1
|
Mara P, Zhou YL, Teske A, Morono Y, Beaudoin D, Edgcomb V. Microbial gene expression in Guaymas Basin subsurface sediments responds to hydrothermal stress and energy limitation. THE ISME JOURNAL 2023; 17:1907-1919. [PMID: 37658181 PMCID: PMC10579382 DOI: 10.1038/s41396-023-01492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
Analyses of gene expression of subsurface bacteria and archaea provide insights into their physiological adaptations to in situ subsurface conditions. We examined patterns of expressed genes in hydrothermally heated subseafloor sediments with distinct geochemical and thermal regimes in Guaymas Basin, Gulf of California, Mexico. RNA recovery and cell counts declined with sediment depth, however, we obtained metatranscriptomes from eight sites at depths spanning between 0.8 and 101.9 m below seafloor. We describe the metabolic potential of sediment microorganisms, and discuss expressed genes involved in tRNA, mRNA, and rRNA modifications that enable physiological flexibility of bacteria and archaea in the hydrothermal subsurface. Microbial taxa in hydrothermally influenced settings like Guaymas Basin may particularly depend on these catalytic RNA functions since they modulate the activity of cells under elevated temperatures and steep geochemical gradients. Expressed genes for DNA repair, protein maintenance and circadian rhythm were also identified. The concerted interaction of many of these genes may be crucial for microorganisms to survive and to thrive in the Guaymas Basin subsurface biosphere.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Ying-Li Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe, Nankoku, Kochi, Japan
| | - David Beaudoin
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Virginia Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
2
|
Kohiyama M, Herrick J, Norris V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life (Basel) 2023; 13:1890. [PMID: 37763294 PMCID: PMC10532879 DOI: 10.3390/life13091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division.
Collapse
Affiliation(s)
- Masamichi Kohiyama
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France;
| | - John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- CBSA UR 4312, University of Rouen Normandy, University of Caen Normandy, Normandy University, 76000 Rouen, France
| |
Collapse
|
3
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
4
|
Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area. PLoS One 2020; 15:e0234128. [PMID: 32497143 PMCID: PMC7272022 DOI: 10.1371/journal.pone.0234128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
Qinhuangdao coastal area is an important mariculture area in North China. Microbial communities play an important role in driving biogeochemical cycle and energy flow. It is necessary to identify the microbial communities and their functions in the coastal mariculture area of Qinhuangdao. In this study, the microbial community compositions and their metabolic potentials in the sediments and their surrounding seawaters of Qinhuangdao mariculture area were uncovered by the 16S rRNA gene amplicon sequencing and metagenomic shotgun sequencing approaches. The results of amplicon sequencing showed that Gammaproteobacteria and Alphaproteobacteria were predominant classes. Our datasets showed a clear shift in microbial taxonomic groups and the metabolic pathways in the sediments and surrounding seawaters. Metagenomic analysis showed that purine metabolism, ABC transporters, and pyrimidine metabolism were the most abundant pathways. Genes related to two-component system, TCA cycle and nitrogen metabolism exhibited higher abundance in sediments compared with those in seawaters. The presence of cadmium-resistant genes and ABC transporters suggested the ability of microorganisms to resist the toxicity of cadmium. In summary, this study provides comprehensive and significant differential signatures in the microbial community and metabolic pathways in Qinhuangdao mariculture area, and can develop effective microbial indicators to monitor mariculture area in the future.
Collapse
|
5
|
Ryzhkova EP. Alternative enzymes as a special strategy for the adaptation of procaryotic organisms (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bioinformatic prediction of WSSV-host protein-protein interaction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:416543. [PMID: 24982879 PMCID: PMC4055298 DOI: 10.1155/2014/416543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP) encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.
Collapse
|
7
|
González Moreno S, Mata Martín C, Ferrera Guillén E, Guzmán EC. Tuning the replication fork progression by the initiation frequency. Environ Microbiol 2013; 15:3240-51. [PMID: 23607621 DOI: 10.1111/1462-2920.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
Abstract
The thermo-resistant period of the thermo-sensitive ribonucleotide reductase RNR101 encoded by the nrdA101 allele in Escherichia coli is prolonged for 50 min at 42°C, enabling an increase in DNA content of about 45%. Assuming that fork progression in the nrdA101 mutant is impaired, the question whether reduced number of ongoing replication rounds altered the thermo-resistant period in this strain was investigated. Decreases in the oriC/terC ratio and in the number of oriC per cell at 30°C were found in the presence of oriC228, oriC229 and oriC239 alleles in strain nrdA101. Correlated with this effect, increased thermo-resistance period of the RNR101 was allowed, and the detrimental effects on cell division, chromosome segregation and cell viability observed in the nrdA101 mutant at 42°C were suppressed. These results indicate that conditions leading to chromosome initiation deficiency at 30°C enhance the replication fork progression in the nrdA101 mutant at 42°C. We propose that coordination between initiation frequency and replication fork progression could be significant for most of the replication systems with important consequences in their cell cycle regulation.
