1
|
Mohanty SK, Chiaromonte F, Makova KD. Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621973. [PMID: 39574740 PMCID: PMC11580976 DOI: 10.1101/2024.11.05.621973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that can form at approximately 1% of the human genome. G4s contribute to point mutations and structural variation and thus facilitate genomic instability. They play important roles in regulating replication, transcription, and telomere maintenance, and some of them evolve under purifying selection. Nevertheless, the evolutionary dynamics of G4s has remained underexplored. Here we conducted a comprehensive analysis of predicted G4s (pG4s) in the recently released, telomere-to-telomere (T2T) genomes of human and other great apes-bonobo, chimpanzee, gorilla, Bornean orangutan, and Sumatran orangutan. We annotated tens of thousands of new pG4s in T2T compared to previous ape genome assemblies, including 41,236 in the human genome. Analyzing species alignments, we found approximately one-third of pG4s shared by all apes studied and identified thousands of species- and genus-specific pG4s. pG4s accumulated and diverged at rates consistent with divergence times between the studied species. We observed a significant enrichment and hypomethylation of pG4 shared across species at regulatory regions, including promoters, 5' and 3'UTRs, and origins of replication, strongly suggesting their formation and functional role in these regions. pG4s shared among great apes displayed lower methylation levels compared to species-specific pG4s, suggesting evolutionary conservation of functional roles of the former. Many species-specific pG4s were located in the repetitive and satellite regions deciphered in the T2T genomes. Our findings illuminate the evolutionary dynamics of G4s, their role in gene regulation, and their potential contribution to species-specific adaptations in great apes, emphasizing the utility of high-resolution T2T genomes in uncovering previously elusive genomic features.
Collapse
Affiliation(s)
- Saswat K. Mohanty
- Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
2
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024; 300:107865. [PMID: 39374780 PMCID: PMC11570493 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes, various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of mRNA translation and turnover, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Jakob S, Steinchen W, Hanßmann J, Rosum J, Langenfeld K, Osorio-Valeriano M, Steube N, Giammarinaro PI, Hochberg GKA, Glatter T, Bange G, Diepold A, Thanbichler M. The virulence regulator VirB from Shigella flexneri uses a CTP-dependent switch mechanism to activate gene expression. Nat Commun 2024; 15:318. [PMID: 38182620 PMCID: PMC10770331 DOI: 10.1038/s41467-023-44509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The transcriptional antisilencer VirB acts as a master regulator of virulence gene expression in the human pathogen Shigella flexneri. It binds DNA sequences (virS) upstream of VirB-dependent promoters and counteracts their silencing by the nucleoid-organizing protein H-NS. However, its precise mode of action remains unclear. Notably, VirB is not a classical transcription factor but related to ParB-type DNA-partitioning proteins, which have recently been recognized as DNA-sliding clamps using CTP binding and hydrolysis to control their DNA entry gate. Here, we show that VirB binds CTP, embraces DNA in a clamp-like fashion upon its CTP-dependent loading at virS sites and slides laterally on DNA after clamp closure. Mutations that prevent CTP-binding block VirB loading in vitro and abolish the formation of VirB nucleoprotein complexes as well as virulence gene expression in vivo. Thus, VirB represents a CTP-dependent molecular switch that uses a loading-and-sliding mechanism to control transcription during bacterial pathogenesis.
Collapse
Affiliation(s)
- Sara Jakob
- Department of Biology, University of Marburg, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, Germany
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Niklas Steube
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, Marburg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Georg K A Hochberg
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Max Planck Fellow Group Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
5
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
6
|
Trirocco R, Pasqua M, Tramonti A, Colonna B, Paiardini A, Prosseda G. Diffusible signal factors (DSFs) bind and repress VirF, the leading virulence activator of Shigella flexneri. Sci Rep 2023; 13:13170. [PMID: 37580399 PMCID: PMC10425336 DOI: 10.1038/s41598-023-40023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Shigella, the aetiological agent of human bacillary dysentery, controls the expression of its virulence determinants through an environmentally stimulated cascade of transcriptional activators. VirF is the leading activator and is essential for proper virulence expression. In this work, we report on in vitro and in vivo experiments showing that two autoinducers of the DSF family, XcDSF and BDSF interact with the jelly roll module of VirF causing its inhibition and affecting the expression of the entire virulence system of Shigella, including its ability to invade epithelial cells. We propose a molecular model explaining how the binding of XcDSF and BDSF causes inhibition of VirF by preventing its dimerization. Overall, our experimental results suggest that XcDSF and BDSF may contribute to "colonisation resistance" in the human gut or, alternatively, may be exploited for the fine-tuning of Shigella virulence expression as the bacterium migrates from the lumen to approach the intestinal mucosa. Our findings also stress how a detailed understanding of the interaction of DSF ligands with VirF may contribute to the rational development of innovative antivirulence drugs to treat shigellosis.
