1
|
Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, Bao Y. The functions of EF-hand proteins from host and zoonotic pathogens. Microbes Infect 2025; 27:105276. [PMID: 38072184 DOI: 10.1016/j.micinf.2023.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.
Collapse
Affiliation(s)
- Wei Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| |
Collapse
|
2
|
Conway TP, Vu BG, Beattie SR, Krysan DJ, Moye-Rowley WS. Similarities and distinctions in the activation of the Candida glabrata Pdr1 regulatory pathway by azole and non-azole drugs. mSphere 2024; 9:e0079224. [PMID: 39555934 DOI: 10.1128/msphere.00792-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Incidences of fluconazole (FLC) resistance among Candida glabrata clinical isolates are a growing issue in clinics. The pleiotropic drug response network in C. glabrata confers azole resistance and is defined primarily by the Zn2Cys6 zinc cluster-containing transcription factor Pdr1 and target genes such as CDR1, which encodes an ATP-binding cassette transporter protein thought to act as an FLC efflux pump. Mutations in the PDR1 gene that render the transcription factor hyperactive are the most common cause of fluconazole resistance among clinical isolates. The phenothiazine class drug fluphenazine and a molecular derivative, CWHM-974, which both exhibit antifungal properties, have been shown to induce the expression of Cdr1 in Candida spp. We have used a firefly luciferase reporter gene driven by the CDR1 promoter to demonstrate two distinct patterns of CDR1 promoter activation kinetics: gradual promoter activation kinetics that occur in response to ergosterol limitations imposed by exposure to azole and polyene class antifungals and a robust and rapid CDR1 induction occurring in response to the stress imposed by fluphenazines. We can attribute these different patterns of CDR1 induction as proceeding through the promoter region of this gene since this is the only segment of the gene included in the luciferase reporter construct. Genetic analysis indicates that the signaling pathways responsible for phenothiazine and azole induction of CDR1 overlap but are not identical. The short time course of phenothiazine induction suggests that these compounds may act more directly on the Pdr1 protein to stimulate its activity. IMPORTANCE Candida glabrata has emerged as the second-leading cause of candidiasis due, in part, to its ability to acquire high-level resistance to azole drugs, a major class of antifungal that acts to block the biosynthesis of the fungal sterol ergosterol. The presence of azole drugs causes the induction of a variety of genes involved in controlling susceptibility to this drug class, including drug transporters and ergosterol biosynthetic genes such as ERG11. We found that the presence of azole drugs leads to an induction of genes encoding drug transporters and ERG11, while exposure of C. glabrata cells to antifungals of the phenothiazine class of drugs caused a much faster and larger induction of drug transporters but not ERG11. Coupled with further genetic analyses of the effects of azole and phenothiazine drugs, our data indicate that these compounds are sensed and responded to differentially in the yeast cell.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R Beattie
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Damian J Krysan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Sousa IS, Tavares LFS, Silva BA, Moreno DSA, Alviano CS, Santos ALS, Kneipp LF. Calcineurin activity in Fonsecaea pedrosoi: tacrolimus and cyclosporine A inhibited conidia growth, filamentation and showed synergism with itraconazole. Braz J Microbiol 2024; 55:3643-3654. [PMID: 39044105 PMCID: PMC11711851 DOI: 10.1007/s42770-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Fonsecaea pedrosoi is a melanized fungus that causes chromoblastomycosis (CBM), a tropical neglected disease responsible for chronic and disability-related subcutaneous mycosis. Given the challenging nature of CBM treatment, the study of new targets and novel bioactive drugs capable of improving patient life quality is urgent. In the present work, we detected a calcineurin activity in F. pedrosoi conidial form, employing primarily colorimetric, immunoblotting and flow cytometry assays. Our findings reveal that the calcineurin activity of F. pedrosoi was stimulated by Ca2+/calmodulin, inhibited by EGTA and specific inhibitors, such as tacrolimus (FK506) and cyclosporine A (CsA), and proved to be insensitive to okadaic acid. In addition, FK506 and CsA were able to affect the cellular viability and the fungal proliferation. This effect was corroborated by transmission electron microscopy that showed both calcineurin inhibitors promoted profound changes in the ultrastructure of conidia, causing mainly cytoplasm condensation and intense vacuolization that are clear indication of cell death. Our data indicated that FK506 exhibited the highest effectiveness, with a minimum inhibitory concentration (MIC) of 3.12 mg/L, whereas CsA required 15.6 mg/L to inhibit 100% of conidial growth. Interestingly, when both were combined with itraconazole, they demonstrated anti-F. pedrosoi activity, exhibiting a synergistic effect. Moreover, the fungal filamentation was affected after treatment with both calcineurin inhibitors. These data corroborate with other calcineurin studies in fungal cells and open up further discussions aiming to establish the role of this enzyme as a potential target for antifungal therapy against CBM infections.
Collapse
Affiliation(s)
- Ingrid S Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Lucilene F S Tavares
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
| | - Daniela S A Moreno
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil.
