1
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
2
|
Shi H, Meng S, Qiu J, Xie S, Jiang N, Luo C, Naqvi NI, Kou Y. MoAti1 mediates mitophagy by facilitating recruitment of MoAtg8 to promote invasive growth in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13439. [PMID: 38483039 PMCID: PMC10938464 DOI: 10.1111/mpp.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.
Collapse
Affiliation(s)
- Huanbin Shi
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuai Meng
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiehua Qiu
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuwei Xie
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Nan Jiang
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, Department of Biological SciencesNational University of SingaporeSingapore
| | - Yanjun Kou
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
3
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
4
|
Guedes JP, Baptista V, Santos-Pereira C, Sousa MJ, Manon S, Chaves SR, Côrte-Real M. Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis 2022; 27:368-381. [PMID: 35362903 DOI: 10.1007/s10495-022-01717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3β. This novel system mimics human Bax α regulation by GSK3β and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.
Collapse
Affiliation(s)
- Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centro de Investigacíon Médica Aplicada (CIMA), Universidad de Navarra, 31008, Pamplona, Spain
| | - Vitória Baptista
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Stéphen Manon
- UMR 5095, CNRS, Université de Bordeaux, Campus Carreire, 1 Rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
5
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
6
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
7
|
N-terminal acetylation modulates Bax targeting to mitochondria. Int J Biochem Cell Biol 2017; 95:35-42. [PMID: 29233735 DOI: 10.1016/j.biocel.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25-/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting.
Collapse
|
8
|
Alves S, Castro L, Fernandes MS, Francisco R, Castro P, Priault M, Chaves SR, Moyer MP, Oliveira C, Seruca R, Côrte-Real M, Sousa MJ, Preto A. Colorectal cancer-related mutant KRAS alleles function as positive regulators of autophagy. Oncotarget 2016; 6:30787-802. [PMID: 26418750 PMCID: PMC4741568 DOI: 10.18632/oncotarget.5021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
The recent interest to modulate autophagy in cancer therapy has been hampered by the dual roles of this conserved catabolic process in cancer, highlighting the need for tailored approaches. Since RAS isoforms have been implicated in autophagy regulation and mutation of the KRAS oncogene is highly frequent in colorectal cancer (CRC), we questioned whether/how mutant KRAS alleles regulate autophagy in CRC and its implications. We established two original models, KRAS-humanized yeast and KRAS-non-cancer colon cells and showed that expression of mutated KRAS up-regulates starvation-induced autophagy in both. Accordingly, KRAS down-regulation inhibited autophagy in CRC-derived cells harboring KRAS mutations. We further show that KRAS-induced autophagy proceeds via up-regulation of the MEK/ERK pathway in both colon models and that KRAS and autophagy contribute to CRC cell survival during starvation. Since KRAS inhibitors have proven difficult to develop, our results suggest using autophagy inhibitors as a combined/alternative therapeutic approach in CRCs with mutant KRAS.
Collapse
Affiliation(s)
- Sara Alves
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lisandra Castro
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Sofia Fernandes
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rita Francisco
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Castro
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Muriel Priault
- CNRS, UMR5095, University de Bordeaux 2, Bordeaux, France
| | - Susana Rodrigues Chaves
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Carla Oliveira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Raquel Seruca
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Preto
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance. Curr Genet 2016; 63:229-239. [DOI: 10.1007/s00294-016-0628-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022]
|
10
|
Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4074690. [PMID: 27429709 PMCID: PMC4939362 DOI: 10.1155/2016/4074690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/29/2016] [Indexed: 11/17/2022]
Abstract
Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway.
