1
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
2
|
Maggiolo AO, Mahajan S, Rees DC, Clemons WM. Intradimeric Walker A ATPases: Conserved Features of A Functionally Diverse Family. J Mol Biol 2023; 435:167965. [PMID: 37330285 DOI: 10.1016/j.jmb.2023.167965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nucleoside-triphosphate hydrolases (NTPases) are a diverse, but essential group of enzymes found in all living organisms. NTPases that have a G-X-X-X-X-G-K-[S/T] consensus sequence (where X is any amino acid), known as the Walker A or P-loop motif, constitute a superfamily of P-loop NTPases. A subset of ATPases within this superfamily contains a modified Walker A motif, X-K-G-G-X-G-K-[S/T], wherein the first invariant lysine residue is essential to stimulate nucleotide hydrolysis. Although the proteins in this subset have vastly differing functions, ranging from electron transport during nitrogen fixation to targeting of integral membrane proteins to their correct membranes, they have evolved from a shared ancestor and have thus retained common structural features that affect their functions. These commonalities have only been disparately characterized in the context of their individual proteins systems, but have not been generally annotated as features that unite the members of this family. In this review, we report an analysis based on the sequences, structures, and functions of several members in this family that highlight their remarkable similarities. A principal feature of these proteins is their dependence on homodimerization. Since their functionalities are heavily influenced by changes that happen in conserved elements at the dimer interface, we refer to the members of this subclass as intradimeric Walker A ATPases.
Collapse
Affiliation(s)
- Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shivansh Mahajan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
3
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
4
|
Wang N, Zhang T, Du S, Zhou Y, Chen Y. How Do MinC-D Copolymers Act on Z-Ring Localization Regulation? A New Model of Bacillus subtilis Min System. Front Microbiol 2022; 13:841171. [PMID: 35495694 PMCID: PMC9051478 DOI: 10.3389/fmicb.2022.841171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Division site selection in rod-shaped bacteria is strictly regulated spatially by the Min system. Although many sophisticated studies, including in vitro recombination, have tried to explain these regulations, the precise mechanisms are still unclear. A previous model suggested that the concentration gradient of MinC, an FtsZ inhibitor, regulates the position of the Z-ring in the cell. In Escherichia coli, the oscillation of MinCDE proteins leads to a gradient of Min proteins with the average concentration being lowest in the middle and highest near the poles. In contrast to the Min system of E. coli, the Min system of Bacillus subtilis lacks MinE and exhibits a stable concentration distribution, which is regulated by the binding of DivIVA to the negative curvature membrane. The Min proteins first accumulate at the poles of the cell and relocalize near the division site when the membrane invagination begins. It is inconsistent with the previous model of high concentrations of MinC inhibiting Z-ring formation. Our preliminary data here using electron microscopy and light scattering technology reported that B. subtilis MinC (BsMinC) and MinD (BsMinD) also assembled into large straight copolymers in the presence of ATP, similar to the Min proteins of E. coli. Their assembly is fast and dominated by MinD concentration. When BsMinD is 5 μM, a clear light scattering signal can be observed even at 0.3 μM BsMinC. Here, we propose a new model based on the MinC-D copolymers. In our hypothesis, it is not the concentration gradient of MinC, but the MinC-D copolymer assembled in the region of high concentration MinD that plays a key role in the regulation of Z-ring positioning. In B. subtilis, the regions with high MinD concentration are initially at both ends of the cell and then appear at midcell when cell division began. MinC-D copolymer will polymerize and form a complex with MinJ and DivIVA. These complexes capture FtsZ protofilaments to prevent their diffusion away from the midcell and narrow the Z-ring in the middle of the cell.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Tingting Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Shuheng Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yao Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- *Correspondence: Yaodong Chen,
| |
Collapse
|
5
|
Zhang Y, Zhang X, Cui H, Ma X, Hu G, Wei J, He Y, Hu Y. Residue 49 of AtMinD1 Plays a Key Role in the Guidance of Chloroplast Division by Regulating the ARC6-AtMinD1 Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:752790. [PMID: 34880885 PMCID: PMC8646090 DOI: 10.3389/fpls.2021.752790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Chloroplasts evolved from a free-living cyanobacterium through endosymbiosis. Similar to bacterial cell division, chloroplasts replicate by binary fission, which is controlled by the Minicell (Min) system through confining FtsZ ring formation at the mid-chloroplast division site. MinD, one of the most important members of the Min system, regulates the placement of the division site in plants and works cooperatively with MinE, ARC3, and MCD1. The loss of MinD function results in the asymmetric division of chloroplasts. In this study, we isolated one large dumbbell-shaped and asymmetric division chloroplast Arabidopsis mutant Chloroplast Division Mutant 75 (cdm75) that contains a missense mutation, changing the arginine at residue 49 to a histidine (R49H), and this mutant point is located in the N-terminal Conserved Terrestrial Sequence (NCTS) motif of AtMinD1, which is only typically found in terrestrial plants. This study provides sufficient evidence to prove that residues 1-49 of AtMinD1 are transferred into the chloroplast, and that the R49H mutation does not affect the function of the AtMinD1 chloroplast transit peptide. Subsequently, we showed that the point mutation of R49H could remove the punctate structure caused by residues 1-62 of the AtMinD1 sequence in the chloroplast, suggesting that the arginine in residue 49 (Arg49) is essential for localizing the punctate structure of AtMinD11 - 62 on the chloroplast envelope. Unexpectedly, we found that AtMinD1 could interact directly with ARC6, and that the R49H mutation could prevent not only the previously observed interaction between AtMinD1 and MCD1 but also the interaction between AtMinD1 and ARC6. Thus, we believe that these results show that the AtMinD1 NCTS motif is required for their protein interaction. Collectively, our results show that AtMinD1 can guide the placement of the division site to the mid chloroplast through its direct interaction with ARC6 and reveal the important role of AtMinD1 in regulating the AtMinD1-ARC6 interaction.
Collapse
|
6
|
Hakim P, Hoang Y, Vecchiarelli AG. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Mol Biol Cell 2021; 32:ar11. [PMID: 34406783 PMCID: PMC8684754 DOI: 10.1091/mbc.e21-03-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos.