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
4
|
Zheng L, Xu Y, Wang C, Dong Y, Guo L. Parallel evolution of fluconazole resistance and tolerance in Candida glabrata. Front Cell Infect Microbiol 2024; 14:1456907. [PMID: 39397866 PMCID: PMC11466938 DOI: 10.3389/fcimb.2024.1456907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction With the growing population of immunocompromised individuals, opportunistic fungal pathogens pose a global health threat. Candida species, particularly C. albicans and non-albicans Candida species such as C. glabrata, are the most prevalent pathogenic fungi. Azoles, especially fluconazole, are widely used therapeutic options. Objective This study investigates how C. glabrata adapts to fluconazole, with a focus on understanding the factors regulating fluconazole tolerance and its relationship to resistance. Methods This study compared the factors regulating fluconazole tolerance between C. albicans and C. glabrata. We analyzed the impact of temperature on fluconazole tolerance, and requirement of calcineurin and Hsp90 for maintenance of fluconazole tolerance. We isolated colonies from edge, inside and outside of inhibition zone in disk diffusion assays. And we exposed C. glabrata strain to high concentrations of fluconazole and investigated the mutants for development of fluconazole resistance and tolerance. Results We found temperature modulated tolerance in the opposite way in C. albicans strain YJB-T1891 and C. glabrata strain CG4. Calcineurin and Hsp90 were required for maintenance of fluconazole tolerance in both species. Colonies from inside and outside of inhibition zones did not exhibited mutated phenotype, but colonies isolated from edge of inhibition zone exhibited diverse phenotype changes. Moreover, we discovered that high concentrations (16-128 μg/mL) of fluconazole induce the simultaneous but parallel development of tolerance and resistance in C. glabrata, unlike the sole development of tolerance in C. albicans. Conclusion This study highlights that while tolerance to fluconazole is a common response in Candida species, the specific molecular mechanisms and evolutionary pathways that lead to this response vary between species. Our findings emphasize the importance of understanding the regulation of fluconazole tolerance in different Candida species to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Conway TP, Vu BG, Beattie SR, Krysan DJ, Moye-Rowley WS. Similarities and distinctions in the activation of the Candida glabrata Pdr1 regulatory pathway by azole and non-azole drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613905. [PMID: 39345512 PMCID: PMC11429959 DOI: 10.1101/2024.09.19.613905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Incidences of fluconazole (FLC) resistance among Candida glabrata clinical isolates is a growing issue in clinics. The pleiotropic drug response (PDR) network in C. glabrata confers azole resistance and is defined primarily by the Zn2Cys6 zinc cluster-containing transcription factor Pdr1 and target genes such as CDR1, that encodes an ATP-binding cassette transporter protein thought to act as a FLC efflux pump. Mutations in the PDR1 gene that render the transcription factor hyperactive are the most common cause of fluconazole resistance among clinical isolates. The phenothiazine class drug fluphenazine and a molecular derivative, CWHM-974, which both exhibit antifungal properties, have been shown to induce the expression of Cdr1 in Candida spp. We have used a firefly luciferase reporter gene driven by the CDR1 promoter to demonstrate two distinct patterns of CDR1 promoter activation kinetics: gradual promoter activation kinetics that occur in response to ergosterol limitations imposed by exposure to azole and polyene class antifungals and a robust and rapid CDR1 induction occurring in response to the stress imposed by fluphenazines. We can attribute these different patterns of CDR1 induction as proceeding through the promoter region of this gene since this is the only segment of the gene included in the luciferase reporter construct. Genetic analysis indicates that the signaling pathways responsible for phenothiazine and azole induction of CDR1 overlap but are not identical. The short time course of phenothiazine induction suggests that these compounds may act more directly on the Pdr1 protein to stimulate its activity.
Collapse
Affiliation(s)
| | - Bao Gia Vu
- Present address: Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Sarah R. Beattie
- Departments of Molecular Physiology and Biophysics and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Damian J. Krysan
- Departments of Molecular Physiology and Biophysics and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
6
|
Xiong J, Wang L, Feng Y, Zhen C, Hang S, Yu J, Lu H, Jiang Y. Geldanamycin confers fungicidal properties to azole by triggering the activation of succinate dehydrogenase. Life Sci 2024; 348:122699. [PMID: 38718854 DOI: 10.1016/j.lfs.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
AIMS Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sijin Hang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jinhua Yu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
8
|
Pavesic MW, Gale AN, Nickels TJ, Harrington AA, Bussey M, Cunningham KW. Calcineurin-dependent contributions to fitness in the opportunistic pathogen Candida glabrata. mSphere 2024; 9:e0055423. [PMID: 38171022 PMCID: PMC10826367 DOI: 10.1128/msphere.00554-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
The protein phosphatase calcineurin is vital for the virulence of the opportunistic fungal pathogen Candida glabrata. The host-induced stresses that activate calcineurin signaling are unknown, as are the targets of calcineurin relevant to virulence. To potentially shed light on these processes, millions of transposon insertion mutants throughout the genome of C. glabrata were profiled en masse for fitness defects in the presence of FK506, a specific inhibitor of calcineurin. Eighty-seven specific gene deficiencies depended on calcineurin signaling for full viability in vitro both in wild-type and pdr1∆ null strains lacking pleiotropic drug resistance. Three genes involved in cell wall biosynthesis (FKS1, DCW1, FLC1) possess co-essential paralogs whose expression depended on calcineurin and Crz1 in response to micafungin, a clinical antifungal that interferes with cell wall biogenesis. Interestingly, 80% of the FK506-sensitive mutants were deficient in different aspects of vesicular trafficking, such as endocytosis, exocytosis, sorting, and biogenesis of secretory proteins in the endoplasmic reticulum (ER). In response to the experimental antifungal manogepix that blocks GPI-anchor biosynthesis in the ER, calcineurin signaling increased and strongly prevented cell death independent of Crz1, one of its major targets. Comparisons between manogepix, micafungin, and the ER-stressing tunicamycin reveal a correlation between the degree of calcineurin signaling and the degree of cell survival. These findings suggest that calcineurin plays major roles in mitigating stresses of vesicular trafficking. Such stresses may arise during host infection and in response to antifungal therapies.IMPORTANCECalcineurin plays critical roles in the virulence of most pathogenic fungi. This study sheds light on those roles in the opportunistic pathogen Candida glabrata using a genome-wide analysis in vitro. The findings could lead to antifungal developments that also avoid immunosuppression.
Collapse
Affiliation(s)
- Matthew W. Pavesic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew N. Gale
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Timothy J. Nickels
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Maya Bussey
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kyle W. Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Feng Y, Lu H, Whiteway M, Jiang Y. Understanding fluconazole tolerance in Candida albicans: implications for effective treatment of candidiasis and combating invasive fungal infections. J Glob Antimicrob Resist 2023; 35:314-321. [PMID: 37918789 DOI: 10.1016/j.jgar.2023.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES Fluconazole (FLC) tolerant phenotypes in Candida species contribute to persistent candidemia and the emergence of FLC resistance. Therefore, making FLC fungicidal and eliminating FLC tolerance are important for treating invasive fungal diseases (IFDs) caused by Candida species. However, the mechanisms of FLC tolerance in Candida species remain to be fully explored. METHODS This review discusses the high incidence of FLC tolerance in Candida species and the importance of successfully clearing FLC tolerance in treating candidiasis. We further define and characterize FLC tolerance in C. albicans. RESULTS This review identifies global factors affecting FLC tolerance and suggest that FLC tolerance is a strategy of C. albicans response to FLC damage whose mechanism differs from FLC resistance. CONCLUSIONS This review highlights the significance of the cell membrane and cell wall integrity in FLC tolerance, guiding approaches to combat IFDs caused by Candida species..