Collapse
|
11
|
van Diepeningen AD, Engelmoer DJP, Sellem CH, Huberts DHEW, Slakhorst SM, Sainsard-Chanet A, Zwaan BJ, Hoekstra RF, Debets AJM. Does autophagy mediate age-dependent effect of dietary restriction responses in the filamentous fungus Podospora anserina? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130447. [PMID: 24864315 DOI: 10.1098/rstb.2013.0447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a well-conserved catabolic process, involving the degradation of a cell's own components through the lysosomal/vacuolar machinery. Autophagy is typically induced by nutrient starvation and has a role in nutrient recycling, cellular differentiation, degradation and programmed cell death. Another common response in eukaryotes is the extension of lifespan through dietary restriction (DR). We studied a link between DR and autophagy in the filamentous fungus Podospora anserina, a multicellular model organism for ageing studies and mitochondrial deterioration. While both carbon and nitrogen restriction extends lifespan in P. anserina, the size of the effect varied with the amount and type of restricted nutrient. Natural genetic variation for the DR response exists. Whereas a switch to carbon restriction up to halfway through the lifetime resulted in extreme lifespan extension for wild-type P. anserina, all autophagy-deficient strains had a shorter time window in which ageing could be delayed by DR. Under nitrogen limitation, only PaAtg1 and PaAtg8 mediate the effect of lifespan extension; the other autophagy-deficient mutants PaPspA and PaUth1 had a similar response as wild-type. Our results thus show that the ageing process impinges on the DR response and that this at least in part involves the genetic regulation of autophagy.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniël J P Engelmoer
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Carole H Sellem
- Centre de Génétique Moléculaire, CNRS, UPR2167, 91198 Gif-sur-Yvette, France
| | - Daphne H E W Huberts
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - S Marijke Slakhorst
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Annie Sainsard-Chanet
- Centre de Génétique Moléculaire, CNRS, UPR2167, 91198 Gif-sur-Yvette, France Université Paris-Sud, 91405 Orsay, France
| | - Bas J Zwaan
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rolf F Hoekstra
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Bühligen F, Rüdinger P, Fetzer I, Stahl F, Scheper T, Harms H, Müller S. Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis. J Biotechnol 2013; 168:718-28. [DOI: 10.1016/j.jbiotec.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
|
13
|
Kuznetsov E, Kučerová H, Váchová L, Palková Z. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level. PLoS One 2013; 8:e73882. [PMID: 24040106 PMCID: PMC3770667 DOI: 10.1371/journal.pone.0073882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.
Collapse
Affiliation(s)
- Evgeny Kuznetsov
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Helena Kučerová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Libuše Váchová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
15
|
Chen L, Liu L, Wang M, Fu J, Zhang Z, Hou J, Bao X. Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae. PLoS One 2013; 8:e62110. [PMID: 23614021 PMCID: PMC3629146 DOI: 10.1371/journal.pone.0062110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae Bdf1p associates with the basal transcription complexes TFIID and acts as a transcriptional regulator. Lack of Bdf1p is salt sensitive and displays abnormal mitochondrial function. The nucleotidase Hal2p detoxifies the toxic compound 3' -phosphoadenosine-5'-phosphate (pAp), which blocks the biosynthesis of methionine. Hal2p is also a target of high concentration of Na(+). Here, we reported that HAL2 overexpression recovered the salt stress sensitivity of bdf1Δ. Further evidence demonstrated that HAL2 expression was regulated indirectly by Bdf1p. The salt stress response mechanisms mediated by Bdf1p and Hal2p were different. Unlike hal2Δ, high Na(+) or Li(+) stress did not cause pAp accumulation in bdf1Δ and methionine supplementation did not recover its salt sensitivity. HAL2 overexpression in bdf1Δ reduced ROS level and improved mitochondrial function, but not respiration. Further analyses suggested that autophagy was apparently defective in bdf1Δ, and autophagy stimulated by Hal2p may play an important role in recovering mitochondrial functions and Na(+) sensitivity of bdf1Δ. Our findings shed new light towards our understanding about the molecular mechanism of Bdf1p-involved salt stress response in budding yeast.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Liangyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Mingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiafang Fu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
16
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Avrahami-Moyal L, Engelberg D, Wenger JW, Sherlock G, Braun S. Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 2012; 12:521-33. [PMID: 22443114 DOI: 10.1111/j.1567-1364.2012.00803.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/28/2022] Open
Abstract
We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in a medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 to 0.32 h(-1) . Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within 6 days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within 2 days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of six clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 of 19 tolerant clones, the stop codon in ssd1-d was replaced with an amino acid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol.