Collapse
Affiliation(s)
- Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
8
|
Hajredini F, Piserchio A, Ghose R. Long-range dynamic correlations regulate the catalytic activity of the bacterial tyrosine kinase Wzc. SCIENCE ADVANCES 2020; 6:eabd3718. [PMID: 33355134 PMCID: PMC11206214 DOI: 10.1126/sciadv.abd3718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Escherichia coli Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange. We find that the monomeric Wzc CD preferentially populates states characterized by distortions at its oligomerization interfaces and by catalytic element conformations that allow high-affinity interactions with ADP but not with ATP·Mg2+ We propose that oligomer formation stabilizes the intermonomer interfaces and results in catalytic element conformations suitable for optimally engaging ATP·Mg2+, facilitating exchange with bound ADP. This sequence of events, oligomerization, i.e., substrate binding, before engaging ATP·Mg2+, facilitates optimal autophosphorylation by preventing a futile cycle of ATP hydrolysis.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
9
|
Corrales-Guerrero L, He B, Refes Y, Panis G, Bange G, Viollier PH, Steinchen W, Thanbichler M. Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Res 2020; 48:4769-4779. [PMID: 32232335 PMCID: PMC7229837 DOI: 10.1093/nar/gkaa192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Collapse
Affiliation(s)
| | - Binbin He
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Yacine Refes
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Gert Bange
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Wieland Steinchen
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, D-35043 Marburg, Germany.,Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
10
|
Oliva M, Calia C, Ferrara M, D'Addabbo P, Scrascia M, Mulè G, Monno R, Pazzani C. Antimicrobial resistance gene shuffling and a three-element mobilisation system in the monophasic Salmonella typhimurium strain ST1030. Plasmid 2020; 111:102532. [PMID: 32853586 DOI: 10.1016/j.plasmid.2020.102532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Abstract
In this study we describe the genetic elements and the antimicrobial resistance units (RUs) harboured by the Salmonella Typhimurium monophasic variant 1,4,[5],12:i:- strain ST1030. Of the three identified RUs two were chromosomal, RU1 (IS26-blaTEM-1-IS26-strAB-sul2- IS26) and RU2 (IS26-tetR(B)-tetA(B)-ΔIS26), and one, RU3 (a sul3-associated class 1 integron with cassette array dfrA12-orfF-aadA2-cmlA1-aadA1), was embedded in a Tn21-derived element harboured by the conjugative I1 plasmid pST1030-1A. IS26 elements mediated the antimicrobial resistance gene (ARG) shuffling and this gave rise to pST1030-1A derivatives with different sets of ARGs. ST1030 also harboured two ColE1-like plasmids of which one, pST1030-2A, was mobilisable and the target of an intracellular translocation of the Tn21-derived element; the second (pST1030-3) was an orphan mob-associated oriT plasmid co-transferred with pST1030-1A and pST1030-2A. pST1030-2A and pST1030-3 also carried a parA gene and a type III restriction modification system, respectively. Overall analysis of our data reinforces the role played by IS26, Tn21-derived elements and non-conjugative plasmids in the spread of ARGs and supplies the first evidence, at least in Salmonella, for the identification of a natural isolate harbouring a three-element mobilisation system in the same cell.
Collapse
Affiliation(s)
- M Oliva
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - C Calia
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - M Ferrara
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - P D'Addabbo
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - M Scrascia
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - G Mulè
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - R Monno
- Department of Basic Medical Sciences Neurosciences and Sense Organs Medical Faculty, University of Bari Piazza G. Cesare Policlinico, 70124 Bari, Italy
| | - C Pazzani
- Department of Biology, University of Bari, via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
11
|
Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Biophys Rev 2020; 12:1041-1054. [PMID: 32651904 PMCID: PMC7429643 DOI: 10.1007/s12551-020-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.
Collapse
Affiliation(s)
- Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
Wu Z, Wei W, Zhou Y, Guo H, Zhao J, Liao Q, Chen L, Zhang X, Zhou L. Integrated Quantitative Proteomics and Metabolome Profiling Reveal MSMEG_6171 Overexpression Perturbing Lipid Metabolism of Mycobacterium smegmatis Leading to Increased Vancomycin Resistance. Front Microbiol 2020; 11:1572. [PMID: 32793136 PMCID: PMC7393984 DOI: 10.3389/fmicb.2020.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/17/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the treatment of tuberculosis is once again facing a severe situation because the existing antituberculosis drugs have become weaker and weaker with the emergence of drug-resistant Mycobacterium tuberculosis (Mtb). The studies of cell division and cell cycle-related factors in Mtb are particularly important for the development of new drugs with broad-spectrum effects. Mycobacterium smegmatis (Msm) has been used as a model organism to study the molecular, physiological, and drug-resistant mechanisms of Mtb. Bioinformatics analysis has predicted that MSMEG_6171 is a MinD-like protein of the septum site-determining protein family associated with cell division in Mycobacterium smegmatis. In our study, we use ultrastructural analysis, proteomics, metabolomics, and molecular biology techniques to comprehensively investigate the function of MSMEG_6171. Overexpression of MSMEG_6171 in Msm resulted in elongated cells, suggesting an important role of MSMEG_6171 in regulating cell wall morphology. The MSMEG_6171 overexpression could enhance the bacterial resistance to vancomycin, ethionamide, meropenem, and cefamandole. The MSMEG_6171 overexpression could alter the lipid metabolism of Msm to cause the changes on cellular biofilm property and function, which enhances bacterial resistance to antibiotics targeting cell wall synthesis. MSMEG_6171 could also induce the glyceride and phospholipid alteration in vivo to exhibit the pleiotropic phenotypes and various cellular responses. The results showed that amino acid R249 in MSMEG_6171 was a key site that can affect the level of bacterial drug resistance, suggesting that ATPase activity is required for function.