Collapse
Affiliation(s)
- Sara González Moreno
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | | | | |
Collapse
|
8
|
Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:19311-6. [PMID: 22084087 DOI: 10.1073/pnas.1113664108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient. Indeed, efficient TLS additionally requires elevated dNTP levels. Similarly, for the bypass of an N-2-acetylaminofluorene-guanine adduct that requires Pol II instead of PolV, efficient TLS is only observed under conditions of high dNTP levels. We suggest that increased dNTP levels transiently modify the activity balance of Pol III (i.e., increasing the polymerase and reducing the proofreading functions). Indeed, we show that the stimulation of TLS by elevated dNTP levels can be mimicked by genetic inactivation of the proofreading function (mutD5 allele). We also show that spontaneous mutagenesis increases proportionally to dNTP pool levels, thus defining a unique spontaneous mutator phenotype. The so-called "dNTP mutator" phenotype does not depend upon any of the specialized DNA polymerases, and is thus likely to reflect an increase in Pol III's own replication errors because of the modified activity balance of Pol III. As up-regulation of the dNTP pool size represents a common physiological response to DNA damage, the present model is likely to represent a general and unique paradigm for TLS pathways in many organisms.
Collapse
|
9
|
Norris V, Zemirline A, Amar P, Audinot JN, Ballet P, Ben-Jacob E, Bernot G, Beslon G, Cabin A, Fanchon E, Giavitto JL, Glade N, Greussay P, Grondin Y, Foster JA, Hutzler G, Jost J, Kepes F, Michel O, Molina F, Signorini J, Stano P, Thierry AR. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci 2011; 130:211-28. [PMID: 21384168 PMCID: PMC3163788 DOI: 10.1007/s12064-010-0118-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 12/15/2010] [Indexed: 10/29/2022]
Abstract
The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.
Collapse
Affiliation(s)
- Vic Norris
- Epigenomics Project, Genopole Campus 1, Bât. Genavenir 6, 5 rue Henri Desbruères, 91030, Évry Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sánchez-Romero MA, Molina F, Jiménez-Sánchez A. Organization of ribonucleoside diphosphate reductase during multifork chromosome replication in Escherichia coli. Microbiology (Reading) 2011; 157:2220-2225. [DOI: 10.1099/mic.0.049478-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleoside diphosphate reductase (RNR) is located in discrete foci in a number that increases with the overlapping of replication cycles in Escherichia coli. Comparison of the numbers of RNR, DnaX and SeqA protein foci with the number of replication forks at different growth rates reveals that fork : focus ratios augment with increasing growth rates, suggesting a higher cohesion of the three protein foci with increasing number of forks per cell. Quantification of NrdB and SeqA proteins per cell showed: (i) a higher amount of RNR per focus at faster growth rates, which sustains the higher cohesion of RNR foci with higher numbers of forks per cell; and (ii) an equivalent amount of RNR per replication fork, independent of the number of the latter.