Collapse
Affiliation(s)
- Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Giuraniuc CV, Parkin C, Almeida MC, Fricker M, Shadmani P, Nye S, Wehmeier S, Chawla S, Bedekovic T, Lehtovirta-Morley L, Richards DM, Gow NA, Brand AC. Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans. mBio 2023; 14:e0115723. [PMID: 37750683 PMCID: PMC10653887 DOI: 10.1128/mbio.01157-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Intracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail.
Collapse
Affiliation(s)
- C. V. Giuraniuc
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - C. Parkin
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - M. C. Almeida
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - M. Fricker
- School of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - P. Shadmani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Nye
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - S. Wehmeier
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Chawla
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - T. Bedekovic
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - L. Lehtovirta-Morley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. M. Richards
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - N. A. Gow
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - A. C. Brand
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Lu H, Li W, Whiteway M, Wang H, Zhu S, Ji Z, Feng Y, Yan L, Fang T, Li L, Ni T, Zhang X, Lv Q, Ding Z, Qiu L, Zhang D, Jiang Y. A Small Molecule Inhibitor of Erg251 Makes Fluconazole Fungicidal by Inhibiting the Synthesis of the 14α-Methylsterols. mBio 2023; 14:e0263922. [PMID: 36475771 PMCID: PMC9973333 DOI: 10.1128/mbio.02639-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans. CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hongkang Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Kurakado S, Matsumoto Y, Yamada T, Shimizu K, Wakasa S, Sugita T. Tacrolimus inhibits stress responses and hyphal formation via the calcineurin signaling pathway in Trichosporon asahii. Microbiol Immunol 2023; 67:49-57. [PMID: 36398783 DOI: 10.1111/1348-0421.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
The pathogenic fungus Trichosporon asahii causes fatal deep-seated mycosis in immunocompromised patients. Calcineurin, which is widely conserved in eukaryotes, regulates cell growth and various stress responses in fungi. Tacrolimus (FK506), a calcineurin inhibitor, induces sensitivity to compounds that cause stress on the cell membrane and cell wall integrity. In this study, we demonstrated that FK506 affects stress responses and hyphal formation in T. asahii. In silico structural analysis revealed that amino acid residues in the binding site of the calcineurin-FKBP12 complex that interact with FK506 are conserved in T. asahii. The growth of T. asahii was delayed by FK506 in the presence of SDS or Congo red but not in the presence of calcium chloride. FK506 also inhibited hyphal formation in T. asahii. A mutant deficient of the cnb gene, which encodes the regulatory subunit B of calcineurin, exhibited stress sensitivities on exposure to SDS and Congo red and reduced the hyphal forming ability of T. asahii. In the cnb-deficient mutant, FK506 did not increase the stress sensitivity or reduce hyphal forming ability. These results suggest that FK506 affects stress responses and hyphal formation in T. asahii via the calcineurin signaling pathway.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.,Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shogo Wakasa
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
14
|
Todd RT, Soisangwan N, Peters S, Kemp B, Crooks T, Gerstein A, Selmecki A. Antifungal Drug Concentration Impacts the Spectrum of Adaptive Mutations in Candida albicans. Mol Biol Evol 2023; 40:6989826. [PMID: 36649220 PMCID: PMC9887641 DOI: 10.1093/molbev/msad009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Invasive fungal infections are a leading global cause of human mortality. Only three major classes of antifungal drugs are widely used, and resistance to all three classes can arise rapidly. The most widely prescribed antifungal drug, fluconazole, disseminates rapidly and reaches a wide range of concentrations throughout the body. The impact of drug concentration on the spectrum and effect of mutations acquired during adaptation is not known for any fungal pathogen, and how the specific level of a given stress influences the distribution of beneficial mutations has been poorly explored in general. We evolved 144 lineages from three genetically distinct clinical isolates of Candida albicans to four concentrations of fluconazole (0, 1, 8, and 64 μg/ml) and performed comprehensive phenotypic and genomic comparisons of ancestral and evolved populations. Adaptation to different fluconazole concentrations resulted in distinct adaptive trajectories. In general, lineages evolved to drug concentrations close to their MIC50 (the level of drug that reduces growth by 50% in the ancestor) tended to rapidly evolve an increased MIC50 and acquired distinct segmental aneuploidies and copy number variations. By contrast, lineages evolved to drug concentrations above their ancestral MIC50 tended to acquire a different suite of mutational changes and increased in drug tolerance (the ability of a subpopulation of cells to grow slowly above their MIC50). This is the first evidence that different concentrations of drug can select for different genotypic and phenotypic outcomes in vitro and may explain observed in vivo drug response variation.