Collapse
Affiliation(s)
- Rita Trirocco
- Institute Pasteur Italia, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Martina Pasqua
- Institute Pasteur Italia, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Bianca Colonna
- Institute Pasteur Italia, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Gianni Prosseda
- Institute Pasteur Italia, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Trirocco R, Pasqua M, Tramonti A, Grossi M, Colonna B, Paiardini A, Prosseda G. Fatty Acids Abolish Shigella Virulence by Inhibiting Its Master Regulator, VirF. Microbiol Spectr 2023; 11:e0077823. [PMID: 37140433 PMCID: PMC10269687 DOI: 10.1128/spectrum.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Rita Trirocco
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Pasqua
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Milena Grossi
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Bianca Colonna
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gianni Prosseda
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
9
|
Hall CP, Jadeja NB, Sebeck N, Agaisse H. Characterization of MxiE- and H-NS-Dependent Expression of ipaH7.8, ospC1, yccE, and yfdF in Shigella flexneri. mSphere 2022; 7:e0048522. [PMID: 36346241 PMCID: PMC9769918 DOI: 10.1128/msphere.00485-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Shigella flexneri uses a type 3 secretion system (T3SS) apparatus to inject virulence effector proteins into the host cell cytosol. Upon host cell contact, MxiE, an S. flexneri AraC-like transcriptional regulator, is required for the expression of a subset of T3SS effector genes encoded on the large virulence plasmid. Here, we defined the MxiE regulon using RNA-seq. We identified virulence plasmid- and chromosome-encoded genes that are activated in response to type 3 secretion in a MxiE-dependent manner. Bioinformatic analysis revealed that similar to previously known MxiE-dependent genes, chromosome-encoded genes yccE and yfdF contain a regulatory element known as the MxiE box, which is required for their MxiE-dependent expression. The significant AT enrichment of MxiE-dependent genes suggested the involvement of H-NS. Using a dominant negative H-NS system, we demonstrate that H-NS silences the expression of MxiE-dependent genes located on the virulence plasmid (ipaH7.8 and ospC1) and the chromosome (yccE and yfdF). Furthermore, we show that MxiE is no longer required for the expression of ipaH7.8, ospC1, yccE, and yfdF when H-NS silencing is relieved. Finally, we show that the H-NS anti-silencer VirB is not required for ipaH7.8 and yccE expression upon MxiE/IpgC overexpression. Based on these genetic studies, we propose a model of MxiE-dependent gene regulation in which MxiE counteracts H-NS-mediated silencing. IMPORTANCE The expression of horizontally acquired genes, including virulence genes, is subject to complex regulation involving xenogeneic silencing proteins, and counter-silencing mechanisms. The pathogenic properties of Shigella flexneri mainly rely on the acquisition of the type 3 secretion system (T3SS) and cognate effector proteins, whose expression is repressed by the xenogeneic silencing protein H-NS. Based on previous studies, releasing H-NS-mediated silencing mainly relies on two mechanisms involving (i) a temperature shift leading to the release of H-NS at the virF promoter, and (ii) the virulence factor VirB, which dislodges H-NS upon binding to specific motifs upstream of virulence genes, including those encoding the T3SS. In this study, we provide genetic evidence supporting the notion that, in addition to VirB, the AraC family member MxiE also contributes to releasing H-NS-mediated silencing in S. flexneri.
Collapse
Affiliation(s)
- Chelsea P. Hall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Niti B. Jadeja
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Natalie Sebeck
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Raghawan AK, Radha V, Swarup G. HSC70 as a sensor of low temperature: role in cold-triggered autoinflammatory disorders. FEBS J 2022; 289:8037-8049. [PMID: 34535969 DOI: 10.1111/febs.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Familial cold autoinflammatory syndrome (FCAS) is a subset of heritable autoinflammatory disorders wherein inflammatory symptoms aggravate upon exposure of the individual to subnormal temperature. In the past two decades, several mutations in various genes such as NLRP3, NLRP12, PLCG2 and NLRC4 have been identified that cause cold-triggered inflammation. However, our understanding of the mechanisms by which cells perceive subnormal temperature, and what keeps the inflammation under check until exposure to low temperature, is very limited. We hypothesise that recognition of FCAS-associated mutants as misfolded polypeptides by temperature-sensitive HSC70 (HSPA8) chaperone determines the FCAS phenotype. At 37 °C, HSC70 would interact with the mutant proteins, keeping them almost inactive, and loss of interaction at low temperature due to a conformational change in HSC70 would lead to their activation. The proposed mechanism of low temperature sensing in the context of FCAS may have wider implications for HSC70 as a cold temperature sensor in various pathological conditions where symptoms get aggravated upon exposure to low temperature.
Collapse
Affiliation(s)
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
11
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
12
|
Skovajsová E, Colonna B, Prosseda G, Sellin ME, Di Martino ML. The VirF21:VirF30 protein ratio is affected by temperature and impacts Shigella flexneri host cell invasion. FEMS Microbiol Lett 2022; 369:fnac043. [PMID: 35521699 PMCID: PMC9217107 DOI: 10.1093/femsle/fnac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraC-like transcription factor, which at the host temperature (37°C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF30 activates virulence gene expression, while VirF21 appears to negatively regulate virF itself. Moreover, VirF21 originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF21 llmRNA and the VirF21:VirF30 protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF21 in minimizing virulence gene expression outside the host (30°C). Ectopic elevation of VirF21 levels at 37°C indeed suppresses Shigella´s ability to infect epithelial cells. Finally, we find that the VirF21 C-terminal portion, predicted to contain a Helix-Turn-Helix motif (HTH2), is required for the functionality of this negative virulence regulator.
Collapse
Affiliation(s)
- Eva Skovajsová
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Bianca Colonna
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| |
Collapse
|
13
|
The AraC/XylS Protein MxiE and Its Coregulator IpgC Control a Negative Feedback Loop in the Transcriptional Cascade That Regulates Type III Secretion in Shigella flexneri. J Bacteriol 2022; 204:e0013722. [PMID: 35703565 DOI: 10.1128/jb.00137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.