Collapse
Affiliation(s)
- María Antonia Sánchez-Romero
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz E06080, Spain
| | - Felipe Molina
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz E06080, Spain
| | - Alfonso Jiménez-Sánchez
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz E06080, Spain
| |
Collapse
|
11
|
Salguero I, Guarino E, Guzmán EC. RecA-dependent replication in the nrdA101(Ts) mutant of Escherichia coli under restrictive conditions. J Bacteriol 2011; 193:2851-60. [PMID: 21441507 PMCID: PMC3133137 DOI: 10.1128/jb.00109-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/16/2011] [Indexed: 11/20/2022] Open
Abstract
Cells carrying the thermosensitive nrdA101 allele are able to replicate entire chromosomes at 42°C when new DNA initiation events are inhibited. We investigated the role of the recombination enzymes on the progression of the DNA replication forks in the nrdA101 mutant at 42°C in the presence of rifampin. Using pulsed-field gel electrophoresis (PFGE), we demonstrated that the replication forks stalled and reversed during the replication progression under this restrictive condition. DNA labeling and flow cytometry experiments supported this finding as the deleterious effects found in the RecB-deficient background were suppressed specifically by the absence of RuvABC; however, this did not occur in a RecG-deficient background. Furthermore, we show that the RecA protein is absolutely required for DNA replication in the nrdA101 mutant at restrictive temperature when the replication forks are reversed. The detrimental effect of the recA deletion is not related to the chromosomal degradation caused by the absence of RecA. The inhibition of DNA replication observed in the nrdA101 recA mutant at 42°C in the presence of rifampin was reverted by the presence of the wild-type RecA protein expressed ectopically but only partially suppressed by the RecA protein with an S25P mutation [RecA(S25P)], deficient in the rescue of the stalled replication forks. We propose that RecA is required to maintain the integrity of the reversed forks in the nrdA101 mutant under certain restrictive conditions, supporting the relationship between DNA replication and recombination enzymes through the stabilization and repair of the stalled replication forks.
Collapse
Affiliation(s)
- Israel Salguero
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Estrella Guarino
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Elena C. Guzmán
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
12
|
Salguero I, López Acedo E, Guzmán EC. Overlap of replication rounds disturbs the progression of replicating forks in a ribonucleotide reductase mutant of Escherichia coli. MICROBIOLOGY-SGM 2011; 157:1955-1967. [PMID: 21527473 DOI: 10.1099/mic.0.047316-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ribonucleotide reductase (RNR) is the only enzyme specifically required for the synthesis of deoxyribonucleotides (dNTPs). Surprisingly, Escherichia coli cells carrying the nrdA101 allele, which codes for a thermosensitive RNR101, are able to replicate entire chromosomes at 42 °C under RNA or protein synthesis inhibition. Here we show that the RNR101 protein is unstable at 42 °C and that its degradation under restrictive conditions is prevented by the presence of rifampicin. Nevertheless, the mere stability of the RNR protein at 42 °C cannot explain the completion of chromosomal DNA replication in the nrdA101 mutant. We found that inactivation of the DnaA protein by using several dnaAts alleles allows complete chromosome replication in the absence of rifampicin and suppresses the nucleoid segregation and cell division defects observed in the nrdA101 mutant at 42 °C. As both inactivation of the DnaA protein and inhibition of RNA synthesis block the occurrence of new DNA initiations, the consequent decrease in the number of forks per chromosome could be related to those effects. In support of this notion, we found that avoiding multifork replication rounds by the presence of moderate extra copies of datA sequence increases the relative amount of DNA synthesis of the nrdA101 mutant at 42 °C. We propose that a lower replication fork density results in an improvement of the progression of DNA replication, allowing replication of the entire chromosome at the restrictive temperature. The mechanism related to this effect is also discussed.
Collapse
Affiliation(s)
- Israel Salguero
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Elena López Acedo
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Elena C Guzmán
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
13
|
Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans. Arch Microbiol 2010; 192:531-40. [DOI: 10.1007/s00203-010-0584-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 11/27/2022]
|
14
|
Sánchez-Romero MA, Molina F, Jiménez-Sánchez A. Correlation between ribonucleoside-diphosphate reductase and three replication proteins in Escherichia coli. BMC Mol Biol 2010; 11:11. [PMID: 20102606 PMCID: PMC2826317 DOI: 10.1186/1471-2199-11-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/26/2010] [Indexed: 02/05/2023] Open
Abstract
Background There has long been evidence supporting the idea that RNR and the dNTP-synthesizing complex must be closely linked to the replication complex or replisome. We contributed to this body of evidence in proposing the hypothesis of the replication hyperstructure. A recently published work called this postulate into question, reporting that NrdB is evenly distributed throughout the cytoplasm. Consequently we were interested in the localization of RNR protein and its relationship with other replication proteins. Results We tagged NrdB protein with 3×FLAG epitope and detected its subcellular location by immunofluorescence microscopy. We found that this protein is located in nucleoid-associated clusters, that the number of foci correlates with the number of replication forks at any cell age, and that after the replication process ends the number of cells containing NrdB foci decreases. We show that the number of NrdB foci is very similar to the number of SeqA, DnaB, and DnaX foci, both in the whole culture and in different cell cycle periods. In addition, interfoci distances between NrdB and three replication proteins are similar to the distances between two replication protein foci. Conclusions NrdB is present in nucleoid-associated clusters during the replication period. These clusters disappear after replication ends. The number of these clusters is closely related to the number of replication forks and the number of three replication protein clusters in any cell cycle period. Therefore we conclude that NrdB protein, and most likely RNR protein, is closely linked to the replication proteins or replisome at the replication fork. These results clearly support the replication hyperstructure model.