Collapse
Affiliation(s)
- Liat Avrahami-Moyal
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
18
|
Pereira C, Coutinho I, Soares J, Bessa C, Leão M, Saraiva L. New insights into cancer-related proteins provided by the yeast model. FEBS J 2012; 279:697-712. [PMID: 22239976 DOI: 10.1111/j.1742-4658.2012.08477.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cancer is a devastating disease with a profound impact on society. In recent years, yeast has provided a valuable contribution with respect to uncovering the molecular mechanisms underlying this disease, allowing the identification of new targets and novel therapeutic opportunities. Indeed, several attributes make yeast an ideal model system for the study of human diseases. It combines a high level of conservation between its cellular processes and those of mammalian cells, with advantages such as a short generation time, ease of genetic manipulation and a wealth of experimental tools for genome- and proteome-wide analyses. Additionally, the heterologous expression of disease-causing proteins in yeast has been successfully used to gain an understanding of the functions of these proteins and also to provide clues about the mechanisms of disease progression. Yeast research performed in recent years has demonstrated the tremendous potential of this model system, especially with the validation of findings obtained with yeast in more physiologically relevant models. The present review covers the major aspects of the most recent developments in the yeast research area with respect to cancer. It summarizes our current knowledge on yeast as a cellular model for investigating the molecular mechanisms of action of the major cancer-related proteins that, even without yeast orthologues, still recapitulate in yeast some of the key aspects of this cellular pathology. Moreover, the most recent contributions of yeast genetics and high-throughput screening technologies that aim to identify some of the potential causes underpinning this disorder, as well as discover new therapeutic agents, are discussed.
Collapse
Affiliation(s)
- Clara Pereira
- REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, University of Porto, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
20
|
Scheckhuber CQ, Hamann A, Brust D, Osiewacz HD. Cellular homeostasis in fungi: impact on the aging process. Subcell Biochem 2012; 57:233-250. [PMID: 22094425 DOI: 10.1007/978-94-007-2561-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty of Biosciences, Institute of Molecular Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, 60438, Frankfurt/Main, Germany,
| | | | | | | |
Collapse
|
21
|
Abstract
A concerted balance between proliferation and apoptosis is essential to the survival of multicellular organisms. Thus, apoptosis per se, although it is a destructive process leading to the death of single cells, also serves as a pro-survival mechanism pro-survival mechanism that ensures healthy organismal development and acts as a life-prolonging or anti-aging anti-aging program. The discovery that yeast also possess a functional and, in many cases, highly conserved apoptotic machinery has made it possible to study the relationships between aging and apoptosis in depth using a well-established genetic system and the powerful tools available to yeast researchers for investigating complex physiological and cytological interactions. The aging process of yeast, be it replicative replicative or chronological chronological aging, is closely related to apoptosis, although it remains unclear whether apoptosis is a causal feature of the aging process or vice versa. Nevertheless, experimental results obtained during the past several years clearly demonstrate that yeast serve as a powerful and versatile experimental system for understanding the interconnections between these two fundamentally important cellular and physiological pathways.
Collapse
Affiliation(s)
- Peter Laun
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria,
| | | | | | | | | |
Collapse
|
22
|
A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO J 2011; 30:2779-92. [PMID: 21673659 DOI: 10.1038/emboj.2011.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/20/2011] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.
Collapse
|
23
|
Abstract
Mitochondria are essential for oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondria also monitor and evaluate complex information from the environment and intracellular milieu, including the presence or absence of growth factors, oxygen, reactive oxygen species, and DNA damage. It follows that disturbances of the integrity of mitochondrial function lead to the disruption of cell function, expressed as disease, aging, or cell death. It has been assumed that the degradation of damaged mitochondria by an autophagy-related pathway specific to mitochondria (mitophagy), recently found to be strictly regulated, is a fundamental process essential for cell homeostasis. Until now, the main role of mitophagy has been tentatively defined as a 'house-cleaning' pathway that allows to eliminate altered mitochondria, but mitophagy may also play a role in the adaptation of the number and quality of mitochondria to new environmental conditions. In yeast, recent data defined two categories of mitophagy actors: ones constitutively required for mitophagy and those with mitophagy-regulatory functions. Situations were also uncovered in normal physiology in which cells utilize mitophagy to eliminate damaged, dysfunctional, and superfluous mitochondria to adjust to changing physiological demands.
Collapse
|
24
|
Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN. Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 2010; 49:8618-25. [PMID: 20799725 PMCID: PMC3061818 DOI: 10.1021/bi100908v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine (S)-sulfoxide (Met-SO) and methionine (R)-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB, or both proteins had normal levels of mitochondria but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments.