Collapse
|
14
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
15
|
Li W, Jiang L, Liu X, Guo R, Ma S, Wang J, Ma S, Li S, Li H. YhjC is a novel transcriptional regulator required for Shigella flexneri virulence. Virulence 2021; 12:1661-1671. [PMID: 34152261 PMCID: PMC8218686 DOI: 10.1080/21505594.2021.1936767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Shigella is an intracellular pathogen that primarily infects the human colon and causes shigellosis. Shigella virulence relies largely on the type III secretion system (T3SS) and secreted effectors. VirF, the master Shigella virulence regulator, is essential for the expression of T3SS-related genes. In this study, we found that YhjC, a LysR-type transcriptional regulator, is required for Shigella virulence through activating the transcription of virF. Pathogenicity of the yhjC mutant, including colonization in the colons of guinea pigs as well as its ability for host cell adhesion and invasion, was significantly lowered. Expression levels of virF and nearly all VirF-dependent genes were downregulated by yhjC deletion, indicating that YhjC can activate virF transcription. Electrophoretic mobility shift assay analysis demonstrated that YhjC could bind directly to the virF promoter region. Therefore, YhjC is a novel virulence regulator that positively regulates the virF expression and promotes Shigella virulence. Additionally, genome-wide expression analysis identified the presence of other genes in the large virulence plasmid and a genome exhibiting differential expression in response to yhjC deletion, with 169 downregulated and 99 upregulated genes, indicating that YhjC also functioned as a global regulatory factor.
Collapse
Affiliation(s)
- Wanwu Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China.,Shandong Center for Food and Drug Evaluation & Certification, Jinan, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Rui Guo
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - Shuai Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jingting Wang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shujie Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Huiying Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
16
|
Network Rewiring: Physiological Consequences of Reciprocally Exchanging the Physical Locations and Growth-Phase-Dependent Expression Patterns of the Salmonella fis and dps Genes. mBio 2020; 11:mBio.02128-20. [PMID: 32900812 PMCID: PMC7482072 DOI: 10.1128/mbio.02128-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We assessed the impact on Salmonella physiology of reciprocally translocating the genes encoding the Fis and Dps nucleoid-associated proteins (NAPs) and of inverting their growth-phase production patterns such that Fis was produced in stationary phase (like Dps) and Dps was produced in exponential phase (like Fis). Changes to peak binding of Fis were detected by ChIP-seq on the chromosome, as were widespread impacts on the transcriptome, especially when Fis production mimicked Dps production. Virulence gene expression and the expression of a virulence phenotype were altered. Overall, these radical changes to NAP gene expression were well tolerated, revealing the robust and well-buffered nature of global gene regulation networks in the bacterium. The Fis nucleoid-associated protein controls the expression of a large and diverse regulon of genes in Gram-negative bacteria. Fis production is normally maximal in bacteria during the early exponential phase of batch culture growth, becoming almost undetectable by the onset of stationary phase. We tested the effect on the Fis regulatory network in Salmonella of moving the complete fis gene from its usual location near the origin of chromosomal replication to the position normally occupied by the dps gene in the right macrodomain of the chromosome, and vice versa, creating the gene exchange (GX) strain. In a parallel experiment, we tested the effect of rewiring the Fis regulatory network by placing the fis open reading frame under the control of the stationary-phase-activated dps promoter at the dps genetic location within the right macrodomain, and vice versa, creating the open reading frame exchange (OX) strain. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to measure global Fis protein binding levels and to determine gene expression patterns. Strain GX showed few changes compared with the wild type, although we did detect increased Fis binding at Ter, accompanied by reduced binding at Ori. Strain OX displayed a more pronounced version of this distorted Fis protein-binding pattern together with numerous alterations in the expression of genes in the Fis regulon. OX, but not GX, had a reduced ability to infect cultured mammalian cells. These findings illustrate the inherent robustness of the Fis regulatory network with respect to the effects of rewiring based on gene repositioning alone and emphasize the importance of fis expression signals in phenotypic determination.
Collapse
|
17
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
18
|
Zheng Y, Meng F, Zhu Z, Wei W, Sun Z, Chen J, Yu B, Lou C, Chen GQ. A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts. Nucleic Acids Res 2020; 47:e137. [PMID: 31750522 PMCID: PMC6868347 DOI: 10.1093/nar/gkz785] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Natural organisms have evolved intricate regulatory mechanisms that sense and respond to fluctuating environmental temperatures in a heat- or cold-inducible fashion. Unlike dominant heat-inducible switches, very few cold-inducible genetic switches are available in either natural or engineered systems. Moreover, the available cold-inducible switches still have many shortcomings, including high leaky gene expression, small dynamic range (<10-fold) or broad transition temperature (>10°C). To address these problems, a high-performance cold-inducible switch that can tightly control target gene expression is highly desired. Here, we introduce a tight and fast cold-inducible switch that couples two evolved thermosensitive variants, TFts and TEVts, as well as an additional Mycoplasma florum Lon protease (mf-Lon) to effectively turn-off target gene expression via transcriptional and proteolytic mechanisms. We validated the function of the switch in different culture media and various Escherichia coli strains and demonstrated its tightness by regulating two morphogenetic bacterial genes and expressing three heat-unstable recombinant proteins, respectively. Moreover, the additional protease module enabled the cold-inducible switch to actively remove the pre-existing proteins in slow-growing cells. This work establishes a high-performance cold-inducible system for tight and fast control of gene expression which has great potential for basic research, as well as industrial and biomedical applications.