Collapse
Affiliation(s)
- M Antonia Sánchez-Romero
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, E06080 Badajoz, Spain
| | | | | |
Collapse
|
15
|
A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS One 2009; 4:e7617. [PMID: 19898675 PMCID: PMC2773459 DOI: 10.1371/journal.pone.0007617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/04/2009] [Indexed: 11/25/2022] Open
Abstract
Background It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. Methodology/Principal Findings Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a “delay” in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a “repair structure” during the initial phase of the SOS response. Conclusion/Significance The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation.
Collapse
|
16
|
Molina F, Sánchez-Romero MA, Jiménez-Sánchez A. Dynamic organization of replication forks into factories in Escherichia coli. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Norris V, den Blaauwen T, Doi RH, Harshey RM, Janniere L, Jiménez-Sánchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M, Skarstad K, Thellier M. Toward a hyperstructure taxonomy. Annu Rev Microbiol 2007; 61:309-29. [PMID: 17896876 DOI: 10.1146/annurev.micro.61.081606.103348] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial cells contain many large, spatially extended assemblies of ions, molecules, and macromolecules, called hyperstructures, that are implicated in functions that range from DNA replication and cell division to chemotaxis and secretion. Interactions between these hyperstructures would create a level of organization intermediate between macromolecules and the cell itself. To explore this level, a taxonomy is needed. Here, we describe classification criteria based on the form of the hyperstructure and on the processes responsible for this form. These processes include those dependent on coupled transcription-translation, protein-protein affinities, chromosome site-binding by protein, and membrane structures. Various combinations of processes determine the formation, maturation, and demise of many hyperstructures that therefore follow a trajectory within the space of classification by form/process. Hence a taxonomy by trajectory may be desirable. Finally, we suggest that working toward a taxonomy based on speculative interactions between hyperstructures promises most insight into life at this level.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guarino E, Salguero I, Jiménez-Sánchez A, Guzmán EC. Double-strand break generation under deoxyribonucleotide starvation in Escherichia coli. J Bacteriol 2007; 189:5782-6. [PMID: 17526701 PMCID: PMC1951825 DOI: 10.1128/jb.00411-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/18/2007] [Indexed: 11/20/2022] Open
Abstract
Stalled replication forks produced by three different ways of depleting deoxynucleoside triphosphate showed different capacities to undergo "replication fork reversal." This reaction occurred at the stalled forks generated by hydroxyurea treatment, was impaired under thermal inactivation of ribonucleoside reductase, and did not take place under thymine starvation.
Collapse
Affiliation(s)
- Estrella Guarino
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06080-Badajoz, Spain
| | | | | | | |
Collapse
|
19
|
Herrick J, Sclavi B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 2007; 63:22-34. [PMID: 17229208 DOI: 10.1111/j.1365-2958.2006.05493.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms that synthesize their own DNA have evolved mechanisms for maintaining a constant DNA/cell mass ratio independent of growth rate. The DNA/cell mass ratio is a central parameter in the processes controlling the cell cycle. The co-ordination of DNA replication with cell growth involves multiple levels of regulation. DNA synthesis is initiated at specific sites on the chromosome termed origins of replication, and proceeds bidirectionally to elongate and duplicate the chromosome. These two processes, initiation and elongation, therefore determine the total rate of DNA synthesis in the cell. In Escherichia coli, initiation depends on the DnaA protein while elongation depends on a multiprotein replication factory that incorporates deoxyribonucleotides (dNTPs) into the growing DNA chain. The enzyme ribonucleotide reductase (RNR) is universally responsible for synthesizing the necessary dNTPs. In this review we examine the role RNR plays in regulating the total rate of DNA synthesis in E. coli and, hence, in maintaining constant DNA/cell mass ratios during normal growth and under conditions of DNA stress.