Collapse
Affiliation(s)
- Zhuhua Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Wenjing Wei
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Huixin Guo
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiao Zhao
- School of Medicine, Jinan University, Guangzhou, China
| | - Qinghua Liao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Xiaoli Zhang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Lin Zhou
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
13
|
Palanisamy N, Öztürk MA, Akmeriç EB, Di Ventura B. C-terminal eYFP fusion impairs Escherichia coli MinE function. Open Biol 2020; 10:200010. [PMID: 32456552 PMCID: PMC7276532 DOI: 10.1098/rsob.200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo, in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Mehmet Ali Öztürk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Emir Bora Akmeriç
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Barbara Di Ventura
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Schumacher MA, Henderson M, Zhang H. Structures of maintenance of carboxysome distribution Walker-box McdA and McdB adaptor homologs. Nucleic Acids Res 2019; 47:5950-5962. [PMID: 31106331 PMCID: PMC6582323 DOI: 10.1093/nar/gkz314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Carboxysomes, protein-coated organelles in cyanobacteria, are important in global carbon fixation. However, these organelles are present at low copy in each cell and hence must be segregated to ensure transmission from one generation to the next. Recent studies revealed that a DNA partition-like ParA-ParB system mediates carboxysome maintenance, called McdA-McdB. Here, we describe the first McdA and McdB homolog structures. McdA is similar to partition ParA Walker-box proteins, but lacks the P-loop signature lysine involved in ATP binding. Strikingly, a McdA-ATP structure shows that a lysine distant from the P-loop and conserved in McdA homologs, enables ATP-dependent nucleotide sandwich dimer formation. Similar to partition ParA proteins this ATP-bound form binds nonspecific-DNA. McdB, which we show directly binds McdA, harbors a unique fold and appears to form higher-order oligomers like partition ParB proteins. Thus, our data reveal a new signature motif that enables McdA dimer formation and indicates that, similar to DNA segregation, carboxysome maintenance systems employ Walker-box proteins as DNA-binding motors while McdB proteins form higher order oligomers, which could function as adaptors to link carboxysomes and provide for stable transport by the McdA proteins.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
MinC N- and C-Domain Interactions Modulate FtsZ Assembly, Division Site Selection, and MinD-Dependent Oscillation in Escherichia coli. J Bacteriol 2019; 201:JB.00374-18. [PMID: 30455283 DOI: 10.1128/jb.00374-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
The Min system in Escherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillation in vivo MinC antagonizes FtsZ polymerization, and in vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions in minC that are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinD in vitro, as well as mutations that modify the observed in vivo oscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinC in vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCE Bacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. In Escherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.
Collapse
|
16
|
Grossman JD, Camire EJ, Perlstein DL. Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35-Cfd1 Iron-Sulfur Cluster Scaffold as a Case Study. Methods Enzymol 2018; 599:293-325. [PMID: 29746244 DOI: 10.1016/bs.mie.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleotide hydrolases play integral yet poorly understood roles in several metallocluster biosynthetic pathways. For example, the cytosolic iron-sulfur cluster assembly (CIA) is initiated by the CIA scaffold, an ATPase which builds new iron-sulfur clusters for proteins localized to the cytosol and the nucleus in eukaryotic organisms. While in vivo studies have demonstrated the scaffold's nucleotide hydrolase domain is vital for its function, in vitro approaches have not revealed tight allosteric coupling between the cluster scaffolding site and the ATPase site. Thus, the role of ATP hydrolysis has been hard to pinpoint. Herein, we describe methods to probe the nucleotide affinity and hydrolysis activity of the CIA scaffold from yeast, which is comprised of two homologous polypeptides called Nbp35 and Cfd1. In particular, we report two different equilibrium binding assays that make use of commercially available fluorescent nucleotide analogs. Importantly, these assays can be applied to probe nucleotide affinity of both the apo- and holo-forms of the CIA scaffold. Generally, these fluorescent nucleotide analogs have been underutilized to probe metal trafficking NTPase because one of the most commonly used probes, mantATP, which is labeled with the methylanthraniloyl probe via the 2' or 3' sugar hydroxyls, has an absorption which overlaps with the UV-Vis features of many metal-binding proteins. However, by exploiting analogs like BODIPY-FL and trinitrophenyl-labeled nucleotides which have better photophysical properties for metalloprotein applications, these approaches have the potential to reveal the mechanistic underpinnings of NTPases required for metallocluster biosynthesis.
Collapse
|
17
|
Nie H, Xiao Y, Liu H, He J, Chen W, Huang Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:571-580. [PMID: 28517238 DOI: 10.1111/1758-2229.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
FleN generally functions as an antagonist of FleQ in regulating flagellar genes and biofilm matrix related genes in Pseudomonas aeruginosa. Here, we found that in Pseudomonas putida KT2440, FleN and FleQ play a synergistic role in regulating two biofilm matrix coding operons, lapA and bcs. FleN deletion decreased the transcription of lapA and increased the transcription of bcs operon, and the same trend was observed in fleQ deletion mutant before. In vitro experiments showed that FleN promoted the binding of FleQ to the lapA/bcs promoter DNA especially in the presence of ATP. Both phenotype observation and transcription analysis showed that, similar to fleQ deletion, fleN deletion significantly weaken the effect of high c-di-GMP level on biofilm formation, surface winkle phenotype and expression of lapA and bcs operons. Mutagenesis of the putative ATP binding motif in FleNK21Q revealed that FleN ATPase activity played an essential role in the regulation of flagellar number and swimming motility but was not critical for biofilm formation. Our results revealed that FleN was not an antagonist of FleQ but a synergistic factor of FleQ in regulating the two biofilm matrix coding operons in P. putida KT2440.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
18
|
MinD directly interacting with FtsZ at the H10 helix suggests a model for robust activation of MinC to destabilize FtsZ polymers. Biochem J 2017; 474:3189-3205. [PMID: 28743721 DOI: 10.1042/bcj20170357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022]
Abstract
Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC-FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD-FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.
Collapse
|
19
|
The Transmembrane Morphogenesis Protein gp1 of Filamentous Phages Contains Walker A and Walker B Motifs Essential for Phage Assembly. Viruses 2017; 9:v9040073. [PMID: 28397779 PMCID: PMC5408679 DOI: 10.3390/v9040073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/26/2023] Open
Abstract
In contrast to lytic phages, filamentous phages are assembled in the inner membrane and secreted across the bacterial envelope without killing the host. For assembly and extrusion of the phage across the host cell wall, filamentous phages code for membrane-embedded morphogenesis proteins. In the outer membrane of Escherichia coli, the protein gp4 forms a pore-like structure, while gp1 and gp11 form a complex in the inner membrane of the host. By comparing sequences with other filamentous phages, we identified putative Walker A and B motifs in gp1 with a conserved lysine in the Walker A motif (K14), and a glutamic and aspartic acid in the Walker B motif (D88, E89). In this work we demonstrate that both, Walker A and Walker B, are essential for phage production. The crucial role of these key residues suggests that gp1 might be a molecular motor driving phage assembly. We further identified essential residues for the function of the assembly complex. Mutations in three out of six cysteine residues abolish phage production. Similarly, two out of six conserved glycine residues are crucial for gp1 function. We hypothesise that the residues represent molecular hinges allowing domain movement for nucleotide binding and phage assembly.