Collapse
Affiliation(s)
- Alaattin Kaya
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ahmet Koc
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430, Urla, Izmir, Turkey
| | - Byung Cheon Lee
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| | - Dmitri E. Fomenko
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mathieu Rederstorff
- Institut de Biologie Moléculaire et Cellulaire, UPR ARN du CNRS/Université Louis Pasteur, Strasbourg, France
| | - Alain Krol
- Institut de Biologie Moléculaire et Cellulaire, UPR ARN du CNRS/Université Louis Pasteur, Strasbourg, France
| | - Alain Lescure
- Institut de Biologie Moléculaire et Cellulaire, UPR ARN du CNRS/Université Louis Pasteur, Strasbourg, France
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115, USA
| |
Collapse
|
25
|
Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 2010; 76:1398-410. [PMID: 20345665 DOI: 10.1111/j.1365-2958.2010.07122.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously shown that acetic acid activates a mitochondria-dependent death process in Saccharomyces cerevisiae and that the ADP/ATP carrier (AAC) is required for mitochondrial outer membrane permeabilization and cytochrome c release. Mitochondrial fragmentation and degradation have also been shown in response to this death stimulus. Herein, we show that autophagy is not active in cells undergoing acetic acid-induced apoptosis and is therefore not responsible for mitochondrial degradation. Furthermore, we found that the vacuolar protease Pep4p and the AAC proteins have a role in mitochondrial degradation using yeast genetic approaches. Depletion and overexpression of Pep4p, an orthologue of human cathepsin D, delays and enhances mitochondrial degradation respectively. Moreover, Pep4p is released from the vacuole into the cytosol in response to acetic acid treatment. AAC-deleted cells also show a decrease in mitochondrial degradation in response to acetic acid and are not defective in Pep4p release. Therefore, AAC proteins seem to affect mitochondrial degradation at a step subsequent to Pep4p release, possibly triggering degradation through their involvement in mitochondrial permeabilization. The finding that both mitochondrial AAC proteins and the vacuolar Pep4p interfere with mitochondrial degradation suggests a complex regulation and interplay between mitochondria and the vacuole in yeast programmed cell death.
Collapse
Affiliation(s)
- Clara Pereira
- CBMA (Centre of Molecular and Environmental Biology)/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ritch JJ, Davidson SM, Sheehan JJ, Austriaco N. The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis. FEMS Yeast Res 2009; 10:168-76. [PMID: 20070376 DOI: 10.1111/j.1567-1364.2009.00601.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Deletion of the Saccharomyces gene, UTH1, a founding member of the SUN family of fungal genes, has pleiotropic effects. Several phenotypes of Deltauth1 cells including their decreased levels of mitochondrial proteins, their impaired autophagic degradation of mitochondria, and their increased viability in the presence of mammalian BAX, a proapoptotic regulator localized to the mitochondria, have prompted others to propose that the Uth1p functions primarily at the mitochondria. In this report, we show that cells lacking UTH1 have more robust cell walls with higher levels of beta-d-glucan that allows them to grow in the presence of calcofluor white or sodium dodecyl sulfate, two reagents known to perturb the yeast cell wall. Moreover, these Deltauth1 cells are also significantly more resistant to spheroplast formation induced by zymolyase treatment than their wild-type counterparts. Surprisingly, our data suggest that several of the enhanced growth phenotypes of Deltauth1 cells, including their resistance to BAX-mediated toxicity, arise from a strengthened cell wall. Therefore, we propose that Uth1p's role at the cell wall and not at the mitochondria may better explain many of its effects on yeast physiology and programmed cell death.
Collapse
Affiliation(s)
- J J Ritch
- Department of Biology, Providence College, Providence, RI 02918, USA
| | | | | | | |
Collapse
|
27
|
Jansen JM, Wanless AG, Seidel CW, Weiss EL. Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr Biol 2009; 19:2114-20. [PMID: 19962308 DOI: 10.1016/j.cub.2009.10.071] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022]
Abstract
Spatial control of gene expression, at the level of both transcription and translation, is critical for cellular differentiation [1-4]. In budding yeast, the conserved Ndr/warts kinase Cbk1 localizes to the new daughter cell, where it acts as a cell fate determinant. Cbk1 both induces a daughter-specific transcriptional program and promotes morphogenesis in a less well-defined role [5-8]. Cbk1 is essential in cells expressing functional Ssd1, an RNA-binding protein of unknown function [9-11]. We show here that Cbk1 inhibits Ssd1 in vivo. Loss of this regulation dramatically slows bud expansion, leading to highly aberrant cell wall organization at the site of cell growth. Ssd1 associates with specific mRNAs, a significant number of which encode cell wall remodeling proteins. Translation of these messages is rapidly and specifically suppressed when Cbk1 is inhibited; this suppression requires Ssd1. Transcription of several of these Ssd1-associated mRNAs is also regulated by Cbk1, indicating that the kinase controls both the transcription and translation of daughter-specific mRNAs. This work suggests a novel system by which cells coordinate localized expression of genes involved in processes critical for cell growth and division.