Collapse
|
20
|
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K. Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007; 71:230-53. [PMID: 17347523 PMCID: PMC1847379 DOI: 10.1128/mmbr.00035-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, Monnier AF, Chapuis J, Bolotin A, Titok M, Le Chatelier E, Ehrlich SD. Genetic evidence for a link between glycolysis and DNA replication. PLoS One 2007; 2:e447. [PMID: 17505547 PMCID: PMC1866360 DOI: 10.1371/journal.pone.0000447] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/23/2007] [Indexed: 12/02/2022] Open
Abstract
Background A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness in a wide range of nutritional conditions. Methodology/Principal Findings We report here a tight link between glycolysis and DNA synthesis. The link, discovered during an analysis of suppressors of thermosensitive replication mutants in bacterium Bacillus subtilis, is very strong as some metabolic alterations fully restore viability to replication mutants in which a lethal arrest of DNA synthesis otherwise occurs at a high, restrictive, temperature. Full restoration of viability by such alterations was limited to cells with mutations in three elongation factors (the lagging strand DnaE polymerase, the primase and the helicase) out of a large set of thermosensitive mutants affected in most of the replication proteins. Restoration of viability resulted, at least in part, from maintenance of replication protein activity at high temperature. Physiological studies suggested that this restoration depended on the activity of the three-carbon part of the glycolysis/gluconeogenesis pathway and occurred in both glycolytic and gluconeogenic regimens. Restoration took place abruptly over a narrow range of expression of genes in the three-carbon part of glycolysis. However, the absolute value of this range varied greatly with the allele in question. Finally, restoration of cell viability did not appear to be the result of a decrease in growth rate or an induction of major stress responses. Conclusions/Significance Our findings provide the first evidence for a genetic system that connects DNA chain elongation to glycolysis. Its role may be to modulate some aspect of DNA synthesis in response to the energy provided by the environment and the underlying mechanism is discussed. It is proposed that related systems are ubiquitous.
Collapse
Affiliation(s)
- Laurent Jannière
- Laboratoire de Génétique Microbienne, INRA, Jouy en Josas, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Over-initiation of DNA replication in cells containing the cold-sensitive dnaA(cos) allele has been shown to lead to extensive DNA damage, potentially due to head-to-tail replication fork collisions that ultimately lead to replication fork collapse, growth stasis and/or cell death. Based on the assumption that suppressors of the cold-sensitive phenotype of the cos mutant should include mutations that affect the efficiency and/or regulation of DNA replication, we subjected a dnaA(cos) mutant strain to transposon mutagenesis and selected mutant derivatives that could form colonies at 30 degrees C. Four suppressors of the dnaA(cos)-mediated cold sensitivity were identified and further characterized. Based on origin to terminus ratios, chromosome content per cell, measured by flow cytometry, and sensitivity to the replication fork inhibitor hydroxyurea, the suppressors fell into two distinct categories: those that directly inhibit over-initiation of DNA replication and those that act independently of initiation. Mutations that decrease the cellular level of HolC, the chi subunit of DNA polymerase, or loss of ndk (nucleoside diphosphate kinase) function fall into the latter category. We propose that these novel suppressor mutations function by decreasing the efficiency of replication fork movement in vivo, either by decreasing the dynamic exchange of DNA polymerase subunits in the case of HolC, or by altering the balance between DNA replication and deoxynucleoside triphosphate synthesis in the case of ndk. Additionally, our results indicate a direct correlation between over-initiation and sensitivity to replication fork inhibition by hydroxyurea, supporting a model of increased head-to-tail replication fork collisions due to over-initiation.
Collapse
Affiliation(s)
- Jared Nordman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
23
|
Guarino E, Jiménez-Sánchez A, Guzmán EC. Defective ribonucleoside diphosphate reductase impairs replication fork progression in Escherichia coli. J Bacteriol 2007; 189:3496-501. [PMID: 17322311 PMCID: PMC1855873 DOI: 10.1128/jb.01632-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The observed lengthening of the C period in the presence of a defective ribonucleoside diphosphate reductase has been assumed to be due solely to the low deoxyribonucleotide supply in the nrdA101 mutant strain. We show here that the nrdA101 mutation induces DNA double-strand breaks at the permissive temperature in a recB-deficient background, suggesting an increase in the number of stalled replication forks that could account for the slowing of replication fork progression observed in the nrdA101 strain in a Rec(+) context. These DNA double-strand breaks require the presence of the Holliday junction resolvase RuvABC, indicating that they have been generated from stalled replication forks that were processed by the specific reaction named "replication fork reversal." Viability results supported the occurrence of this process, as specific lethality was observed in the nrdA101 recB double mutant and was suppressed by the additional inactivation of ruvABC. None of these effects seem to be due to the limitation of the deoxyribonucleotide supply in the nrdA101 strain even at the permissive temperature, as we found the same level of DNA double-strand breaks in the nrdA(+) strain growing under limited (2-microg/ml) or under optimal (5-microg/ml) thymidine concentrations. We propose that the presence of an altered NDP reductase, as a component of the replication machinery, impairs the progression of the replication fork, contributing to the lengthening of the C period in the nrdA101 mutant at the permissive temperature.