Collapse
|
20
|
Park KT, Du S, Lutkenhaus J. MinC/MinD copolymers are not required for Min function. Mol Microbiol 2015; 98:895-909. [PMID: 26268537 DOI: 10.1111/mmi.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD, and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild-type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild-type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
21
|
Kretschmer S, Schwille P. Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies. Life (Basel) 2014; 4:915-28. [PMID: 25513760 PMCID: PMC4284474 DOI: 10.3390/life4040915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
For reconstruction of controlled cell division in a minimal cell model, or protocell, a positioning mechanism that spatially regulates division is indispensable. In Escherichia coli, the Min proteins oscillate from pole to pole to determine the division site by inhibition of the primary divisome protein FtsZ anywhere but in the cell middle. Remarkably, when reconstituted under defined conditions in vitro, the Min proteins self-organize into spatiotemporal patterns in the presence of a lipid membrane and ATP. We review recent progress made in studying the Min system in vitro, particularly focusing on the effects of various physicochemical parameters and boundary conditions on pattern formation. Furthermore, we discuss implications and challenges for utilizing the Min system for division site placement in protocells.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany.
| |
Collapse
|
22
|
Jeoung JH, Goetzl S, Hennig SE, Fesseler J, Wörmann C, Dendra J, Dobbek H. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation. Biol Chem 2014; 395:545-58. [PMID: 24477517 DOI: 10.1515/hsz-2013-0290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/15/2022]
Abstract
The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation.
Collapse
|
23
|
Bartosik AA, Glabski K, Jecz P, Lasocki K, Mikosa M, Plochocka D, Thomas CM, Jagura-Burdzy G. Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. MICROBIOLOGY-SGM 2014; 160:2406-2420. [PMID: 25139949 PMCID: PMC4219104 DOI: 10.1099/mic.0.081216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.
Collapse
Affiliation(s)
- Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Paulina Jecz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Lasocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Malgorzata Mikosa
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
24
|
Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 2013; 110:18478-83. [PMID: 24167275 DOI: 10.1073/pnas.1318972110] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor FleQ is a bacterial AAA+ ATPase enhancer-binding protein that is the master activator of flagella gene expression in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Homologs of FleQ are present in all Pseudomonas species and in many polarly flagellated gamma proteobacteria. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls the transition between planktonic and biofilm modes of growth in bacteria in response to diverse environmental signals. C-di-GMP binds to FleQ to dampen its activity, causing down-regulation of flagella gene expression. This action is potentiated in the simultaneous presence of another protein, FleN. We explored the effect of c-di-GMP and FleN on the ATPase activity of FleQ and found that a relatively low concentration of c-di-GMP competitively inhibited FleQ ATPase activity, suggesting that c-di-GMP competes with ATP for binding to the Walker A motif of FleQ. Confirming this, a FleQ Walker A motif mutant failed to bind c-di-GMP. FleN, whose gene is regulated by FleQ, also inhibited FleQ ATPase activity, and FleQ ATPase activity was much more inhibited by c-di-GMP in the presence of FleN than in its absence. These results indicate that FleN and c-di-GMP cooperate to inhibit FleQ activity and, by extension, flagella synthesis in P. aeruginosa. The Walker A motif of FleQ is perfectly conserved, opening up the possibility that other AAA+ ATPases may respond to c-di-GMP.
Collapse
|
25
|
SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 2013; 20:776-80. [DOI: 10.1038/nsmb.2605] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
|
26
|
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. Dev Biol 2013; 380:243-58. [PMID: 23685253 DOI: 10.1016/j.ydbio.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022]
Abstract
Nucleotide binding protein 1 (Nubp1) is a highly conserved phosphate loop (P-loop) ATPase involved in diverse processes including iron-sulfur protein assembly, centrosome duplication and lung development. Here, we report the cloning, expression and functional characterization of Xenopus laevis Nubp1. We show that xNubp1 is expressed maternally, displays elevated expression in neural tissues and is required for convergent extension movements and neural tube closure. In addition, xNubp1knockdown leads to defective ciliogenesis of the multi-ciliated cells of the epidermis as well as the monociliated cells of the gastrocoel roof plate. Specifically, xNubp1 is required for basal body migration, spacing and docking in multi-ciliated cells and basal body positioning and axoneme elongation in monociliated gastrocoel roof plate cells. Live imaging of the different pools of actin and basal body migration during the process of ciliated cell intercalation revealed that two independent pools of actin are present from the onset of cell intercalation; an internal network surrounding the basal bodies, anchoring them to the cell cortex and an apical pool of punctate actin which eventually matures into the characteristic apical actin network. We show that xNubp1 colocalizes with the apical actin network of multiciliated cells and that problems in basal body transport in xNubp1 morphants are associated with defects of the internal network of actin, while spacing and polarity issues are due to a failure of the apical and sub-apical actin pools to mature into a network. Effects of xNubp1 knockdown on the actin cytoskeleton are independent of RhoA localization and activation, suggesting that xNubp1 may have a direct role in the regulation of the actin cytoskeleton.
Collapse
|
27
|
Nguyen THK, Doan VTT, Ha LD, Nguyen HN. Molecular Cloning, Expression of minD Gene from Lactobacillus acidophilus VTCC-B-871 and Analyses to Identify Lactobacillus rhamnosus PN04 from Vietnam Hottuynia cordata Thunb. Indian J Microbiol 2013; 53:385-90. [PMID: 24426140 DOI: 10.1007/s12088-013-0384-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
The minD gene encoding an inhibitor cell division MinD homolog from Lactobacillus acidophilus VTCC-B-871 was cloned. We showed that there were 97 % homology between minD genes of L. acidophilus VTCC-B-871 and Lactobacillus rhamnosus GG and Lactobacillus rhamnosus Lc705. Based on the analysis of the DNA sequence data from the L. rhamnosus genome project and sequenced minD gene of L. acidophilus VTCC-B-871, a pair of primers was designed to identified the different minD genes from L. acidophilus ATCC 4356, L. rhamnosus ATCC 11443. Besides, the polymerase chain reaction product of minD gene was also obtained in L. rhamnosus PN04, a strain was isolated from Vietnamese Hottuynia cordata Thunb. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of MinD homologs from L. acidophilus VTCC-B-871 with the other strains and compared the predicted three-dimension structure of L. acidophilus VTCC-B-871 MinD with Escherichia coli MinD, there are similarity that showed evolution of these strains. The overexpression of L. acidophilus VTCC-B-871 MinD in E. coli led to cell filamentation in IPTG and morphology changes in different sugar stresses, interestingly. The present study is the first report characterizing the Lactobacilus MinD homolog that will be useful in probiotic field.
