMC348930 DOI: 10.1128/aem.70.2.1160-1168.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.
Collapse
Affiliation(s)
- D R Nemergut
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
44
|
Collis CM, Hall RM. Comparison of the structure–activity relationships of the integron-associated recombination sites attI3 and attI1 reveals common features. Microbiology (Reading) 2004; 150:1591-1601. [PMID: 15133120 DOI: 10.1099/mic.0.26596-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Incorporation of gene cassettes into integrons occurs by IntI-mediated site-specific recombination between a 59-base element (59-be) site in the cassette and an attI site in the integron. While the 59-be sites share common features and are recognized by several different IntI recombinases, the sequences of attI sites are not obviously related and are preferentially recognized by the cognate IntI. To determine the features of attI sites that are required for recombination proficiency, the structure–activity relationships of a second attI site, the attI3 site from the class 3 integron, were examined. The attI3 site was confined to within a region consisting of 68 bp from the integron backbone and 15 bp from the adjacent cassette. This region includes four IntI3-binding sites, as assessed by gel shift and methylation interference studies. Two of the binding sites are inversely oriented and constitute a simple site that includes the recombination crossover point. The two additional binding sites appear to be directly oriented and one of them is essential for efficient recombination of the attI3 site with a 59-be, but not for recombination with a second full-length attI3 site, which occurs at 100-fold lower frequency. The fourth site enhances attI3 with 59-be recombination 10-fold. The finding that the organization and overall properties of attI3 are very similar to those of attI1 indicates that these features are likely to be common to all attI sites.
Collapse
Affiliation(s)
- Christina M Collis
- CSIRO Molecular Science, Riverside Life Sciences Centre, Riverside Corporate Park, North Ryde, NSW 2113, Australia
| | - Ruth M Hall
- CSIRO Molecular Science, Riverside Life Sciences Centre, Riverside Corporate Park, North Ryde, NSW 2113, Australia
| |
Collapse
|
45
|
Affiliation(s)
- Ruth M Hall
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
- School of Molecular and Microbial Biosciences, Biochemistry and Microbiology Building, University of Sydney, NSW 2006, Australia
| | - H W Stokes
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
46
|
Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH, Stokes HW. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol 2003; 5:383-94. [PMID: 12713464 DOI: 10.1046/j.1462-2920.2003.00429.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lateral gene transfer has been proposed as a fundamental process underlying bacterial diversity. Transposons, plasmids and phage are widespread and have been shown to significantly contribute to lateral gene transfer. However, the processes by which disparate genes are assembled and integrated into the host regulatory network to yield new phenotypes are poorly known. Recent discoveries about the integron/gene cassette system indicate it has the potential to play a role in this process. Gene cassettes are small mobile elements typically consisting of a promoterless orf and a recombination site. Integrons are capable of acquisition and re-arrangement of gene cassettes and of the expression of their associated genes. The potential of the integron/gene cassette system is thus largely determined by the diversity contained within the cassette pool and the rate at which integrons sample this pool. We show here using a polymerase chain reaction (PCR) approach by which the environmental gene cassette (EGC) metagenome can be directly sampled that this metagenome contains both protein-coding and non-protein coding genes. Environmental gene cassette-associated recombination sites showed greater diversity than previously seen in integron arrays. Class 1 integrons were shown to be capable of accessing this gene pool through tests of recombinational activity with a representative range of EGCs. We propose that gene cassettes represent a vast, prepackaged genetic resource that could be thought of as a metagenomic template for bacterial evolution.
Collapse
Affiliation(s)
- Andrew J Holmes
- Key Centre for Biodiversity and Bioresources, Macquarie University, Sydney NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Léon G, Roy PH. Excision and integration of cassettes by an integron integrase of Nitrosomonas europaea. J Bacteriol 2003; 185:2036-41. [PMID: 12618471 PMCID: PMC150120 DOI: 10.1128/jb.185.6.2036-2041.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found in the environmental strain Nitrosomonas europaea a chromosomal integron-like structure with an integrase gene, intI(Neu). We have tested the capacity of the IntINeu integrase to excise and integrate several resistance gene cassettes. The results allow us to consider IntINeu a new functional integron integrase.
Collapse
Affiliation(s)
- Grégory Léon
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | |
Collapse
|
48
|
Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res 2003; 13:428-42. [PMID: 12618374 PMCID: PMC430272 DOI: 10.1101/gr.617103] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrons are natural tools for bacterial evolution and innovation. Their involvement in the capture and dissemination of antibiotic-resistance genes among Gram-negative bacteria is well documented. Recently, massive ancestral versions, the superintegrons (SIs), were discovered in the genomes of diverse proteobacterial species. SI gene cassettes with an identifiable activity encode proteins related to simple adaptive functions, including resistance, virulence, and metabolic activities, and their recruitment was interpreted as providing the host with an adaptive advantage. Here, we present extensive comparative analysis of SIs identified among the Vibrionaceae. Each was at least 100 kb in size, reaffirming the participation of SIs in the genome plasticity and heterogeneity of these species. Phylogenetic and localization data supported the sedentary nature of the functional integron platform and its coevolution with the host genome. Conversely, comparative analysis of the SI cassettes was indicative of both a wide range of origin for the entrapped genes and of an active cassette assembly process in these bacterial species. The signature attC sites of each species displayed conserved structural characteristics indicating that symmetry rather than sequence was important in the recognition of such a varied collection of target recombination sequences by a single site-specific recombinase. Our discovery of various addiction module cassettes within each of the different SIs indicates a possible role for them in the overall stability of large integron cassette arrays.
Collapse
Affiliation(s)
- Dean A Rowe-Magnus
- Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 75724 Paris, France
| | | | | | | | | |
Collapse
|
49
|
Holmes AJ, Holley MP, Mahon A, Nield B, Gillings M, Stokes HW. Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 2003; 185:918-28. [PMID: 12533467 PMCID: PMC142810 DOI: 10.1128/jb.185.3.918-928.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.
Collapse
Affiliation(s)
- Andrew J Holmes
- Key Centre for Biodiversity and Bioresources, Macquarie University, Sydney NSW 2109, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Milkman R, Jaeger E, McBride RD. Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination. Genetics 2003; 163:475-83. [PMID: 12618387 PMCID: PMC1462453 DOI: 10.1093/genetics/163.2.475] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two 6- to 8-min regions, centered respectively near 45 min (O-antigen region) and 99 min (restriction-modification region) on the Escherichia coli chromosome, display unusually high variability among 11 otherwise very similar strains. This variation, revealed by restriction fragment length polymorphism (RFLP) and nucleotide sequence comparisons, appears to be due to a great local increase in the retention frequency of recombinant replacements. We infer a two-step mechanism. The first step is the acquisition of a small stretch of DNA from a phylogenetically distant source. The second is the successful retransmission of the imported DNA, together with flanking native DNA, to other strains of E. coli. Each cell containing the newly transferred DNA has a very high selective advantage until it reaches a high frequency and (in the O-antigen case) is recognized by the new host's immune system. A high selective advantage increases the probability of retention greatly; the effective recombination rate is the product of the basic recombination rate and the probability of retention. Nearby nucleotide sequences clockwise from the O-antigen (rfb) region are correlated with specific O antigens, confirming local hitchhiking. Comparable selection involving imported restriction endonuclease genes is proposed for the region near 99 min.
Collapse
Affiliation(s)
- Roger Milkman
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242-1324, USA.
| | | | | |
Collapse
|