Collapse
Affiliation(s)
- Jaclyn M Jansen
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
28
|
Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 2009; 17:737-45. [DOI: 10.1038/cdd.2009.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Tolkovsky AM. Mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1508-15. [DOI: 10.1016/j.bbamcr.2009.03.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 01/15/2023]
|
30
|
Zhou X, Arita A, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz AD, Klein CB, Dai W, Begley TJ, Costa M. A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity. Genomics 2009; 94:294-307. [PMID: 19631266 DOI: 10.1016/j.ygeno.2009.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/17/2009] [Accepted: 07/15/2009] [Indexed: 11/30/2022]
Abstract
We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4733 haploid S. cerevisiae single-gene-deletion mutants to identify those that have decreased or increased growth, relative to wild type, after exposure to sodium arsenite (NaAsO(2)). IC(50) values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite-toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging.
Collapse
Affiliation(s)
- Xue Zhou
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Deffieu M, Bhatia-Kissová I, Salin B, Galinier A, Manon S, Camougrand N. Glutathione participates in the regulation of mitophagy in yeast. J Biol Chem 2009; 284:14828-37. [PMID: 19366696 DOI: 10.1074/jbc.m109.005181] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antioxidant N-acetyl-l-cysteine prevented the autophagy-dependent delivery of mitochondria to the vacuoles, as examined by fluorescence microscopy of mitochondria-targeted green fluorescent protein, transmission electron microscopy, and Western blot analysis of mitochondrial proteins. The effect of N-acetyl-l-cysteine was specific to mitochondrial autophagy (mitophagy). Indeed, autophagy-dependent activation of alkaline phosphatase and the presence of hallmarks of non-selective microautophagy were not altered by N-acetyl-l-cysteine. The effect of N-acetyl-l-cysteine was not related to its scavenging properties, but rather to its fueling effect of the glutathione pool. As a matter of fact, the decrease of the glutathione pool induced by chemical or genetical manipulation did stimulate mitophagy but not general autophagy. Conversely, the addition of a cell-permeable form of glutathione inhibited mitophagy. Inhibition of glutathione synthesis had no effect in the strain Deltauth1, which is deficient in selective mitochondrial degradation. These data show that mitophagy can be regulated independently of general autophagy, and that its implementation may depend on the cellular redox status.
Collapse
Affiliation(s)
- Maika Deffieu
- CNRS, Institut de Biochimie et de Génétique Cellulaires (UMR 5095), Université de Bordeaux 2, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
Affiliation(s)
- Nathan Susnow
- Department of Medicine, University of Washington, Seattle, 98195-6424, United States
| | | | | | | |
Collapse
|
33
|
Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008; 19:42-9. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008.12.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/13/2008] [Indexed: 12/22/2022]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
|
34
|
Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2008; 16:21-30. [DOI: 10.1038/cdd.2008.120] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Pereira C, Silva R, Saraiva L, Johansson B, Sousa M, Côrte-Real M. Mitochondria-dependent apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1286-302. [DOI: 10.1016/j.bbamcr.2008.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/05/2008] [Accepted: 03/13/2008] [Indexed: 12/18/2022]
|
36
|
The pleiotropic effects of heterologous Bax expression in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1449-65. [DOI: 10.1016/j.bbamcr.2007.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/14/2007] [Accepted: 12/30/2007] [Indexed: 12/27/2022]
|
37
|
Liang Q, Li W, Zhou B. Caspase-independent apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1311-9. [PMID: 18358844 DOI: 10.1016/j.bbamcr.2008.02.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/31/2008] [Accepted: 02/20/2008] [Indexed: 12/31/2022]
Abstract
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. Yeast counterparts of central metazoan apoptotic regulators, such as metacaspase Yca1p, have been identified. In spite of the importance of Yca1p in yeast apoptotic process, many other factors such as Aif1p, orthologs of EndoG, AMID and cyclophilin D play important roles in caspase-independent apoptotic pathways. This review summarized recent progress about studies of various intrinsic and extrinsic apoptotic stimuli that may induce yeast cell death via caspase-independent apoptosis.