Collapse
Affiliation(s)
- Robert T Todd
- Present address: Department of Biology, Bard College, Annandale-on-Hudson, New York
| | | | - Sam Peters
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Bailey Kemp
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Taylor Crooks
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Aleeza Gerstein
- Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, Canada,Department of Statistics, The University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
15
|
Antypenko L, Meyer F, Sadyk Z, Shabelnyk K, Kovalenko S, Steffens KG, Garbe LA. Combined Application of Tacrolimus with Cyproconazole, Hymexazol and Novel {2-(3-R-1 H-1,2,4-triazol-5-yl)phenyl}amines as Antifungals: In Vitro Growth Inhibition and In Silico Molecular Docking Analysis to Fungal Chitin Deacetylase. J Fungi (Basel) 2023; 9:79. [PMID: 36675900 PMCID: PMC9866229 DOI: 10.3390/jof9010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of action is required to counter the well-known potential of human and phyto-pathogenic fungi to develop resistance against established antifungals. Here, we use an in vitro growth assay to investigate the activity of the calcineurin inhibitor tacrolimus in combination with the commercial fungicides cyproconazole and hymexazol, as well as with two earlier reported novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines, against the fungi Aspergillus niger, Colletotrichum higginsianum, Fusarium oxysporum and the oomycete Phytophthora infestans, which are notoriously harmful in agriculture. When tacrolimus was added in a concentration range from 0.25 to 25 mg/L to the tested antifungals (at a fixed concentration of 25 or 50 mg/L), the inhibitory activities were distinctly enhanced. Molecular docking calculations revealed triazole derivative 5, (2-(3-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-4-chloroaniline), as a potent inhibitor of chitin deacetylases (CDA) of Aspergillus nidulans and A. niger (AnCDA and AngCDA, respectively), which was stronger than the previously reported polyoxorin D, J075-4187, and chitotriose. The results are discussed in the context of potential synergism and molecular mode of action.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Fatuma Meyer
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Zhanar Sadyk
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Konstyantyn Shabelnyk
- Pharmaceutical Chemistry, Organic and Bioorganic Chemistry Department, Zaporizhzhia State Medical University, Mayakovs’ky Ave. 26, 69035 Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Pharmaceutical Chemistry, Organic and Bioorganic Chemistry Department, Zaporizhzhia State Medical University, Mayakovs’ky Ave. 26, 69035 Zaporizhzhia, Ukraine
| | - Karl Gustav Steffens
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
| | - Leif-Alexander Garbe
- Faculty of Agriculture and Food Science, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany
- ZELT–Center for Nutrition and Food Technology, Seestrasse 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
16
|
Wang H, Ji Z, Feng Y, Yan T, Cao Y, Lu H, Jiang Y. Myriocin enhances the antifungal activity of fluconazole by blocking the membrane localization of the efflux pump Cdr1. Front Pharmacol 2022; 13:1101553. [PMID: 36618949 PMCID: PMC9815617 DOI: 10.3389/fphar.2022.1101553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Extrusion of azoles from the cell, mediated by an efflux pump Cdr1, is one of the most frequently used strategies for developing azole resistance in pathogenic fungi. The efflux pump Cdr1 is predominantly localized in lipid rafts within the plasma membrane, and its localization is sensitive to changes in the composition of lipid rafts. Our previous study found that the calcineurin signal pathway is important in transferring sphingolipids from the inner to the outer membrane. Methods: We investigated multiple factors that enhance the antifungal activity of fluconazole (FLC) using minimum inhibitory concentration (MIC) assays and disk diffusion assays. We studied the mechanism of action of myriocin through qRT-PCR analysis and confocal microscopy analysis. We tested whether myriocin enhanced the antifungal activity of FLC and held therapeutic potential using a mouse infection model. Results: We found that this signal pathway has no function in the activity of Cdr1. We found that inhibiting sphingolipid biosynthesis by myriocin remarkably increased the antifungal activity of FLC with a broad antifungal spectrum and held therapeutic potential. We further found that myriocin potently enhances the antifungal activity of FLC against C. albicans by blocking membrane localization of the Cdr1 rather than repressing the expression of Cdr1. In addition, we found that myriocin enhanced the antifungal activity of FLC and held therapeutic potential. Discussion: Our study demonstrated that blocking the membrane location and inactivating Cdr1 by inhibiting sphingolipids biogenesis is beneficial for enhancing the antifungal activity of azoles against azole-resistant C. albicans due to Cdr1 activation.
Collapse
Affiliation(s)
- Hongkang Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Ji
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanru Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhua Yan
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| | - Hui Lu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| | - Yuanying Jiang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| |
Collapse
|
17
|
Yang Y, Xie P, Li Y, Bi Y, Prusky DB. Updating Insights into the Regulatory Mechanisms of Calcineurin-Activated Transcription Factor Crz1 in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1082. [PMID: 36294647 PMCID: PMC9604740 DOI: 10.3390/jof8101082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated calcium signaling pathway has been studied systematically in various mammals and fungi, indicating that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+ channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion homeostasis, infection structure development, cell wall integrity and virulence. This review briefly summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi, the new strategies in which Crz1 may be used as a target to explore disease control in practice are also discussed.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
18
|
Wagner AS, Lumsdaine SW, Mangrum MM, King AE, Hancock TJ, Sparer TE, Reynolds TB. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans. PLoS Genet 2022; 18:e1010405. [PMID: 36121853 PMCID: PMC9521907 DOI: 10.1371/journal.pgen.1010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
19
|
Liu L, Sun Y, Gao Z, Yin W, Jiang H, Wu T, Sun Y, Qin Q, Zhao D, Cheng M. Design, synthesis, and evaluation of novel 3,4-isoxazolediamide derivatives for the combination treatment of azole-resistant candidiasis. Arch Pharm (Weinheim) 2022; 355:e2200266. [PMID: 36029272 DOI: 10.1002/ardp.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Invasive fungal infections are emerging as serious infectious diseases worldwide. Due to the frequent emergence of resistance, the cure for invasive fungal infections is often unachievable. The molecular chaperone Hsp90 provides a promising target because it supports survival, virulence, and drug resistance in a variety of pathogens. Herein, we report on the structural optimization and structure-activity relationship studies of 3,4-isoxazolediamide analogs. As a new class of fungal Hsp90 inhibitor, compound B25 was found to have good synergistic effects with fluconazole and to avoid potential mammalian toxicity. It also showed remarkable metabolic stability in vitro. Collectively, B25 could be a promising lead compound for drug discovery targeting fungal Hsp90 and deserves further investigation.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
20
|
The Antifungal and Antibiofilm Activities of Caffeine against Candida albicans on Polymethyl Methacrylate Denture Base Material. Biomedicines 2022; 10:biomedicines10092078. [PMID: 36140179 PMCID: PMC9495344 DOI: 10.3390/biomedicines10092078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: In this study, the effect of pure caffeine was established against Candida albicans (C. albicans) using different microbiological techniques. Methods: Broth microdilution and colony forming units (CFUs) assays were used to detect the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). The Live/Dead fluorescent dyes were implemented to determine the yeast viability. Polymethyl methacrylate acrylic resin (PMMA) discs were prepared to evaluate caffeine’s effects against adherent C. albicans using microplate reader, CFUs, and scanning electron microscope (SEM). Results: caffeine’s MIC was detected around 30 mg/mL, while the MFC was considered at 60 mg/mL. In an agar-well diffusion test, the inhibition zones were wider in caffeine groups. The Live/Dead viability test verified caffeine’s antifungal effects. The optical density of the adherent C. albicans on PMMA discs were lower at 620 nm or 410 nm in caffeine groups. CFU count was also reduced by caffeine treatments. SEM revealed the lower adherent C. albicans count in caffeine groups. The effect of caffeine was dose-dependent at which the 60 mg/mL dose demonstrated the most prominent effect. Conclusion: The study reinforced caffeine’s antifungal and antibiofilm properties and suggested it as an additive, or even an alternative, disinfectant solution for fungal biofilms on denture surfaces.