Collapse
Affiliation(s)
- Estrella Guarino
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06080-Badajoz, Spain
| | | | | |
Collapse
|
24
|
Abstract
The minimum time (E) required for a new pair of replication origins (oriCs) produced upon initiating a round of replication to be ready to initiate the next round after one cell mass doubling, the 'eclipse', is explained in terms of a minimal distance (l(min)) that the replication forks must move away from oriC before oriCs can 'fire' again. In conditions demanding a scheduled initiation event before the relative distance l(min)/L(0.5) (L being the total chromosome length) is reached, initiation is presumably delayed. Under such circumstances, cell mass at the next initiation would be greater than the usual, constant Mi (cell mass per copy number of oriC) prevailing in steady state of exponential growth. This model can be tested experimentally by extending the replication time C using thymine limitation at short doubling times tau in rich media to reach a relative eclipse E/C < l(min)/L(0.5). It is consistent with results obtained in experiments in which the number of replication 'positions'n (= C/tau) is increased beyond the natural maximum, causing the mean cell size to rise continuously, first by widening, then by lengthening, and finally by splitting its poles. The consequent branching is associated with casting off a small proportion of normal-sized cells and lysing DNA-less cells. Whether or how these phenomena are related to peptidoglycan composition and synthesis are moot questions.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|
25
|
Riola J, Guarino E, Guzmán EC, Jiménez-Sánchez A. Differences in the degree of inhibition of NDP reductase by chemical inactivation and by the thermosensitive mutation nrdA101 in Escherichia coli suggest an effect on chromosome segregation. Cell Mol Biol Lett 2006; 12:70-81. [PMID: 17124544 PMCID: PMC6275884 DOI: 10.2478/s11658-006-0060-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/18/2006] [Indexed: 11/20/2022] Open
Abstract
NDP reductase activity can be inhibited either by treatment with hydroxyurea or by incubation of an nrdAts mutant strain at the non-permissive temperature. Both methods inhibit replication, but experiments on these two types of inhibition yielded very different results. The chemical treatment immediately inhibited DNA synthesis but did not affect the cell and nucleoid appearance, while the incubation of an nrdA101 mutant strain at the non-permissive temperature inhibited DNA synthesis after more than 50 min, and resulted in aberrant chromosome segregation, long filaments, and a high frequency of anucleate cells. These phenotypes are not induced by SOS. In view of these results, we suggest there is an indirect relationship between NDP reductase and the chromosome segregation machinery through the maintenance of the proposed replication hyperstructure.
Collapse
Affiliation(s)
- José Riola
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| | | | | | | |
Collapse
|
26
|
Abstract
What is biological complexity? How many sorts exist? Are there levels of complexity? How are they related to one another? How is complexity related to the emergence of new phenotypes? To try to get to grips with these questions, we consider the archetype of a complex biological system, Escherichia coli. We take the position that E. coli has been selected to survive adverse conditions and to grow in favourable ones and that many other complex systems undergo similar selection. We invoke the concept of hyperstructures which constitute a level of organisation intermediate between macromolecules and cells. We also invoke a new concept, competitive coherence, to describe how phenotypes are created by a competition between maintaining a consistent story over time and creating a response that is coherent with respect to both internal and external conditions. We suggest how these concepts lead to parameters suitable for describing the rich form of complexity termed hypercomplexity and we propose a relationship between competitive coherence and emergence.
Collapse
Affiliation(s)
- Vic Norris
- Assemblages Moléculaires, Modélisation et Imagerie SIMS, FRE CNRS 2829, Faculté de Sciences et Techniques de Rouen, 76821, Mont Saint Aignan, France.
| | | | | |
Collapse
|
27
|
Wheeler LJ, Rajagopal I, Mathews CK. Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair (Amst) 2005; 4:1450-6. [PMID: 16207537 DOI: 10.1016/j.dnarep.2005.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3'-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.