Collapse
Affiliation(s)
- Yang Zheng
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fankang Meng
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zihui Zhu
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zhi Sun
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China.,College of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
The Antiactivator of Type III Secretion, OspD1, Is Transcriptionally Regulated by VirB and H-NS from Remote Sequences in Shigella flexneri. J Bacteriol 2020; 202:JB.00072-20. [PMID: 32123035 DOI: 10.1128/jb.00072-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Shigella species, the causal agents of bacillary dysentery, use a type III secretion system (T3SS) to inject two waves of virulence proteins, known as effectors, into the colonic epithelium to subvert host cell machinery. Prior to host cell contact and secretion of the first wave of T3SS effectors, OspD1, an effector and antiactivator protein, prevents premature production of the second wave of effectors. Despite this important role, regulation of the ospD1 gene is not well understood. While ospD1 belongs to the large regulon of VirB, a transcriptional antisilencing protein that counters silencing mediated by the histone-like nucleoid structuring protein H-NS, it remains unclear if VirB directly or indirectly regulates ospD1 Additionally, it is not known if ospD1 is regulated by H-NS. Here, we identify the primary ospD1 transcription start site (+1) and show that the ospD1 promoter is remotely regulated by both VirB and H-NS. Our findings demonstrate that VirB regulation of ospD1 requires at least one of the two newly identified VirB regulatory sites, centered at -978 and -1270 relative to the ospD1 +1. Intriguingly, one of these sites lies on a 193-bp sequence found in three conserved locations on the large virulence plasmids of Shigella The region required for H-NS-dependent silencing of ospD1 lies between -1120 and -820 relative to the ospD1 +1. Thus, our study provides further evidence that cis-acting regulatory sequences for transcriptional antisilencers and silencers, such as VirB and H-NS, can lie far upstream of the canonical bacterial promoter region (i.e., -250 to +1).IMPORTANCE Transcriptional silencing and antisilencing mechanisms regulate virulence gene expression in many important bacterial pathogens. In Shigella species, plasmid-borne virulence genes, such as those encoding the type III secretion system (T3SS), are silenced by the histone-like nucleoid structuring protein H-NS and antisilenced by VirB. Previous work at the plasmid-borne icsP locus revealed that VirB binds to a remotely located cis-acting regulatory site to relieve transcriptional silencing mediated by H-NS. Here, we characterize a second example of remote VirB antisilencing at ospD1, which encodes a T3SS antiactivator and effector. Our study highlights that remote transcriptional silencing and antisilencing occur more frequently in Shigella than previously thought, and it raises the possibility that long-range transcriptional regulation in bacteria is commonplace.
Collapse
|
20
|
Rihtar E, Žgur Bertok D, Podlesek Z. The Uropathogenic Specific Protein Gene usp from Escherichia coli and Salmonella bongori is a Novel Member of the TyrR and H-NS Regulons. Microorganisms 2020; 8:E330. [PMID: 32111072 PMCID: PMC7142922 DOI: 10.3390/microorganisms8030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The Escherichia coli PAIusp is a small pathogenicity island encoding usp, for the uropathogenic specific protein (Usp), a genotoxin and three associated downstream imu1-3 genes that protect the producer against its own toxin. Bioinformatic analysis revealed the presence of the PAIusp also in publically available Salmonella bongori and Salmonella enterica subps. salamae genome sequences. PAIusp is in all examined sequences integrated within the aroP-pdhR chromosomal intergenic region. The focus of this work was identification of the usp promoter and regulatory elements controlling its activity. We show that, in both E. coli and S. bongori, the divergent TyrR regulated P3 promoter of the aroP gene, encoding an aromatic amino acid membrane transporter, drives usp transcription while H-NS acts antagonistically repressing expression. Our results show that the horizontally acquired PAIusp has integrated into the TyrR regulatory network and that environmental factors such as aromatic amino acids, temperature and urea induce usp expression.
Collapse
Affiliation(s)
- Erik Rihtar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
- National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Darja Žgur Bertok
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| |
Collapse
|
21
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, Colonna B, Prosseda G. The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells. Microorganisms 2019; 7:microorganisms7090285. [PMID: 31443538 PMCID: PMC6780985 DOI: 10.3390/microorganisms7090285] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Alessandro Zennaro
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Giulia Fanelli
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR), P.le A. Moro 5, 00185 Roma, Italy
| | - Frederic Barras
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
- Équipe de Recherche Labellisée (ERL) Microbiology, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| | - Bianca Colonna
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy.
| |
Collapse
|
23
|
Flores-Ríos R, Quatrini R, Loyola A. Endogenous and Foreign Nucleoid-Associated Proteins of Bacteria: Occurrence, Interactions and Effects on Mobile Genetic Elements and Host's Biology. Comput Struct Biotechnol J 2019; 17:746-756. [PMID: 31303979 PMCID: PMC6606824 DOI: 10.1016/j.csbj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Mobile Genetic Elements (MGEs) are mosaics of functional gene modules of diverse evolutionary origin and are generally divergent from the hosts´ genetic background. Existing biases in base composition and codon usage of these elements` genes impose transcription and translation limitations that may affect the physical and regulatory integration of MGEs in new hosts. Stable appropriation of the foreign DNA depends on a number of host factors among which are the Nucleoid-Associated Proteins (NAPs). These small, basic, highly abundant proteins bind and bend DNA, altering its topology and folding, thereby affecting all known essential DNA metabolism related processes. Both chromosomally- (endogenous) and MGE- (foreign) encoded NAPs have been shown to exist in bacteria. While the role of host-encoded NAPs in xenogeneic silencing of both episomal (plasmids) and integrative MGEs (pathogenicity islands and prophages) is well acknowledged, less is known about the role of MGE-encoded NAPs in the foreign elements biology or their influence on the host's chromosome expression dynamics. Here we review existing literature on the topic, present examples on the positive and negative effects that endogenous and foreign NAPs exert on global transcriptional gene expression, MGE integrative and excisive recombination dynamics, persistence and transfer to suitable hosts and discuss the nature and relevance of synergistic and antagonizing higher order interactions between diverse types of NAPs.