Collapse
Affiliation(s)
- Qiuli Liang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
38
|
Abstract
Cellular degradative processes including proteasomal and vacuolar/lysosomal autophagic degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are essential for oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondrial homeostasis also plays a crucial role in aging and programmed cell death, and recent data have suggested that mitochondrial degradation is a strictly regulated process. A recent study has shown that in yeast cells subjected to nitrogen starvation, degradation of mitochondria by autophagy occurs by both a selective process (termed mitophagy) and a nonselective process. This chapter provides an overview of the techniques that enable the study of mitophagy. Fluorescent proteins targeted to mitochondria can be used to follow mitochondrial sequestration within vacuoles. Degradation of mitochondria can be assayed using a mitochondrially targeted alkaline phosphatase (ALP) reporter test in which the delivery of mitochondrial N-terminal truncated Pho8Delta60 to the vacuole results from mitophagy. Degradation of mitochondrial proteins can also be followed by Western immunoblot analyses. Finally, electron microscopy observations permit the discrimination between selective mitophagy and nonselective mitochondrial degradation.
Collapse
Affiliation(s)
- Nadine Camougrand
- Institut de Biochimie et Génétique Cellulaires, CNRS, Université de Bordeaux2, Bordeaux, France
| | | | | | | |
Collapse
|
39
|
Abstract
Progress in aging research is now rapid, and surprisingly, studies in a single-celled eukaryote are a driving force. The genetic modulators of replicative life span in yeast are being identified, the molecular events that accompany aging are being discovered, and the extent to which longevity pathways are conserved between yeast and multicellular eukaryotes is being tested. In this review, we provide a brief retrospective view on the development of yeast as a model for aging and then turn to recent discoveries that have pushed aging research into novel directions and also linked aging in yeast to well-developed hypotheses in mammals. Although the question of what causes aging still cannot be answered definitively, that day may be rapidly approaching.
Collapse
Affiliation(s)
- K A Steinkraus
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
40
|
Firon A, Aubert S, Iraqui I, Guadagnini S, Goyard S, Prévost MC, Janbon G, d'Enfert C. The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol Microbiol 2007; 66:1256-75. [DOI: 10.1111/j.1365-2958.2007.06011.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 2007; 66:571-82. [PMID: 17822411 DOI: 10.1111/j.1365-2958.2007.05926.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.
Collapse
Affiliation(s)
- Clara Pereira
- Departamento de Biologia-Centro de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
42
|
Fröhlich KU, Fussi H, Ruckenstuhl C. Yeast apoptosis—From genes to pathways. Semin Cancer Biol 2007; 17:112-21. [PMID: 17207637 DOI: 10.1016/j.semcancer.2006.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/25/2006] [Indexed: 11/23/2022]
Abstract
Yeast are eukaryotic unicellular organisms that are easy to cultivate and offer a wide spectrum of genetic and cytological tools for research. Yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have successfully been used as models for human cell division cycle. Stress conditions, cellular ageing, failed mating, certain mutations or heterologous expression of proapoptotic genes induce yeast cell death with the characteristic markers of apoptosis. Several crucial regulators of apoptosis are conserved between metazoans and yeast. This simple model organism offers the possibility to identify conserved and new components of the apoptotic machinery and to elucidate the regulatory pathways beyond.