Collapse
|
21
|
Microbial silver resistance mechanisms: recent developments. World J Microbiol Biotechnol 2022; 38:158. [PMID: 35821348 DOI: 10.1007/s11274-022-03341-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 01/12/2023]
Abstract
In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds. Figure created with BioRender.com.
Collapse
|
22
|
Revie NM, Iyer KR, Maxson ME, Zhang J, Yan S, Fernandes CM, Meyer KJ, Chen X, Skulska I, Fogal M, Sanchez H, Hossain S, Li S, Yashiroda Y, Hirano H, Yoshida M, Osada H, Boone C, Shapiro RS, Andes DR, Wright GD, Nodwell JR, Del Poeta M, Burke MD, Whitesell L, Robbins N, Cowen LE. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun 2022; 13:3634. [PMID: 35752611 PMCID: PMC9233667 DOI: 10.1038/s41467-022-31308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.
Collapse
Affiliation(s)
- Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiabao Zhang
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Su Yan
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caroline M Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kirsten J Meyer
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena Li
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Veteran Administration Medical Center, Northport, NY, USA
| | - Martin D Burke
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Mashaly GES, Zeid MS. Candida albicans Genotyping and Relationship of Virulence Factors with Fluconazole Tolerance in Infected Pediatric Patients. Infect Drug Resist 2022; 15:2035-2043. [PMID: 35480061 PMCID: PMC9037425 DOI: 10.2147/idr.s344998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ghada El-Saeed Mashaly
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Correspondence: Ghada El-Saeed Mashaly, Faculty of Medicine, Mansoura University, Box 50, Al- Mansoura, 35516, Egypt, Tel +201003062542, Email
| | - Mayada Sabry Zeid
- Infectious Diseases and Malnutrition, Pediatrics Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Iyer KR, Robbins N, Cowen LE. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022; 25:103953. [PMID: 35281744 PMCID: PMC8905312 DOI: 10.1016/j.isci.2022.103953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human fungal pathogens are the causative agents of devastating diseases across the globe, and the increasing prevalence of drug resistance threatens to undermine the already limited treatment options. One prominent pathogen is the opportunistic fungus Candida albicans, which can cause both superficial and serious systemic infections in immunocompromised individuals. C. albicans antifungal drug resistance and antifungal tolerance are supported by diverse and expansive cellular stress response pathways. Some of the major players are the Ca2+-calmodulin-activated phosphatase calcineurin, the protein kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein 90. Beyond these core signal transducers, several other enzymes and transcription factors have been implicated in both tolerance and resistance. Here, we highlight some of the major stress response pathways, key advances in identifying chemical matter to inhibit these pathways, and implications for C. albicans persistence in the host. Candida albicans can cause superficial and serious systemic infections in humans Stress response pathways regulate C. albicans antifungal resistance and tolerance Stress response regulators include calcineurin, Pkc1, Hsp90, and many others Stress response inhibitors could reduce the likelihood of fungi persisting in humans
Collapse
Affiliation(s)
- Kali R. Iyer
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
- Corresponding author
| |
Collapse
|
26
|
Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. mBio 2022; 13:e0354521. [PMID: 35038899 PMCID: PMC8764518 DOI: 10.1128/mbio.03545-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.
Collapse
|
27
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
28
|
da Silva Dantas A, Nogueira F, Lee KK, Walker LA, Edmondson M, Brand AC, Lenardon MD, Gow NAR. Crosstalk between the calcineurin and cell wall integrity pathways prevents chitin overexpression in Candida albicans. J Cell Sci 2021; 134:jcs258889. [PMID: 34792152 PMCID: PMC8729787 DOI: 10.1242/jcs.258889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 10/26/2022] Open
Abstract
Echinocandins such as caspofungin are frontline antifungal drugs that compromise β-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by upregulation of chitin synthesis, thereby sustaining cell wall integrity (CWI). When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall. We show here that simultaneous activation of the calcineurin and CWI pathways generates a subpopulation of Candida albicans yeast cells that have supra-normal chitin levels interspersed throughout the inner and outer cell wall, and that these cells are non-viable, perhaps due to loss of wall elasticity required for cell expansion and growth. Mutations in the Ca2+-calcineurin pathway prevented the formation of these non-viable supra-high chitin cells by negatively regulating chitin synthesis driven by the CWI pathway. The Ca2+-calcineurin pathway may therefore act as an attenuator that prevents the overproduction of chitin by coordinating both chitin upregulation and negative regulation of the CWI signaling pathway. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alessandra da Silva Dantas
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Filomena Nogueira
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Children's Cancer Research Institute, Labdia and Max F. Perutz Laboratories, Vienna 1090, Austria
| | - Keunsook K. Lee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- NGeneBio Company, 288 Digital-ro, Guro-gu, Seoul 08390, South Korea
| | - Louise A. Walker
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Matt Edmondson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Alexandra C. Brand
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Megan D. Lenardon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Neil A. R. Gow
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
29
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
30
|
Ibe C, Munro CA. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. J Fungi (Basel) 2021; 7:jof7090739. [PMID: 34575777 PMCID: PMC8466366 DOI: 10.3390/jof7090739] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022] Open
Abstract