Collapse
Affiliation(s)
- Tu Hoang Khue Nguyen
- School of Biotechnology, International University, Hochiminh City National University, Quarter 6, Linh Trung Ward, Thu Duc District, Hochiminh City, Vietnam
| | - Vinh Thi Thanh Doan
- School of Biotechnology, International University, Hochiminh City National University, Quarter 6, Linh Trung Ward, Thu Duc District, Hochiminh City, Vietnam
| | - Ly Dieu Ha
- Department of Reference Substances, Institute for Drug Quality Control, Hochiminh City, Vietnam
| | - Huu Ngoc Nguyen
- School of Biotechnology, International University, Hochiminh City National University, Quarter 6, Linh Trung Ward, Thu Duc District, Hochiminh City, Vietnam
| |
Collapse
|
28
|
Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of arsenic uptake and efflux. CURRENT TOPICS IN MEMBRANES 2013; 69:325-58. [PMID: 23046656 DOI: 10.1016/b978-0-12-394390-3.00012-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency's Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)(3), which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
29
|
Sasaki D, Watanabe S, Matsumi R, Shoji T, Yasukochi A, Tagashira K, Fukuda W, Kanai T, Atomi H, Imanaka T, Miki K. Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 2013; 425:1627-40. [PMID: 23399544 DOI: 10.1016/j.jmb.2013.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
HypB (metal-binding GTPase) and HypA (nickel metallochaperone) are required for nickel insertion into [NiFe] hydrogenase. However, the HypB homolog proteins are not found in some archaeal species including Thermococcales. In this article, we identify a novel archaeal Mrp/MinD family ATPase-type HypB from Thermococcus kodakarensis (Tk-mmHypB) and determine its crystal structure. The mmhypB gene is conserved among species lacking the hypB gene and is located adjacent to the hypA gene on their genome. Deletion of the mmhypB gene leads to a significant reduction in hydrogen-dependent growth of T. kodakarensis, which is restored by nickel supplementation. The monomer structure of Tk-mmHypB is similar to those of the Mrp/MinD family ATPases. The ADP molecules are tightly bound to the protein. Isothermal titration calorimetry shows that Tk-mmHypB binds ATP with a K(d) value of 84 nM. ADP binds more tightly than does ATP, with a K(d) value of 15 nM. The closed Tk-mmHypB dimer in the crystallographic asymmetric unit is consistent with the ATP-hydrolysis-deficient dimer of the Mrp/MinD family Soj/MinD proteins. Structural comparisons with these proteins suggest the ATP-binding dependent conformational change and rearrangement of the Tk-mmHypB dimer. These observations imply that the nickel insertion process during the [NiFe] hydrogenase maturation is performed by HypA, mmHypB, and a nucleotide exchange factor in these archaea.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
31
|
Park KT, Wu W, Lovell S, Lutkenhaus J. Mechanism of the asymmetric activation of the MinD ATPase by MinE. Mol Microbiol 2012; 85:271-81. [PMID: 22651575 DOI: 10.1111/j.1365-2958.2012.08110.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MinD is a component of the Min system involved in the spatial regulation of cell division. It is an ATPase in the MinD/ParA/Mrp deviant Walker A motif family which is within the P loop GTPase superfamily. Its ATPase activity is stimulated by MinE; however, the mechanism of this activation is unclear. MinD forms a symmetric dimer with two binding sites for MinE; however, a recent model suggested that MinE occupying one site was sufficient for ATP hydrolysis. By generating heterodimers with one binding site for MinE we show that one binding site is sufficient for stimulation of the MinD ATPase. Furthermore, comparison of structures of MinD and related proteins led us to examine the role of N45 in the switch I region. An asparagine at this position is conserved in four of the deviant Walker A motif subfamilies (MinD, chromosomal ParAs, Get3 and FleN) and we find that N45 in MinD is essential for MinE-stimulated ATPase activity and suggest that it is a key residue affected by MinE binding.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
32
|
Schumacher MA, Ye Q, Barge MT, Zampini M, Barillà D, Hayes F. Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation. J Biol Chem 2012; 287:26146-54. [PMID: 22674577 DOI: 10.1074/jbc.m112.373696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Segregation of the bacterial multidrug resistance plasmid TP228 requires the centromere-binding protein ParG, the parH centromere, and the Walker box ATPase ParF. The cycling of ParF between ADP- and ATP-bound states drives TP228 partition; ATP binding stimulates ParF polymerization, which is essential for segregation, whereas ADP binding antagonizes polymerization and inhibits DNA partition. The molecular mechanism involved in this adenine nucleotide switch is unclear. Moreover, it is unknown how any Walker box protein polymerizes in an ATP-dependent manner. Here, we describe multiple ParF structures in ADP- and phosphomethylphosphonic acid adenylate ester (AMPPCP)-bound states. ParF-ADP is monomeric but dimerizes when complexed with AMPPCP. Strikingly, in ParF-AMPPCP structures, the dimers interact to create dimer-of-dimer "units" that generate a specific linear filament. Mutation of interface residues prevents both polymerization and DNA segregation in vivo. Thus, these data provide insight into a unique mechanism by which a Walker box protein forms polymers that involves the generation of ATP-induced dimer-of-dimer building blocks.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Lutkenhaus J. The ParA/MinD family puts things in their place. Trends Microbiol 2012; 20:411-8. [PMID: 22672910 DOI: 10.1016/j.tim.2012.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 01/09/2023]
Abstract
Bacteria must segregate their DNA and position a septum to grow and divide. In many bacteria, MinD is involved in spatial regulation of the cytokinetic Z ring, and ParAs are involved in chromosome and plasmid segregation. The use of the MinD/ParA family to provide positional information for spatial organization continues to expand with the recognition that orphan ParAs are required for segregating cytoplasmic protein clusters and the polar localization of chemotaxis proteins, conjugative transfer machinery, type IV pili, and cellulose synthesis. Also, some bacteria lacking MinD use orphan ParAs to regulate cell division. Positioning of MinD/ParA proteins is either due to self-organization on a surface or reliance on a landmark protein that functions as a molecular beacon.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
34
|
Baraquet C, Murakami K, Parsek MR, Harwood CS. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 2012; 40:7207-18. [PMID: 22581773 PMCID: PMC3424551 DOI: 10.1093/nar/gks384] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) modulates the transition between planktonic and biofilm life styles. In response to c-di-GMP, the enhancer binding protein FleQ from Pseudomonas aeruginosa derepresses the expression of Pel exopolysaccharide genes required for biofilm formation when a second protein, FleN is present. A model is that binding of c-di-GMP to FleQ induces its dissociation from the pelA promoter allowing RNA polymerase to access this site. To test this, we analyzed pelA DNA footprinting patterns with various combinations of FleQ, FleN and c-di-GMP, coupled to in vivo promoter activities. FleQ binds to two sites called box 1 and 2. FleN binds to FleQ bound at these sites causing the intervening DNA to bend. Binding of c-di-GMP to FleQ relieves the DNA distortion but FleQ remains bound to the two sites. Analysis of wild type and mutated versions of pelA-lacZ transcriptional fusions suggests that FleQ represses gene expression from box 2 and activates gene expression in response to c-di-GMP from box 1. The role of c-di-GMP is thus to convert FleQ from a repressor to an activator. The mechanism of action of FleQ is distinct from that of other bacterial transcription factors that both activate and repress gene expression from a single promoter.