Collapse
|
43
|
Abstract
Mitochondria are not only important for the energetic status of the cell, but are also the fatal organelles deciding about cellular life and death. Complex mitochondrial features decisive for cell death execution in mammals are present and functional in yeast: AIF and cytochrome c release to the cytosol, mitochondrial fragmentation as well as mitochondrial hyperpolarisation followed by an oxidative burst, and breakdown of mitochondrial membrane potential. The easy accessibility of mitochondrial manipulations such as repression of respiration by growing yeast on glucose or deletion of mitochondrial DNA (rho(0)) on the one hand and the unique ability of yeast cells to grow on non-fermentable carbon sources by switching on mitochondrial respiration on the other hand have made yeast an excellent tool to delineate the necessity for mitochondria in cell death execution. Yeast research indicates that the connection between mitochondria and apoptosis is intricate, as abrogation of mitochondrial function can be either deleterious or beneficial for the cell depending on the specific context of the death scenario. Surprisingly, mitochondrion dependent yeast apoptosis currently helps to understand the aetiology (or the complex biology) of lethal cytoskeletal alterations, ageing and neurodegeneration. For example, mutation of mitochondrial superoxide dismutase or CDC48/VCP mutations, both implicated in several neurodegenerative disorders, are associated with mitochondrial impairment and apoptosis in yeast.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, Universitätsplatz 2, University of Graz, 8010 Graz, Austria
| | | | | | | |
Collapse
|
44
|
Abstract
Autophagy is a physiological and evolutionarily conserved phenomenon maintaining homeostatic functions like protein degradation and organelle turnover. It is rapidly upregulated under conditions leading to cellular stress, such as nutrient or growth factor deprivation, providing an alternative source of intracellular building blocks and substrates for energy generation to enable continuous cell survival. Yet accumulating data provide evidence that the autophagic machinery can be also recruited to kill cells under certain conditions generating a caspase-independent form of programed cell death (PCD), named autophagic cell death. Due to increasing interest in nonapoptotic PCD forms and the development of mammalian genetic tools to study autophagy, autophagic cell death has achieved major prominence, and is recognized now as a legitimate alternative death pathway to apoptosis. This chapter aims at summarizing the recent data in the field of autophagy signaling and autophagic cell death.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
45
|
Kissová I, Deffieu M, Samokhvalov V, Velours G, Bessoule JJ, Manon S, Camougrand N. Lipid oxidation and autophagy in yeast. Free Radic Biol Med 2006; 41:1655-61. [PMID: 17145553 DOI: 10.1016/j.freeradbiomed.2006.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 11/26/2022]
Abstract
Autophagy, a process involved in the degradation and the recycling of long-lived proteins and organelles to survive nitrogen starvation, is generally non-selective. However, recent data suggest that selective forms of autophagy exist, that are able to specifically target several organelles, including mitochondria. Conversely, mitochondrial alterations could trigger autophagy. Such a selective form of autophagy might be involved in the elimination of damaged mitochondria. We reported previously that, mitochondria were early targets of rapamycin-induced autophagy. Here we report that rapamycin-induced autophagy is accompanied by the early production of reactive oxygen species and by the early oxidation of mitochondrial lipid. Inhibition of these oxidative effects by resveratrol largely impaired autophagy of both cytosolic proteins and mitochondria, and delayed subsequent cell death. These results support a role of mitochondrial oxidation events in the activation of autophagy.
Collapse
Affiliation(s)
- Ingrid Kissová
- UMR5095 CNRS, Université de Bordeaux 2, 1 Rue Camille Saint-Saëns, F-33077 Bordeaux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Bounhar Y, Mann KK, Roucou X, LeBlanc AC. Prion protein prevents Bax-mediated cell death in the absence of other Bcl-2 family members inSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:1204-12. [PMID: 17156017 DOI: 10.1111/j.1567-1364.2006.00122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast Saccharomyces cerevisiae to investigate if the neuroprotective function of prion protein requires other members of the Bcl-2 family given that S. cerevisiae lacks Bcl-2 genes but undergoes a mitochondrial-dependent apoptotic cell death upon exogenous expression of Bax protein. We show that Bax induces cell death and growth inhibition in S. cerevisiae. Prion protein prevents Bax-mediated cell death. Prion protein overcomes Bax-mediated growth arrest in S phase but cannot overcome population growth inhibition because the cells then accumulate in G(2)/M phase. We conclude that prion protein does not require other Bcl-2 family proteins to protect against Bax-mediated cell death.
Collapse
Affiliation(s)
- Younes Bounhar
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
47
|
Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C. Calpain is required for macroautophagy in mammalian cells. ACTA ACUST UNITED AC 2006; 175:595-605. [PMID: 17101693 PMCID: PMC2064596 DOI: 10.1083/jcb.200601024] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ubiquitously expressed micro- and millicalpain, which both require the calpain small 1 (CAPNS1) regulatory subunit for function, play important roles in numerous biological and pathological phenomena. We have previously shown that the product of GAS2, a gene specifically induced at growth arrest, is an inhibitor of millicalpain and that its overexpression sensitizes cells to apoptosis in a p53-dependent manner (Benetti, R., G. Del Sal, M. Monte, G. Paroni, C. Brancolini, and C. Schneider. 2001. EMBO J. 20:2702–2714). More recently, we have shown that calpain is also involved in nuclear factor κB activation and its relative prosurvival function in response to ceramide, in which calpain deficiency strengthens the proapoptotic effect of ceramide (Demarchi, F., C. Bertoli, P.A. Greer, and C. Schneider. 2005. Cell Death Differ. 12:512–522). Here, we further explore the involvement of calpain in the apoptotic switch and find that in calpain-deficient cells, autophagy is impaired with a resulting dramatic increase in apoptotic cell death. Immunostaining of the endogenous autophagosome marker LC3 and electron microscopy experiments demonstrate that autophagy is impaired in CAPNS1-deficient cells. Accordingly, the enhancement of lysosomal activity and long-lived protein degradation, which normally occur upon starvation, is also reduced. In CAPNS1-depleted cells, ectopic LC3 accumulates in early endosome-like vesicles that may represent a salvage pathway for protein degradation when autophagy is defective.