Collapse
Affiliation(s)
- Linda J Wheeler
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, 97331-7305, USA
| | | | | |
Collapse
|
28
|
Kim J, Shen R, Olcott MC, Rajagopal I, Mathews CK. Adenylate kinase of Escherichia coli, a component of the phage T4 dNTP synthetase complex. J Biol Chem 2005; 280:28221-9. [PMID: 15941717 DOI: 10.1074/jbc.m502201200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinase, which catalyzes the reversible ATP-dependent phosphorylation of AMP to ADP and dAMP to dADP, can also catalyze the conversion of nucleoside diphosphates to the corresponding triphosphates. Lu and Inouye (Lu, Q., and Inouye, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5720-5725) showed that an Escherichia coli ndk mutant, lacking nucleoside diphosphate kinase, can use adenylate kinase as an alternative source of nucleoside triphosphates. Bacteriophage T4 can reproduce in an Escherichia coli ndk mutant, implying that adenylate kinase can meet a demand for deoxyribonucleoside triphosphates that increases by up to 10-fold as a result of T4 infection. In terms of kinetic linkage and specific protein-protein associations, NDP kinase is an integral component of T4 dNTP synthetase, a multienzyme complex containing phage-coded enzymes, which facilitates the synthesis of dNTPs and their flow into DNA. Here we asked whether, by similar criteria, adenylate kinase of the host cell is also a specific component of the complex. Experiments involving protein affinity chromatography, immunoprecipitation, optical biosensor measurements, and glutathione S-transferase pulldowns demonstrated direct interactions between adenylate kinase and several phage-coded enzymes, as well as E. coli nucleoside diphosphate kinase. These results identify adenylate kinase as a specific component of the complex. The rate of DNA synthesis after infection of an ndk mutant was found to be about 40% of the rate seen in wild-type infection, implying that complementation of the missing NDP kinase function by adenylate kinase is fairly efficient, but that adenylate kinase becomes rate-limiting for DNA synthesis when it is the sole source of dNTPs.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| | | | | | | | | |
Collapse
|
29
|
Molina F, Skarstad K. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 2005; 52:1597-612. [PMID: 15186411 DOI: 10.1111/j.1365-2958.2004.04097.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication from the origin of Escherichia coli has traditionally been visualized as two replisomes moving away from each other, each containing a leading and a lagging strand polymerase. Fluorescence microscopy studies of tagged polymerases or forks have, however, indicated that the polymerases may be confined to a single location (or a few locations in cells with overlapping replication cycles). Here, we have analysed the exact replication patterns of cells growing with four different growth and replication rates, and compared these with the distributions of SeqA foci. The SeqA foci represent replication forks because the SeqA protein binds to the newly formed hemimethylated DNA immediately following the forks. The results show that pairs of forks originating from the same origin stay coupled for most of the cell cycle and thus support the replication factory model. They also suggest that the factories consisting of four polymerases are, at the time immediately after initiation, organized into higher order structures consisting of eight or 12 polymerases. The organization into replication factories was lost when replication forks experienced a limitation in the supply of nucleotides or when the thymidylate synthetase gene was mutated. These results support the idea that the nucleotide synthesis apparatus co-localizes with the replisomes forming a 'hyperstructure' and further suggest that the integrity of the replication factories and hyperstructures is dependent on nucleotide metabolism.