Collapse
Affiliation(s)
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Alejandra Loyola
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| |
Collapse
|
24
|
Giuliodori AM, Fabbretti A, Gualerzi C. Cold-Responsive Regions of Paradigm Cold-Shock and Non-Cold-Shock mRNAs Responsible for Cold Shock Translational Bias. Int J Mol Sci 2019; 20:E457. [PMID: 30678142 PMCID: PMC6386945 DOI: 10.3390/ijms20030457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
In Escherichia coli, the mRNA transcribed from the main cold-shock gene cspA is a thermosensor, which at low temperature adopts a conformation particularly suitable for translation in the cold. Unlike cspA, its paralogue cspD is expressed only at 37 °C, is toxic so cannot be hyper-expressed in E. coli and is poorly translated in vitro, especially at low temperature. In this work, chimeric mRNAs consisting of different segments of cspA and cspD were constructed to determine if parts of cspA could confer cold-responsive properties to cspD to improve its expression. The activities of these chimeric mRNAs in translation and in partial steps of translation initiation such as formation of 30S initiation complexes and 50S subunits docking to 30S complexes to yield 70S initiation complexes were analyzed. We show that the 5' untranslated region (5'UTR) of cspA mRNA is sufficient to improve the translation of cspD mRNA at 37 °C whereas both the 5'UTR and the region immediately downstream the cspA mRNA initiation triplet are essential for translation at low temperature. Furthermore, the translational apparatus of cold-stressed cells contains trans-active elements targeting both 5'UTR and downstream regions of cspA mRNA, thereby improving translation of specific chimeric constructs at both 15 and 37 °C.
Collapse
Affiliation(s)
| | - Attilio Fabbretti
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy.
| | - Claudio Gualerzi
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
25
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018; 46:5525-5546. [PMID: 29718386 PMCID: PMC6009659 DOI: 10.1093/nar/gky265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.
Collapse
Affiliation(s)
- Beth A Boudreau
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Liang Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Roncarati D, Scarlato V. The Interplay between Two Transcriptional Repressors and Chaperones Orchestrates Helicobacter pylori Heat-Shock Response. Int J Mol Sci 2018; 19:E1702. [PMID: 29880759 PMCID: PMC6032397 DOI: 10.3390/ijms19061702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to gauge the surroundings and modulate gene expression accordingly is a crucial feature for the survival bacterial pathogens. In this respect, the heat-shock response, a universally conserved mechanism of protection, allows bacterial cells to adapt rapidly to hostile conditions and to survive during environmental stresses. The important and widespread human pathogen Helicobacter pylori enrolls a collection of highly conserved heat-shock proteins to preserve cellular proteins and to maintain their homeostasis, allowing the pathogen to adapt and survive in the hostile niche of the human stomach. Moreover, various evidences suggest that some chaperones of H. pylori may play also non-canonical roles as, for example, in the interaction with the extracellular environment. In H. pylori, two dedicated transcriptional repressors, named HspR and HrcA, homologues to well-characterized regulators found in many other bacterial species, orchestrate the regulation of heat-shock proteins expression. Following twenty years of intense research, characterized by molecular, as well as genome-wide, approaches, it is nowadays possible to appreciate the complex picture representing the heat-shock regulation in H. pylori. Specifically, the HspR and HrcA repressors combine to control the transcription of target genes in a way that the HrcA regulon results embedded within the HspR regulon. Moreover, an additional level of control of heat-shock genes' expression is exerted by a posttranscriptional feedback regulatory circuit in which chaperones interact and modulate HspR and HrcA DNA-binding activity. This review recapitulates our understanding of the roles and regulation of the most important heat-shock proteins of H. pylori, which represent a crucial virulence factor for bacterial infection and persistence in the human host.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
28
|
Weatherspoon-Griffin N, Picker MA, Pew KL, Park HS, Ginete DR, Karney MMA, Usufzy P, Castellanos MI, Duhart JC, Harrison DJ, Socea JN, Karabachev AD, Hensley CT, Howerton AJ, Ojeda-Daulo R, Immak JA, Wing HJ. Insights into transcriptional silencing and anti-silencing in Shigella flexneri: a detailed molecular analysis of the icsP virulence locus. Mol Microbiol 2018; 108:505-518. [PMID: 29453862 PMCID: PMC6311345 DOI: 10.1111/mmi.13932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Transcriptional silencing and anti-silencing mechanisms modulate bacterial physiology and virulence in many human pathogens. In Shigella species, many virulence plasmid genes are silenced by the histone-like nucleoid structuring protein H-NS and anti-silenced by the virulence gene regulator VirB. Despite the key role that these regulatory proteins play in Shigella virulence, their mechanisms of transcriptional control remain poorly understood. Here, we characterize the regulatory elements and their relative spacing requirements needed for the transcriptional silencing and anti-silencing of icsP, a locus that requires remotely located regulatory elements for both types of transcriptional control. Our findings highlight the flexibility of the regulatory elements' positions with respect to each other, and yet, a molecular roadblock docked between the VirB binding site and the upstream H-NS binding region abolishes transcriptional anti-silencing by VirB, providing insight into transcriptional anti-silencing. Our study also raises the need to re-evaluate the currently proposed VirB binding site. Models of transcriptional silencing and anti-silencing at this genetic locus are presented, and the implications for understanding these regulatory mechanisms in bacteria are discussed.