Candida species are part of the normal flora of humans, but once the immune system of the host is impaired and they escape from commensal niches, they shift from commensal to pathogen causing candidiasis. Candida albicans remains the primary cause of candidiasis, accounting for about 60% of the global candidiasis burden. The cell wall of C. albicans and related fungal pathogens forms the interface with the host, gives fungal cells their shape, and also provides protection against stresses. The cell wall is a dynamic organelle with great adaptive flexibility that allows remodeling, morphogenesis, and changes in its components in response to the environment. It is mainly composed of the inner polysaccharide rich layer (chitin, and β-glucan) and the outer protein coat (mannoproteins). The highly glycosylated protein coat mediates interactions between C. albicans cells and their environment, including reprograming of wall architecture in response to several conditions, such as carbon source, pH, high temperature, and morphogenesis. The mannoproteins are also associated with C. albicans adherence, drug resistance, and virulence. Vitally, the mannoproteins contribute to cell wall construction and especially cell wall remodeling when cells encounter physical and chemical stresses. This review describes the interconnected cell wall integrity (CWI) and stress-activated pathways (e.g., Hog1, Cek1, and Mkc1 mediated pathways) that regulates cell wall remodeling and the expression of some of the mannoproteins in C. albicans and other species. The mannoproteins of the surface coat is of great importance to pathogen survival, growth, and virulence, thus understanding their structure and function as well as regulatory mechanisms can pave the way for better management of candidiasis.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu 441107, Nigeria
- Correspondence:
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK;
| |
Collapse
|
31
|
Xu Y, Lu H, Zhu S, Li WQ, Jiang YY, Berman J, Yang F. Multifactorial Mechanisms of Tolerance to Ketoconazole in Candida albicans. Microbiol Spectr 2021; 9:e0032121. [PMID: 34160280 PMCID: PMC8552639 DOI: 10.1128/spectrum.00321-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a prevalent opportunistic human fungal pathogen for which treatment is limited to only four main classes of antifungal drugs, with the azole and echinocandin classes being used most frequently. Drug tolerance, the ability of some cells to grow slowly in supra-MIC drug concentrations, decreases the number of available treatment options. Here, we investigated factors affecting tolerance and resistance to ketoconazole in C. albicans. We found both temperature and the composition of growth medium significantly affected tolerance with little effect on resistance. In deletion analysis of known efflux pump genes, CDR1 was partially required for azole tolerance, while CDR2 and MDR1 were dispensable. Tolerance also required Hsp90 and calcineurin components; CRZ1, which encodes a transcription factor downstream of calcineurin, was required only partially. Deletion of VMA11, which encodes a vacuolar ATPase subunit, and concanamycin A, a V-ATPase inhibitor, abolished tolerance, indicating the importance of vacuolar energy transactions in tolerance. Thus, tolerance to ketoconazole is regulated by multiple factors, including physiological and genetic mechanisms. IMPORTANCE Due to the ever-expanding range of invasive medical procedures and treatments, invasive fungal infections now pose a serious global threat to many people living in an immunocompromised status. Like humans, fungi are eukaryotic, which significantly limits the number of unique antifungal targets; the current arsenal of antifungal agents is limited to just three frontline drug classes. Additional treatment complexities result from the development of drug tolerance and resistance, which further narrows therapeutic options; however, the difference between tolerance and resistance remains largely unknown. This study demonstrates that tolerance and resistance are regulated by multiple genetic and physiological factors. It is prudent to note that some factors affect tolerance only, while other factors affect both tolerance and resistance. The complex underlying mechanisms of these drug responses are highlighted by the fact that there are both shared and distinct mechanisms that regulate tolerance and resistance.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Zhu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wan-Qian Li
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
33
|
Squizani ED, Reuwsaat JC, Motta H, Tavanti A, Kmetzsch L. Calcium: a central player in Cryptococcus biology. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus. mBio 2021; 12:mBio.00863-21. [PMID: 34006660 PMCID: PMC8262895 DOI: 10.1128/mbio.00863-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibition of fungal growth by Congo red (CR) has been putatively associated with specific binding to β-1,3-glucans, which blocks cell wall polysaccharide synthesis. In this study, we searched for transcription factors (TFs) that regulate the response to CR and interrogated their regulon. During the investigation of the susceptibility to CR of the TF mutant library, several CR-resistant and -hypersensitive mutants were discovered and further studied. Abnormal distorted swollen conidia called Quasimodo cells were seen in the presence of CR. Quasimodo cells in the resistant mutants were larger than the ones in the sensitive and parental strains; consequently, the conidia of the resistant mutants absorbed more CR than the germinating conidia of the sensitive or parental strains. Accordingly, this higher absorption rate by Quasimodo cells resulted in the removal of CR from the culture medium, allowing a subset of conidia to germinate and grow. In contrast, all resting conidia of the sensitive mutants and the parental strain were killed. This result indicated that the heterogeneity of the conidial population is essential to promote the survival of Aspergillus fumigatus in the presence of CR. Moreover, amorphous surface cell wall polysaccharides such as galactosaminogalactan control the influx of CR inside the cells and, accordingly, resistance to the drug. Finally, long-term incubation with CR led to the discovery of a new CR-induced growth effect, called drug-induced growth stimulation (DIGS), since the growth of one of them could be stimulated after recovery from CR stress.