Collapse
Affiliation(s)
- Felipe Molina
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | |
Collapse
|
30
|
Kim J, Wheeler LJ, Shen R, Mathews CK. Protein-DNA interactions in the T4 dNTP synthetase complex dependent on gene 32 single-stranded DNA-binding protein. Mol Microbiol 2004; 55:1502-14. [PMID: 15720556 DOI: 10.1111/j.1365-2958.2004.04486.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our laboratory has reported data suggesting a role for T4 phage gene 32 single-stranded DNA-binding protein in organizing a complex of deoxyribonucleotide-synthesizing enzymes at the replication fork. In this article we examined the effects of gene 32 ablation on the association of these enzymes with DNA-protein complexes. These experiments showed several deoxyribonucleotide-synthesizing enzymes to be present in DNA-protein complexes, with some of these associations being dependent on gene 32 protein. To further understand the role of gp32, we created amber mutations at codons 24 and 204 of gene 32, which encodes a 301-residue protein. We used the newly created mutants along with several experimental approaches--DNA-cellulose chromatography, immunoprecipitation, optical biosensor analysis and glutathione-S-transferase pulldowns--to identify relevant protein-protein and protein-DNA interactions. These experiments identified several proteins whose interactions with DNA depend on the presence of intact gp32, notably thymidylate synthase, dihydrofolate (DHF) reductase, ribonucleotide reductase (RNR) and Escherichia coli nucleoside diphosphate (NDP) kinase, and they also demonstrated direct associations between gp32 and RNR and NDP kinase, but not dCMP hydroxymethylase, deoxyribonucleoside monophosphate kinase, or DHF reductase. Taken together, the results support the hypothesis that the gene 32 protein helps to recruit enzymes of deoxyribonucleoside triphosphates synthesis to DNA replication sites.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences Building, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Several questions in our understanding of mitochondria are unanswered. These include how the ratio of mitochondrial (mt)DNA to mitochondria is maintained, how the accumulation of defective, rapidly replicating mitochondrial DNA is avoided, how the ratio of mitochondria to cells is adjusted to fit cellular needs, and why any proteins are synthesized in mitochondria rather than simply imported. In bacteria, large hyperstructures or assemblies of proteins, mRNA, lipids and ions have been proposed to constitute a level of organization intermediate between macromolecules and whole cells. Here, we suggest how the concept of hyperstructures together with other concepts developed for bacteria such as transcriptional sensing and spontaneous segregation may provide answers to mitochondrial problems. In doing this, we show how the problem of the very existence of mtDNA brings its own solution.
Collapse
Affiliation(s)
- Mirella Trinei
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | |
Collapse
|
32
|
Sneeden JL, Loeb LA. Mutations in the R2 subunit of ribonucleotide reductase that confer resistance to hydroxyurea. J Biol Chem 2004; 279:40723-8. [PMID: 15262976 DOI: 10.1074/jbc.m402699200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase is an essential enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides for use in DNA synthesis. Ribonucleotide reductase from Escherichia coli consists of two subunits, R1 and R2. The R2 subunit contains an unusually stable radical at tyrosine 122 that participates in catalysis. Buried deep within a hydrophobic pocket, the radical is inaccessible to solvent although subject to inactivation by radical scavengers. One such scavenger, hydroxyurea, is a highly specific inhibitor of ribonucleotide reductase and therefore of DNA synthesis; thus it is an important anticancer and antiviral agent. The mechanism of radical access remains to be established; however, small molecules may be able to access Tyr-122 directly via channels from the surface of the protein. We used random oligonucleotide mutagenesis to create a library of 200,000 R2 mutants containing random substitutions at five contiguous residues (Ile-74, Ser-75, Asn-76, Leu-77, Lys-78) that partially comprise one side of a channel where Tyr-122 is visible from the protein surface. We subjected this library to increasing concentrations of hydroxyurea and identified mutants that enhance survival more than 1000-fold over wild-type R2 at high drug concentrations. Repetitive selections yielded S75T as the predominant R2 mutant in our library. Purified S75TR2 exhibits a radical half-life that is 50% greater than wild-type R2 in the presence of hydroxyurea. These data represent the first demonstration of R2 protein mutants in E. coli that are highly resistant to hydroxyurea; elucidation of their mechanism of resistance may provide valuable insight into the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jessica L Sneeden
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
33
|
Rocha EPC, Fralick J, Vediyappan G, Danchin A, Norris V. A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 2003; 49:895-903. [PMID: 12890016 DOI: 10.1046/j.1365-2958.2003.03606.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosome separation and segregation must be executed within a bacterial cell in which the membrane and cytoplasm are highly structured. Here, we develop a strand-specific model based on each of the future daughter chromosomes being associated with a different set of structures or hyperstructures in an asymmetric cell. The essence of the segregation mechanism is that the genes on the same strand in the parental cell that are expressed together in a hyperstructure continue to be expressed together and segregate together in the daughter cell. The model therefore requires an asymmetric distribution of classes of genes and of binding sites and other structures on the strands of the parental chromosome. We show that the model is consistent with the asymmetric distribution of highly expressed genes and of stress response genes in Escherichia coli and Bacillus subtilis. The model offers a framework for interpreting data from genomics.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | | | |
Collapse
|