Collapse
Affiliation(s)
- Claudine Baraquet
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | | | | | | |
Collapse
|
35
|
Chartron JW, Clemons WM, Suloway CJM. The complex process of GETting tail-anchored membrane proteins to the ER. Curr Opin Struct Biol 2012; 22:217-24. [PMID: 22444563 DOI: 10.1016/j.sbi.2012.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
Biosynthesis of membrane proteins requires that hydrophobic transmembrane (TM) regions be shielded from the cytoplasm while being directed to the correct membrane. Tail-anchored (TA) membrane proteins, characterized by a single C-terminal TM, pose an additional level of complexity because they must be post-translationally targeted. In eukaryotes, the GET pathway shuttles TA-proteins to the endoplasmic reticulum. The key proteins required in yeast (Sgt2 and Get1-5) have been under extensive structural and biochemical investigation during recent years. The central protein Get3 utilizes nucleotide linked conformational changes to facilitate substrate loading and targeting. Here we analyze this complex process from a structural perspective, as understood in yeast, and further postulate on similar pathways in other domains of life.
Collapse
Affiliation(s)
- Justin W Chartron
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | | | | |
Collapse
|
36
|
Xu Q, Christen B, Chiu HJ, Jaroszewski L, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Figurski DH, Shapiro L, Wilson IA. Structure of the pilus assembly protein TadZ from Eubacterium rectale: implications for polar localization. Mol Microbiol 2012; 83:712-27. [PMID: 22211578 DOI: 10.1111/j.1365-2958.2011.07954.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg(2+) , was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker-A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N-terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped-down 'active site'. Homology modelling of the N-terminal atypical receiver domain of CpaE indicates that it has a conserved protein-protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.
Collapse
|
37
|
Perez-Cheeks BA, Planet PJ, Sarkar IN, Clock SA, Xu Q, Figurski DH. The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans. Mol Microbiol 2012; 83:694-711. [PMID: 22239271 DOI: 10.1111/j.1365-2958.2011.07955.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans establishes a tenacious biofilm that is important for periodontal disease. The tad locus encodes the components for the secretion and biogenesis of Flp pili, which are necessary for the biofilm to form. TadZ is required, but its function has been elusive. We show that tadZ genes belong to the parA/minD superfamily of genes and that TadZ from A. actinomycetemcomitans (AaTadZ) forms a polar focus in the cell independent of any other tad locus protein. Mutations indicate that regions in AaTadZ are required for polar localization and biofilm formation. We show that AaTadZ dimerizes and that all TadZ proteins are predicted to have a Walker-like A box. However, they all lack the conserved lysine at position 6 (K6) present in the canonical Walker-like A box. When the alanine residue (A6) in the atypical Walker-like A box of AaTadZ was converted to lysine, the mutant protein remained able to dimerize and localize, but it was unable to allow the formation of a biofilm. Another essential biofilm protein, the ATPase (AaTadA), also localizes to a pole. However, its correct localization depends on the presence of AaTadZ. We suggest that the TadZ proteins mediate polar localization of the Tad secretion apparatus.
Collapse
Affiliation(s)
- Brenda A Perez-Cheeks
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schumacher MA. Bacterial plasmid partition machinery: a minimalist approach to survival. Curr Opin Struct Biol 2011; 22:72-9. [PMID: 22153351 DOI: 10.1016/j.sbi.2011.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 10/25/2022]
Abstract
The accurate segregation or partition of replicated DNA is essential for ensuring stable genome transmission. Partition of bacterial plasmids requires only three elements: a centromere-like DNA site and two proteins, a partition NTPase, and a centromere-binding protein (CBP). Because of this simplicity, partition systems have served as tractable model systems to study the fundamental molecular mechanisms required for DNA segregation at an atomic level. In the last few years, great progress has been made in this endeavor. Surprisingly, these studies have revealed that although the basic partition components are functionally conserved between three types of plasmid partition systems, these systems employ distinct mechanisms of DNA segregation. This review summarizes the molecular insights into plasmid segregation that have been achieved through these recent structural studies.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Tsukanov R, Reshes G, Carmon G, Fischer-Friedrich E, Gov NS, Fishov I, Feingold M. Timing of Z-ring localization in Escherichia coli. Phys Biol 2011; 8:066003. [PMID: 22015938 DOI: 10.1088/1478-3975/8/6/066003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacterial cell division takes place in three phases: Z-ring formation at midcell, followed by divisome assembly and building of the septum per se. Using time-lapse microscopy of live bacteria and a high-precision cell edge detection method, we have previously found the true time for the onset of septation, τ(c), and the time between consecutive divisions, τ(g). Here, we combine the above method with measuring the dynamics of the FtsZ-GFP distribution in individual Escherichia coli cells to determine the Z-ring positioning time, τ(z). To analyze the FtsZ-GFP distribution along the cell, we used the integral fluorescence profile (IFP), which was obtained by integrating the fluorescence intensity across the cell width. We showed that the IFP may be approximated by an exponential peak and followed the peak evolution throughout the cell cycle, to find a quantitative criterion for the positioning of the Z-ring and hence the value of τ(z). We defined τ(z) as the transition from oscillatory to stable behavior of the mean IFP position. This criterion was corroborated by comparison of the experimental results to a theoretical model for the FtsZ dynamics, driven by Min oscillations. We found that τ(z) < τ(c) for all the cells that were analyzed. Moreover, our data suggested that τ(z) is independent of τ(c), τ(g) and the cell length at birth, L(0). These results are consistent with the current understanding of the Z-ring positioning and cell septation processes.