Collapse
Affiliation(s)
- Francesca Demarchi
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Kissová I, Plamondon LT, Brisson L, Priault M, Renouf V, Schaeffer J, Camougrand N, Manon S. Evaluation of the Roles of Apoptosis, Autophagy, and Mitophagy in the Loss of Plating Efficiency Induced by Bax Expression in Yeast. J Biol Chem 2006; 281:36187-97. [PMID: 16990272 DOI: 10.1074/jbc.m607444200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found recently that, in yeast cells, the heterologous expression of Bax induces a loss of plating efficiency different from that induced by acute stress because it is associated with the maintenance of plasma membrane integrity (Camougrand, N., Grelaud-Coq, A., Marza, E., Priault, M., Bessoule, J. J., and Manon, S. (2003) Mol. Microbiol. 47, 495-506). Bax effects were neither dependent on the presence of the yeast metacaspase Yca1p and the apoptosis-inducing factor homolog nor associated with the appearance of typical apoptotic markers such as metacaspase activation, annexin V binding, and DNA cleavage. Yeast cells expressing Bax instead displayed autophagic features, including increased accumulation of Atg8p, activation of vacuolar alkaline phosphatase, and the presence of autophagosomes and autophagic bodies. However, the inactivation of autophagy did not prevent and actually slightly accelerated Bax-induced loss of plating efficiency. On the other hand, Bax expression induced a fragmentation of the mitochondrial network, which retained, however, some level of organization in wild-type cells. However, when expressed in cells inactivated for the gene UTH1, previously shown to be involved in mitophagy, Bax induced a complete disorganization of the mitochondrial network. Interestingly, although mitochondrially targeted green fluorescent protein was slowly degraded in the wild-type strain, it remained unaffected in the mutant. Furthermore, the slow loss of plating efficiency in the mutant strain correlated with a loss of plasma membrane integrity. These data suggest that Bax-induced loss of growth capacity is associated with maintenance of plasma membrane integrity dependent on UTH1, suggesting that selective degradation of altered mitochondria is required for a regulated loss of growth capacity.
Collapse
Affiliation(s)
- Ingrid Kissová
- UMR5095 CNRS/Université de Bordeaux 2, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kundu M, Thompson CB. Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 2006; 12 Suppl 2:1484-9. [PMID: 16247496 DOI: 10.1038/sj.cdd.4401780] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- M Kundu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
50
|
Reekmans R, De Smet K, Chen C, Van Hummelen P, Contreras R. Old yellow enzyme interferes with Bax-induced NADPH loss and lipid peroxidation in yeast. FEMS Yeast Res 2005; 5:711-25. [PMID: 15851100 DOI: 10.1016/j.femsyr.2004.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/19/2022] Open
Abstract
The yeast transcriptional response to murine Bax expression was compared with the changes induced by H(2)O(2) treatment via microarray technology. Although most of the Bax-responsive genes were also triggered by H(2)O(2) treatment, OYE3, ICY2, MLS1 and BTN2 were validated to have a Bax-specific transcriptional response not shared with the oxidative stress trigger. In knockout experiments, only deletion of OYE3, coding for yeast Old yellow enzyme, attenuated the rate of Bax-induced growth arrest, cell death and NADPH decrease. Lipid peroxidation was completely absent in DeltaOYE3 expressing Bax. However, the absence of OYE3 sensitized yeast cells to H(2)O(2)-induced cell death, and increased the rate of NADPH decrease and lipid peroxidation. Our results clearly indicate that OYE3 interferes with Bax- and H(2)O(2)-induced lipid peroxidation and cell death in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Rieka Reekmans
- Unit of Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Belgium
| | | | | | | | | |
Collapse
|