Collapse
Affiliation(s)
| | | | - Krystle L. Pew
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Hiromichi S. Park
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Daren R. Ginete
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Monika MA. Karney
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Pashtana Usufzy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Maria I. Castellanos
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Dustin J. Harrison
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Jillian N. Socea
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | - Rosa Ojeda-Daulo
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joy A. Immak
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Helen J. Wing
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
29
|
Rangarajan AA, Schnetz K. Interference of transcription across H-NS binding sites and repression by H-NS. Mol Microbiol 2018; 108:226-239. [PMID: 29424946 DOI: 10.1111/mmi.13926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/28/2022]
Abstract
Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression.
Collapse
Affiliation(s)
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, Cologne, Germany
| |
Collapse
|
30
|
Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, Morabito S, Prosseda G. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity. Front Microbiol 2017; 8:2390. [PMID: 29259590 PMCID: PMC5723341 DOI: 10.3389/fmicb.2017.02390] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Among the intestinal pathogenic Escherichia coli, enteroinvasive E. coli (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to Shigella, the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of Shigella, they neither have the full set of traits that define Shigella nor have undergone the extensive gene decay observed in Shigella. Molecular analysis confirms that EIEC are widely distributed among E. coli phylogenetic groups and correspond to bioserotypes found in many E. coli serogroups. Like Shigella, also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In Shigella, the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the environment, are redundant or deleterious for the life inside the host. The pathoadaptation process that has led Shigella to modify its metabolic profile and increase its pathogenic potential is still in infancy in EIEC, although maintenance of some features typical of E. coli might favor their emerging relevance as intestinal pathogens worldwide, as documented by recent outbreaks in industrialized countries. In this review, we will discuss the evolution of EIEC toward Shigella-like invasive forms going through the epidemiology, including the emergence of new virulent strains, their genome organization, and the complex interactions they establish with the host.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Valeria Michelacci
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Letizia Di Martino
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Rosangela Tozzoli
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Stefano Morabito
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
31
|
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 2017; 41:549-574. [PMID: 28402413 DOI: 10.1093/femsre/fux015] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
32
|
Wondergem JAJ, Schiessel H, Tompitak M. Performing SELEX experimentsin silico. J Chem Phys 2017; 147:174101. [DOI: 10.1063/1.5001394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- J. A. J. Wondergem
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - H. Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - M. Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
33
|
van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT. Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. eLife 2017; 6:e27369. [PMID: 28949292 PMCID: PMC5647153 DOI: 10.7554/elife.27369] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity. H-NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners. Mechanistically, it is unclear how functional modulation of H-NS by such factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA-bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt switch between a bridging and non-bridging DNA-binding mode. Similarly, synergistic and antagonistic co-regulators modulate the DNA-bridging efficiency. Structural studies suggest a conserved mechanism: H-NS switches between a 'closed' and an 'open', bridging competent, conformation driven by environmental cues and interaction partners.
Collapse
Affiliation(s)
| | - Jocelyne Vreede
- Computational ChemistryVan ‘t Hoff Institute for Molecular Sciences, University of AmsterdamAmsterdamNetherlands
| | - Liang Qin
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | | | - Andreas Hofmann
- Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany
| | - Nora Goosen
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | - Remus T Dame
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenNetherlands
| |
Collapse
|
34
|
Dorman CJ, Dorman MJ. Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium. Environ Microbiol 2017. [PMID: 28631437 PMCID: PMC5655915 DOI: 10.1111/1462-2920.13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix-turn-helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet 'wing' into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non-invasive Gram-negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T-rich horizontally acquired virulence genes that are silenced by the nucleoid-associated protein H-NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Matthew J Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
35
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
36
|
Giangrossi M, Giuliodori AM, Tran CN, Amici A, Marchini C, Falconi M. VirF Relieves the Transcriptional Attenuation of the Virulence Gene icsA of Shigella flexneri Affecting the icsA mRNA-RnaG Complex Formation. Front Microbiol 2017; 8:650. [PMID: 28458662 PMCID: PMC5394118 DOI: 10.3389/fmicb.2017.00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
VirF is the master activator of virulence genes of Shigella and its expression is required for the invasion of the human intestinal mucosa by pathogenic bacteria. VirF was shown to directly activate the transcription of virB and icsA, which encode two essential proteins involved in the pathogenicity process, by binding their promoter regions. In this study, we demonstrate by band shift, enzymatic probing and cross-linking experiments that VirF, in addition to DNA, can also bind the icsA transcript and RnaG, an antisense non-coding small RNA that promotes the premature termination of icsA mRNA through a transcriptional attenuation mechanism. Furthermore, we show that VirF binds in vitro also other species of RNAs, although with lower specificity. The existence of VirF–RnaG and VirF-icsA mRNA complexes is confirmed in a pulldown assay carried out under experimental conditions that very close reproduce the in vivo conditions and that allows immobilized VirF to “fish” out RnaG and icsA mRNA from a total RNA extract. The VirF binding sites identified on both icsA mRNA and RnaG contain a 13 nucleotides stretch (5′-UUUUaGYcUuUau-3′) that is the RNA-converted consensus sequence previously proposed for the VirF–DNA interaction. Band-shift assays with a synthetic RNA molecule whose sequence perfectly matches the consensus indicate that this signature plays a key role also in the VirF–RNA interaction, in particular when exposed in a stem–loop structure. To further explore the icsA-RnaG-VirF regulatory system, we developed an in vitro test (RNA–RNA Pairing Assay) in which pairing between icsA mRNA and synthetic RNAs that reproduce the individual stem–loop motifs of RnaG, was analyzed in the presence of VirF. This assay shows that this protein can prevent the formation of the kissing complex, defined as the initial nucleation points for RNA heteroduplex formation, between RnaG and icsA mRNA. Consistently, VirF alleviates the RnaG-mediated repression of icsA transcription in vitro. Therefore VirF, by hindering the icsA transcript-RnaG interaction, exhibits an activity opposed to that usually displayed by proteins, which generally assist the RNA–RNA interaction; this quite uncommon and new function and the regulatory implications of VirF as a potential RNA-binding protein are discussed.