Collapse
Affiliation(s)
- R Tsukanov
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
Okuno T, Ohgita T, Sasa T, Nonaka A, Funasaki N, Kogure K. Fluorescence polarization analysis for revealing molecular mechanism of nucleotide-dependent phospholipid membrane binding of MinD adenosine 5'-triphosphate, adenosine triphosphatase. Biol Pharm Bull 2011; 33:1746-50. [PMID: 20930386 DOI: 10.1248/bpb.33.1746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane binding of Walker type adenosine 5'-triphosphate, adenosine triphosphatase (ATPase), MinD, is a key step in regulating the site of cell division in Escherichia coli. Two lysine residues (K11, K16) in the Walker A motif of MinD have been suggested to be essential for both membrane binding and ATPase activity, but the relationship between the membrane binding of MinD and its ATPase activity is still unclear. To reveal the role of K11 and K16 in MinD membrane interaction and ATP-binding, we compared the functionality of wild-type MinD (WT) and two MinD mutants that lack ATPase activity, where alanine was substituted for lysine at positions 11 and 16 (K11A, K16A), using liposomes and fluorescent-labeled ATP. The ATP dissociation constant (K(d)) of wild-type MinD was 4.9 µM. Unexpectedly, the K(d) values of the two lysine mutants were almost the same as that of wild type, indicating that ATP can bind to MinD mutants, even though these mutants showed no ATPase activity and membrane binding ability. Our results presumed that K11 and K16 residues might play an important role in dimmer formation of MinD, but not ATP binding step, for recruiting to membrane.
Collapse
Affiliation(s)
- Takashi Okuno
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Wu W, Park KT, Holyoak T, Lutkenhaus J. Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Mol Microbiol 2011; 79:1515-28. [PMID: 21231967 DOI: 10.1111/j.1365-2958.2010.07536.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three Min proteins spatially regulate Z ring positioning in Escherichia coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP dependence of MinC and MinE binding to MinD.
Collapse
Affiliation(s)
- Wei Wu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
42
|
Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci U S A 2010; 107:8071-8. [PMID: 20212106 DOI: 10.1073/pnas.0911036107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Min proteins of the Escherichia coli cell division system oscillate between the cell poles in vivo. In vitro on a solid-surface supported lipid bilayer, these proteins exhibit a number of interconverting modes of collective ATP-driven dynamic pattern formation including not only the previously described propagating waves, but also near uniformity in space surface concentration oscillation, propagating filament like structures with a leading head and decaying tail and moving and dividing amoeba-like structures with sharp edges. We demonstrate that the last behavior most closely resembles in vivo system behavior. The simple reaction-diffusion models previously proposed for the Min system fail to explain the results of the in vitro self-organization experiments. We propose the hypotheses that initiation of MinD binding to the surface is controlled by counteraction of initiation and dissociation complexes; the binding of MinD/E is stimulated by MinE and involves polymerization-depolymerization dynamics; polymerization of MinE over MinD oligomers triggers dynamic instability leading to detachment from the membrane. The physical properties of the lipid bilayer are likely to be one of the critical determinants of certain aspects of the dynamic patterns observed.
Collapse
|
43
|
Fu HL, Ajees AA, Rosen BP, Bhattacharjee H. Role of signature lysines in the deviant walker a motifs of the ArsA ATPase. Biochemistry 2010; 49:356-64. [PMID: 20000479 DOI: 10.1021/bi901681v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ArsA ATPase belongs to the P-loop GTPase subgroup within the GTPase superfamily of proteins. Members of this subgroup have a deviant Walker A motif which contains a signature lysine that is predicted to make intermonomer contact with the bound nucleotides and to play a role in ATP hydrolysis. ArsA has two signature lysines located at positions 16 and 335. The role of Lys16 in the A1 half and Lys335 in the A2 half was investigated by altering the lysines individually to alanine, arginine, leucine, methionine, glutamate, and glutamine by site-directed mutagenesis. While Lys16 mutants show similar resistance phenotypes as the wild type, the Lys335 mutants are sensitive to higher concentrations of arsenite. K16Q ArsA shows 70% of wild-type ATPase activity while K335Q ArsA is inactive. ArsA is activated by binding of Sb(III), and both wild-type and mutant ArsAs bind Sb(III) with a 1:1 stoichiometry. Although each ArsA binds nucleotide, the binding affinity decreases in the order wild type > K16Q > K335Q. The results of limited trypsin digestion analysis indicate that both wild type and K16Q adopt a similar conformation during activated catalysis, whereas K335Q adopts a conformation that is resistant to trypsin cleavage. These biochemical data along with structural modeling suggest that, although Lys16 is not critical for ATPase activity, Lys335 is involved in intersubunit interaction and activation of ATPase activity in both halves of the protein. Taken together, the results indicate that Lys16 and Lys335, located in the A1 and A2 halves of the protein, have different roles in ArsA catalysis, consistent with our proposal that the nucleotide binding domains in these two halves are functionally nonequivalent.