Collapse
|
35
|
Li W, Shrivastava M, Lu H, Jiang Y. Calcium-calcineurin signaling pathway in Candida albicans: A potential drug target. Microbiol Res 2021; 249:126786. [PMID: 33989979 DOI: 10.1016/j.micres.2021.126786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022]
Abstract
Increased morbidity and mortality of candidiasis are a notable threat to the immunocompromised patients. At present, the types of drugs available to treat C. albicans infection are relatively limited. Moreover, the emergence of antifungal drug resistance of C. albicans makes the treatment of C. albicans infection more difficult. The calcium-calcineurin signaling pathway plays a crucial role in the survival and pathogenicity of C. albicans and may act as a potential target against C. albicans. In this review, we summarized functions of the calcium-calcineurin signaling pathway in several biological processes, compared the differences of this signaling pathway between C. albicans and humans, and described anti-C. albicans activity of inhibitors of this signaling pathway. We believe that targeting the calcium-calcineurin signaling pathway is a promising strategy to cope with C. albicans infection.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Aequorin as a Useful Calcium-Sensing Reporter in Candida albicans. J Fungi (Basel) 2021; 7:jof7040319. [PMID: 33924126 PMCID: PMC8074299 DOI: 10.3390/jof7040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
In Candida albicans, calcium ions (Ca2+) regulate the activity of several signaling pathways, especially the calcineurin signaling pathway. Ca2+ homeostasis is also important for cell polarization, hyphal extension, and plays a role in contact sensing. It is therefore important to obtain accurate tools with which Ca2+ homeostasis can be addressed in this fungal pathogen. Aequorin from Aequorea victoria has been used in eukaryotic cells for detecting intracellular Ca2+. A codon-adapted aequorin Ca2+-sensing expression system was therefore designed for probing cytosolic Ca2+ flux in C. albicans. The availability of a novel water-soluble formulation of coelenterazine, which is required as a co-factor, made it possible to measure bioluminescence as a readout of intracellular Ca2+ levels in C. albicans. Alkaline stress resulted in an immediate influx of Ca2+ from the extracellular medium. This increase was exacerbated in a mutant lacking the vacuolar Ca2+ transporter VCX1, thus confirming its role in Ca2+ homeostasis. Using mutants in components of a principal Ca2+ channel (MID1, CCH1), the alkaline-dependent Ca2+ spike was greatly reduced, thus highlighting the crucial role of this channel complex in Ca2+ uptake and homeostasis. Exposure to the antiarrhythmic drug amiodarone, known to perturb Ca2+ trafficking, resulted in increased cytoplasmic Ca2+ within seconds that was abrogated by the chelation of Ca2+ in the external medium. Ca2+ import was also dependent on the Cch1/Mid1 Ca2+ channel in amiodarone-exposed cells. In conclusion, the aequorin Ca2+ sensing reporter developed here is an adequate tool with which Ca2+ homeostasis can be investigated in C. albicans.
Collapse
|
37
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
38
|
Exploring Small Heat Shock Proteins (sHSPs) for Targeting Drug Resistance in Candida albicans and other Pathogenic Fungi. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections have predominantly increased worldwide that leads to morbidity and mortality in severe cases. Invasive candidiasis and other pathogenic fungal infections are a major problem in immunocompromised individuals and post-operative patients. Increasing resistance to existing antifungal drugs calls for the identification of novel antifungal drug targets for chemotherapeutic interventions. This demand for identification and characterization of novel drug targets leads to the development of effective antifungal therapy against drug resistant fungi. Heat shock proteins (HSPs) are important for various biological processes like protein folding, posttranslational modifications, transcription, translation, and protein aggregation. HSPs are involved in maintaining homeostasis of the cell. A subgroup of HSPs is small heat shock proteins (sHSPs), which functions as cellular chaperones. They are having a significant role in the many cellular functions like development, cytoskeletal organization, apoptosis, membrane lipid polymorphism, differentiation, autophagy, in infection recognition and are major players in various stresses like osmotic stress, pH stress, etc. Studies have shown that fungal cells express increased levels of sHSPs upon antifungal drug induced stress responses. Here we review the important role of small heat shock proteins (sHSPs) in fungal diseases and their potential as antifungal targets.
Collapse
|
39
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
41
|
Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, d’Enfert C, Sanglard D. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol 2020; 11:591140. [PMID: 33262748 PMCID: PMC7686038 DOI: 10.3389/fmicb.2020.591140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.
Collapse
Affiliation(s)
- Eric Delarze
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludivine Brandt
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilie Trachsel
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Claire Pralong
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio Maranzano
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université de Paris, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Dominique Sanglard
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
42
|
Hou YH, Hsu LH, Wang HF, Lai YH, Chen YL. Calcineurin Regulates Conidiation, Chlamydospore Formation and Virulence in Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2020; 11:539702. [PMID: 33193126 PMCID: PMC7641966 DOI: 10.3389/fmicb.2020.539702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Fusarium wilt of tomato caused by the ascomycetous fungus Fusarium oxysporum f. sp. lycopersici (Fol) is widespread in most tomato planting areas. Calcineurin is a heterodimeric calcium/calmodulin-dependent protein phosphatase comprised of catalytic (Cna1) and regulatory (Cnb1) subunits. Calcineurin has been studied extensively in human fungal pathogens, but less is known about its roles in plant fungal pathogens. It is known that calcineurin regulates fungal calcium signaling, growth, drug tolerance, and virulence. However, the roles of calcineurin in Fol have not yet been characterized. In this study, we deleted calcineurin CNA1 and CNB1 genes to characterize their roles in conidiation, chlamydospore formation and virulence in Fol. Our results revealed that both cna1 and cnb1 mutants show defects in calcineurin phosphatase activity, vegetative growth and conidiation as compared to the wild type. Furthermore, calcineurin mutants exhibited blunted and swollen hyphae as observed by scanning electron microscopy. Interestingly, we found that Fol calcineurin is critical for chlamydospore formation, a function of calcineurin previously undocumented in the fungal kingdom. According to transcriptome analysis, the expression of 323 and 414 genes was up- and down-regulated, respectively, in both cna1 and cnb1 mutants. Based on the pathogen infection assay, tomato plants inoculated with cna1 or cnb1 mutant have a dramatic reduction in disease severity, indicating that calcineurin has a vital role in Fol virulence. In conclusion, our findings suggest that Fol calcineurin is required, at least in part, for phosphatase activity, vegetative growth, conidiation, chlamydospore formation, and virulence.