Collapse
Affiliation(s)
- Mara Giangrossi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Anna M Giuliodori
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Chi N Tran
- Food Science Department, Can Tho Technical - Economic CollegeCan Tho, Vietnam
| | - Augusto Amici
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Cristina Marchini
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Maurizio Falconi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| |
Collapse
|
37
|
Yella VR, Bansal M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 2017; 7:324-334. [PMID: 28286728 PMCID: PMC5337902 DOI: 10.1002/2211-5463.12166] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genes can be broadly classified as TATA‐containing and TATA‐less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A‐tracts, G‐quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Molecular Biophysics Unit Indian Institute of Science Bangalore India; Present address: Department of Biotechnology K L University, Vaddeswaram Guntur 522502 India
| | - Manju Bansal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
38
|
Chakraborty A, Lyonnais S, Battistini F, Hospital A, Medici G, Prohens R, Orozco M, Vilardell J, Solà M. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res 2017; 45:951-967. [PMID: 27899643 PMCID: PMC5314765 DOI: 10.1093/nar/gkw1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/16/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022] Open
Abstract
The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.
Collapse
Affiliation(s)
- Arka Chakraborty
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Sébastien Lyonnais
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Giorgio Medici
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, University of Barcelona, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Josep Vilardell
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain
- Molecular Genomics Department, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
39
|
|
40
|
H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species. Genes (Basel) 2016; 7:genes7120112. [PMID: 27916940 PMCID: PMC5192488 DOI: 10.3390/genes7120112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/04/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella.
Collapse
|
41
|
One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator. mBio 2016; 7:mBio.01860-16. [PMID: 27834204 PMCID: PMC5101355 DOI: 10.1128/mbio.01860-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa), and the shorter VirF21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA) whose 5′ end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21. The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF30 is responsible for activation of the virulence system, VirF21 negatively autoregulates virF expression itself. Since VirF21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. Shigella spp. are a major cause of dysentery in humans. In bacteria of this genus, the activation of the invasive program involves a multitude of signals that act on all layers of the gene regulatory hierarchy. By controlling the essential genes for host cell invasion, VirF is the key regulator of the switch from the noninvasive to the invasive phenotype. Here, we show that the Shigella virF gene encodes two proteins of different sizes, VirF30 and VirF21, that are functionally distinct. The major form, VirF30, activates the genes necessary for virulence, whereas the minor VirF21, which shares the C-terminal two-thirds of VirF30, negatively autoregulates virF expression itself. VirF21 is transcribed from a newly identified gene-internal promoter and, moreover, is translated from an unusual leaderless mRNA. The identification of a new player in regulation adds complexity to the regulation of the Shigella invasive process and may help development of new therapies for shigellosis.
Collapse
|
42
|
Schumann W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 2016; 21:959-968. [PMID: 27518094 PMCID: PMC5083672 DOI: 10.1007/s12192-016-0727-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022] Open
Abstract
All organisms developed genetic programs to allow their survival under stressful conditions. In most cases, they increase the amount of a specific class of proteins which deal with the stress factor and allow cells to adapt to life-threatening conditions. One class of stress proteins are the heat shock proteins (HSPs) the amount of which is significantly increased after a sudden temperature rise. How is the heat shock response (HSR) regulated in bacteria? This has been studied in detail in Escherichia coli, Bacillus subtilis and Streptomyces spp. Two major mechanisms have been described so far to regulate expression of the HSGs, namely alternative sigma factors and transcriptional repressors. This review focuses on the regulatory details of the different heat shock regulons in the three well-studied bacterial species.
Collapse
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
43
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
44
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
45
|
Joyeux M. Compaction of bacterial genomic DNA: clarifying the concepts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:383001. [PMID: 26345139 DOI: 10.1088/0953-8984/27/38/383001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The unconstrained genomic DNA of bacteria forms a coil, whose volume exceeds 1000 times the volume of the cell. Since prokaryotes lack a membrane-bound nucleus, in sharp contrast with eukaryotes, the DNA may consequently be expected to occupy the whole available volume when constrained to fit in the cell. Still, it has been known for more than half a century that the DNA is localized in a well-defined region of the cell, called the nucleoid, which occupies only 15% to 25% of the total volume. Although this problem has focused the attention of many scientists in recent decades, there is still no certainty concerning the mechanism that enables such a dramatic compaction. The goal of this Topical Review is to take stock of our knowledge on this question by listing all possible compaction mechanisms with the proclaimed desire to clarify the physical principles they are based upon and discuss them in the light of experimental results and the results of simulations based on coarse-grained models. In particular, the fundamental differences between ψ-condensation and segregative phase separation and between the condensation by small and long polycations are highlighted. This review suggests that the importance of certain mechanisms, like supercoiling and the architectural properties of DNA-bridging and DNA-bending nucleoid proteins, may have been overestimated, whereas other mechanisms, like segregative phase separation and the self-association of nucleoid proteins, as well as the possible role of the synergy of two or more mechanisms, may conversely deserve more attention.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, BP 87, 38402 St Martin d'Hères, France
| |
Collapse
|
46
|
Abstract
Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health.