Collapse
Affiliation(s)
- Hsueh-Liang Fu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
44
|
Jeoung JH, Giese T, Grünwald M, Dobbek H. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases. J Mol Biol 2010; 396:1165-79. [PMID: 20064527 DOI: 10.1016/j.jmb.2009.12.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/17/2009] [Accepted: 12/26/2009] [Indexed: 11/26/2022]
Abstract
CooC proteins are ATPases involved in the incorporation of nickel into the complex active site ([Ni-4Fe-4S]) cluster of Ni,Fe-dependent carbon monoxide dehydrogenases. The genome of the carboxydotrophic bacterium Carboxydothermus hydrogenoformans encodes five carbon monoxide dehydrogenases and three CooC-type proteins, of which CooC1 was shown to be a nickel-binding ATPase. We determined the crystal structure of CooC1 in four different states: empty, ADP-bound, Zn(2+)/ADP-bound, and Zn(2+)-bound. The structure of CooC1 consists of two spatially separated functional modules: an ATPase module containing the deviant Walker A motif and a metal-binding module that confers the specific function of CooC1. The ATPase module is homologous to other members of the MinD family and, in analogy to the dimeric structure of ATP-bound Soj, is likely responsible for the ATP-dependent dimerization of CooC1. Its core topology classifies CooC1 as a member of the MinD family of SIMIBI (signal recognition particle, MinD and BioD)-class NTPases. The crystal structure of Zn(2+)-bound CooC1 reveals a conserved C-X-C motif as the metal-binding site responsible for metal-induced dimerization. The competitive binding of Ni(2+) and Zn(2+) to CooC1 in solution confirms that the conserved C-X-C motif is also responsible for the interaction with Ni(2+). A comparison of the different CooC1 structures determined suggests a mutual dependence of metal-binding site and nucleotide-binding site.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- AG Bioanorganische Chemie, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
45
|
Jeoung JH, Giese T, Grünwald M, Dobbek H. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase. Biochemistry 2009; 48:11505-13. [PMID: 19883128 DOI: 10.1021/bi901443z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maturation of nickel-dependent enzymes requires the participation of several accessory proteins. Typically the hydrolysis of nucleotides is necessary for the final metal transfer steps. The ATPase CooC has been implicated in the insertion of nickel into the Ni,Fe cluster (C cluster) of the carbon monoxide dehydrogenase from Rhodospirillum rubrum. Analysis of the amino acid sequence of CooC suggests the presence of motifs typical for the MinD family of SIMIBI class NTPases, which contain a deviant Walker A motif. The genome of the carboxidotrophic hydrogenogenic bacterium Carboxydothermus hydrogenoformans contains three open reading frames with distinct sequence homology to CooC from R. rubrum. We overproduced, isolated, and studied CooC1 from C. hydrogenoformans. As-isolated CooC1 is monomeric in the absence of ligands but dimerizes in the presence of either nickel, ADP, or ATP. CooC1 shows ATPase activity, and the ADP- and ATP-bound dimeric states are distinguished by their stability. The K8A mutant of CooC1, in which alanine replaces the signature lysine typical for the deviant Walker A motif in the MinD family, is incapable of both ATP hydrolysis and ATP-dependent dimerization. This corroborates that CooC1 is indeed a member of the MinD family and suggests an analogous dynamic equilibrium between monomeric and dimeric states. CooC proteins are involved in the insertion of nickel into carbon monoxide dehydrogenases, and we found that one CooC1 dimer binds one Ni(II) ion with nanomolar affinity. Ni-induced dimerization and the Ni(II)-CooC1 stoichiometry suggest that the Ni-binding site of CooC1 occurs in the dimer interface.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Bioinorganic Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
46
|
Nair S, Savithri HS. Natively unfolded nucleic acid binding P8 domain of SeMV polyprotein 2a affects the novel ATPase activity of the preceding P10 domain. FEBS Lett 2009; 584:571-6. [PMID: 19995563 PMCID: PMC7125719 DOI: 10.1016/j.febslet.2009.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/13/2022]
Abstract
Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10–P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids. Interestingly, P10–P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.
Collapse
Affiliation(s)
- Smita Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka State, India
| | | |
Collapse
|
47
|
Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc Natl Acad Sci U S A 2009; 106:14849-54. [PMID: 19706470 DOI: 10.1073/pnas.0907522106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins.
Collapse
|
48
|
Espinosa EJ, Calero M, Sridevi K, Pfeffer SR. RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 2009; 137:938-48. [PMID: 19490898 DOI: 10.1016/j.cell.2009.03.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/05/2008] [Accepted: 03/20/2009] [Indexed: 11/24/2022]
Abstract
Rho GTPases are key regulators of the actin-based cytoskeleton; Rab GTPases are key regulators of membrane traffic. We report here that the atypical Rho GTPase family member, RhoBTB3, binds directly to Rab9 GTPase and functions with Rab9 in protein transport from endosomes to the trans Golgi network. Gene replacement experiments show that RhoBTB3 function in cultured cells requires both RhoBTB3's N-terminal, Rho-related domain and C-terminal sequences that are important for Rab9 interaction. Biochemical analysis reveals that RhoBTB3 binds and hydrolyzes ATP rather than GTP. Rab9 binding opens the autoinhibited RhoBTB3 protein to permit maximal ATP hydrolysis. Because RhoBTB3 interacts with TIP47 on membranes, we propose that it may function to release this cargo selection protein from vesicles to permit their efficient docking and fusion at the Golgi.
Collapse
Affiliation(s)
- Eric J Espinosa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
49
|
Dunham TD, Xu W, Funnell BE, Schumacher MA. Structural basis for ADP-mediated transcriptional regulation by P1 and P7 ParA. EMBO J 2009; 28:1792-802. [PMID: 19461582 DOI: 10.1038/emboj.2009.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/01/2009] [Indexed: 11/09/2022] Open
Abstract
The accurate segregation of DNA is essential for the faithful inheritance of genetic information. Segregation of the prototypical P1 plasmid par system requires two proteins, ParA and ParB, and a centromere. When bound to ATP, ParA mediates segregation by interacting with centromere-bound ParB, but when bound to ADP, ParA fulfils a different function: DNA-binding transcription autoregulation. The structure of ParA is unknown as is how distinct nucleotides arbitrate its different functions. To address these questions, we carried out structural and biochemical studies. Crystal structures show that ParA consists of an elongated N-terminal alpha-helix, which unexpectedly mediates dimerization, a winged-HTH and a Walker-box containing C-domain. Biochemical data confirm that apoParA forms dimers at physiological concentrations. Comparisons of four apoParA structures reveal a strikingly flexible dimer interface that allows ParA to adopt multiple conformations. The ParA-ADP structure shows that ADP-binding activates DNA binding using a bipartite mechanism. First, it locks in one specific dimer conformation, and second, it induces the folding of two DNA-binding basic motifs that we show are critical for operator binding.
Collapse
Affiliation(s)
- Thomas D Dunham
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Boyd JM, Sondelski JL, Downs DM. Bacterial ApbC protein has two biochemical activities that are required for in vivo function. J Biol Chem 2009; 284:110-118. [PMID: 19001370 PMCID: PMC2610507 DOI: 10.1074/jbc.m807003200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/16/2008] [Indexed: 11/06/2022] Open
Abstract
The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195-8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of "deviant" Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.
Collapse
Affiliation(s)
- Jeffrey M Boyd
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie L Sondelski
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|