Collapse
Affiliation(s)
- Yi-Hsuan Hou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Fu Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Lai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
44
|
Víglaš J, Olejníková P. Signalling mechanisms involved in stress response to antifungal drugs. Res Microbiol 2020; 172:103786. [PMID: 33038529 DOI: 10.1016/j.resmic.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023]
Abstract
The emergence of antifungal resistance is a serious threat in the treatment of mycoses. The primary susceptible fungal cells may evolve a resistance after longer exposure to antifungal agents. The exposure itself causes stress condition, to which the fungus needs to adapt. This review provides detailed description of evolutionary conserved molecular mechanisms contributing to the adaptation response to stress caused by antifungal agents as well as their interconnection. The knowledge may help us to find new ways to delay the emergence of drug resistance as the same mechanisms are used regardless of what antifungal compound causes stress.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
45
|
Identification of Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling Hermes Transposon Insertions. G3-GENES GENOMES GENETICS 2020; 10:3859-3870. [PMID: 32819971 PMCID: PMC7534453 DOI: 10.1534/g3.120.401595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the budding yeasts, the opportunistic pathogen Candida glabrata and other members of the Nakaseomyces clade have developed virulence traits independently from C. albicans and C. auris. To begin exploring the genetic basis of C. glabrata virulence and its innate resistance to antifungals, we launched the Hermes transposon from a plasmid and sequenced more than 500,000 different semi-random insertions throughout the genome. With machine learning, we identified 1278 protein-encoding genes (25% of total) that could not tolerate transposon insertions and are likely essential for C. glabrata fitness in vitro. Interestingly, genes involved in mRNA splicing were less likely to be essential in C. glabrata than their orthologs in S. cerevisiae, whereas the opposite is true for genes involved in kinetochore function and chromosome segregation. When a pool of insertion mutants was challenged with the first-line antifungal fluconazole, insertions in several known resistance genes (e.g., PDR1, CDR1, PDR16, PDR17, UPC2A, DAP1, STV1) and 15 additional genes (including KGD1, KGD2, YHR045W) became hypersensitive to fluconazole. Insertions in 200 other genes conferred significant resistance to fluconazole, two-thirds of which function in mitochondria and likely down-regulate Pdr1 expression or function. Knockout mutants of KGD2 and IDH2, which consume and generate alpha-ketoglutarate in mitochondria, exhibited increased and decreased resistance to fluconazole through a process that depended on Pdr1. These findings establish the utility of transposon insertion profiling in forward genetic investigations of this important pathogen of humans.
Collapse
|
46
|
Soberón JR, Sgariglia MA, Carabajal Torrez JA, Aguilar FA, Pero EJ, Sampietro DA, Fernández de Luco J, Labadie GR. Antifungal activity and toxicity studies of flavanones isolated from Tessaria dodoneifolia aerial parts. Heliyon 2020; 6:e05174. [PMID: 33083621 PMCID: PMC7551329 DOI: 10.1016/j.heliyon.2020.e05174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
Tessaria dodoneifolia [Asteraceae] is traditionally employed in Northwestern Argentina for fungal infections treatment. We report the antifungal activity guided isolation and identification of substances from aerial parts of this species, both individually and in combination with fluconazole (FLU), against Candida albicans strains. Two antifungal flavanones were identified as naringenin (NAR) and pinocembrin (PIN). These compounds could individually inhibit the growth of C. albicans strains. Combinations of NAR and PIN with FLU were synergistic against the FLU resistant and sensitive C. albicans strains. Genotoxic and cytotoxic evaluations were also performed. NAR, PIN and their combinations with FLU did not have a genotoxic effect on Bacillus subtilis rec strains. Finally, these compounds did not show cytotoxicity at concentrations below 80 μg/mL.
Collapse
Affiliation(s)
- José R. Soberón
- Cátedra de Fitoquímica, Instituto de Estudios Farmacológicos “Dr. A.R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 T4000INI San Miguel de Tucumán; Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Corresponding author.
| | - Melina A. Sgariglia
- Cátedra de Fitoquímica, Instituto de Estudios Farmacológicos “Dr. A.R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 T4000INI San Miguel de Tucumán; Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - José A. Carabajal Torrez
- Cátedra de Fitoquímica, Instituto de Estudios Farmacológicos “Dr. A.R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 T4000INI San Miguel de Tucumán; Tucumán; Argentina
| | - Franco A. Aguilar
- Cátedra de Fitoquímica, Instituto de Estudios Farmacológicos “Dr. A.R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 T4000INI San Miguel de Tucumán; Tucumán; Argentina
| | - Edgardo J.I. Pero
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Horco Molle s/n, Ciudad Universitaria, Yerba Buena, Tucumán, Argentina
| | - Diego A. Sampietro
- Cátedra de Fitoquímica, Instituto de Estudios Farmacológicos “Dr. A.R. Sampietro”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 T4000INI San Miguel de Tucumán; Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | - Guillermo R. Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| |
Collapse
|
47
|
Mouhoumed AZ, Mou YN, Tong SM, Ying SH, Feng MG. Three proline rotamases involved in calcium homeostasis play differential roles in stress tolerance, virulence and calcineurin regulation of Beauveria bassiana. Cell Microbiol 2020; 22:e13239. [PMID: 32602171 DOI: 10.1111/cmi.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
FK506-sensitive proline rotamases (FPRs), also known as FK506-binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15-kD Fpr1, membrane-associated 14.78-kD Fpr2 and nuclear 50.43-kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect-pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+ , K+ , Mn2+ , Ca2+ , Cu2+ , metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+ , Mg2+ , Fe2+ , H2 O2 and cell wall-perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+ /K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.
Collapse
Affiliation(s)
- Amina-Zahra Mouhoumed
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
49
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
50
|
Willaert RG, Vanden Boer P, Malovichko A, Alioscha-Perez M, Radotić K, Bartolić D, Kalauzi A, Villalba MI, Sanglard D, Dietler G, Sahli H, Kasas S. Single yeast cell nanomotions correlate with cellular activity. SCIENCE ADVANCES 2020; 6:eaba3139. [PMID: 32637604 PMCID: PMC7314535 DOI: 10.1126/sciadv.aba3139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Living single yeast cells show a specific cellular motion at the nanometer scale with a magnitude that is proportional to the cellular activity of the cell. We characterized this cellular nanomotion pattern of nonattached single yeast cells using classical optical microscopy. The distribution of the cellular displacements over a short time period is distinct from random motion. The range and shape of such nanomotion displacement distributions change substantially according to the metabolic state of the cell. The analysis of the nanomotion frequency pattern demonstrated that single living yeast cells oscillate at relatively low frequencies of around 2 hertz. The simplicity of the technique should open the way to numerous applications among which antifungal susceptibility tests seem the most straightforward.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium—Ghent University, B-9000 Ghent, Belgium
- Visiting professor, Department of Bioscience Engineering, University Antwerp, B-2020 Antwerp, Belgium
| | - Pieterjan Vanden Boer
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium—Ghent University, B-9000 Ghent, Belgium
| | - Anton Malovichko
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mitchel Alioscha-Perez
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Maria Ines Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Giovanni Dietler
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hichem Sahli
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), B-3001 Heverlee, Belgium
- Visiting professor, Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University (NPU), Xi’an, China
| | - Sandor Kasas
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|