Collapse
Affiliation(s)
- Oliver Lam
- a The Sir William Dunn School of Pathology ; University of Oxford ; Oxford , UK
| | | | | |
Collapse
|
47
|
Leuzzi A, Di Martino ML, Campilongo R, Falconi M, Barbagallo M, Marcocci L, Pietrangeli P, Casalino M, Grossi M, Micheli G, Colonna B, Prosseda G. Multifactor Regulation of the MdtJI Polyamine Transporter in Shigella. PLoS One 2015; 10:e0136744. [PMID: 26313003 PMCID: PMC4636849 DOI: 10.1371/journal.pone.0136744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/06/2015] [Indexed: 01/19/2023] Open
Abstract
The polyamine profile of Shigella, the etiological agent of bacillary dysentery in humans, differs markedly from that of E. coli, its innocuous commensal ancestor. Pathoadaptive mutations such as the loss of cadaverine and the increase of spermidine favour the full expression of the virulent phenotype of Shigella. Spermidine levels affect the expression of the MdtJI complex, a recently identified efflux pump belonging to the small multi-drug resistance family of transporters. In the present study, we have addressed the regulation of the mdtJI operon in Shigella by asking which factors influence its expression as compared to E. coli. In particular, after identifying the mdtJI promoter by primer extension analysis, in vivo transcription assays and gel-retardation experiments were carried out to get insight on the silencing of mdtJI in E. coli. The results indicate that H-NS, a major nucleoid protein, plays a key role in repressing the mdtJI operon by direct binding to the regulatory region. In the Shigella background mdtJI expression is increased by the high levels of spermidine typically found in this microorganism and by VirF, the plasmid-encoded regulator of the Shigella virulence regulatory cascade. We also show that the expression of mdtJI is stimulated by bile components. Functional analyses reveal that MdtJI is able to promote the excretion of putrescine, the spermidine precursor. This leads us to consider the MdtJI complex as a possible safety valve allowing Shigella to maintain spermidine to a level optimally suited to survival within infected macrophages and, at the same time, prevent toxicity due to spermidine over-accumulation.
Collapse
Affiliation(s)
- Adriano Leuzzi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Maria Letizia Di Martino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Rosaria Campilongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Marialuisa Barbagallo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Lucia Marcocci
- Dipartimento di Biochimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Paola Pietrangeli
- Dipartimento di Biochimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Mariassunta Casalino
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146, Roma, Italy
| | - Milena Grossi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia molecolari CNR, P.le A. Moro 5, 00185, Roma, Italy
| | - Bianca Colonna
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Gianni Prosseda
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
- * E-mail:
| |
Collapse
|
48
|
Janik K, Bode J, Dutow P, Laudeley R, Geffers R, Sommer K, Glage S, Klos A. Temperature and host cell-dependent changes in virulence of Chlamydia pneumoniae CWL029 in an optimized mouse infection model. Pathog Dis 2015; 73:1-8. [PMID: 25853997 DOI: 10.1093/femspd/ftu001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/12/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia (C.) pneumoniae causes respiratory infections and is associated with vascular diseases. To elucidate how temperature and host cells used for propagation alter chlamydial virulence, C. pneumoniae CWL0129 (Cpn) was cultured at 35 or 37°C in two different cell lines and then applied to mice. These mice infected with differentially propagated chlamydiae showed differences in clinical score, body weight and inflammatory cytokines in the lung. Our study demonstrates that Cpn cultured at 37°C in hamster fibroblast BHK-21 are able to colonize the mouse lung faster and better, and induce stronger symptoms and cytokine induction than bacteria cultured at 35°C. The temperature-triggered virulence alteration could not be observed for Cpn propagated in HeLa cells and was independent of host cell protein synthesis. Transcriptome analysis did not reveal temperature-induced effects on chlamydial gene expression, suggesting that the observed virulence changes are regulated on a different, so far unknown level. Preculture close to the central body temperature of its warm-blooded human or murine host might 'prepare' Cpn for subsequent in vivo infection. Our identification of culture-dependent virulence alteration helps to establish an optimized mouse lung infection model for Cpn and provides the basis to further unravel the molecular mechanisms underlying chlamydial pathogenicity.
Collapse
Affiliation(s)
- Katrin Janik
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Jenny Bode
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Pavel Dutow
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Kirsten Sommer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, MHH, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
49
|
Gene regulation by H-NS as a function of growth conditions depends on chromosomal position in Escherichia coli. G3-GENES GENOMES GENETICS 2015; 5:605-14. [PMID: 25701587 PMCID: PMC4390576 DOI: 10.1534/g3.114.016139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular adaptation to changing environmental conditions requires the coordinated regulation of expression of large sets of genes by global regulatory factors such as nucleoid associated proteins. Although in eukaryotic cells genomic position is known to play an important role in regulation of gene expression, it remains to be established whether in bacterial cells there is an influence of chromosomal position on the efficiency of these global regulators. Here we show for the first time that genome position can affect transcription activity of a promoter regulated by the histone-like nucleoid-structuring protein (H-NS), a global regulator of bacterial transcription and genome organization. We have used as a local reporter of H-NS activity the level of expression of a fluorescent reporter protein under control of an H-NS−regulated promoter (Phns) at different sites along the genome. Our results show that the activity of the Phns promoter depends on whether it is placed within the AT-rich regions of the genome that are known to be bound preferentially by H-NS. This modulation of gene expression moreover depends on the growth phase and the growth rate of the cells, reflecting the changes taking place in the relative abundance of different nucleoid proteins and the inherent heterogeneous organization of the nucleoid. Genomic position can thus play a significant role in the adaptation of the cells to environmental changes, providing a fitness advantage that can explain the selection of a gene’s position during evolution.
Collapse
|
50
|
|