1
|
Machado Kayser J, Petry F, Alijar Souza M, Santin Zanatta Schindler M, Vidor Morgan L, Zimmermann Prado Rodrigues G, Mazon SC, Silva Aguiar GP, Galdino da Rocha Pitta M, da Rocha Pitta I, Leal Xavier L, Girardi Müller L, Gehlen G, Heemann Betti A. Antidepressant effect of PT-31, an α₂-adrenoceptor agonist, on lipopolysaccharide-induced depressive-like behavior in mice. Behav Pharmacol 2024; 35:338-350. [PMID: 39051900 DOI: 10.1097/fbp.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Increasing evidence indicates that neuroinflammation, oxidative stress, and neurotrophic factors play a key role in the pathophysiology of major depressive disorder (MDD). In addition, the attenuation of inflammatory response has been considered a putative mechanism for MDD treatment. PT-31 is an imidazolidine derivative and a putative α₂-adrenoceptor agonist that has previously demonstrated antinociceptive activity. The present study aimed to investigate the effect of PT-31 on depressive-like behavior and lipopolysaccharide-induced neurochemical changes. To this end, mice received intraperitoneally saline or lipopolysaccharide (600 µg/kg), and 5 h postinjection animals were orally treated with saline, PT-31 (3, 10, and 30 mg/kg), or fluoxetine (30 mg/kg). Mice were subjected to the open field test (OFT) 6 and 24 h after lipopolysaccharide administration and to the tail suspension test (TST) 24 h postlipopolysaccharide. Subsequently, animals were euthanized, and brains were dissected for neurochemical analyses. The administration of lipopolysaccharide-induced sickness- and depressive-like behaviors, besides promoting an increase in myeloperoxidase activity and a reduction in brain-derived neurotrophic factor (BDNF) levels. Noteworthy, PT-31 3 mg/kg attenuated lipopolysaccharide-induced decreased locomotor activity 6 h after lipopolysaccharide in the OFT. All tested doses of PT-31 significantly reduced the immobility time of animals in the TST and attenuated lipopolysaccharide-induced increased myeloperoxidase activity in the cortex of mice. Our results demonstrate that PT-31 ameliorates behavioral changes promoted by lipopolysaccharide in OFT and TST, which is possibly mediated by attenuation of the inflammatory response.
Collapse
Affiliation(s)
- Juliana Machado Kayser
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
| | - Fernanda Petry
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Maryelen Alijar Souza
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Monica Santin Zanatta Schindler
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Letícia Vidor Morgan
- Pharmacy Course, Health Sciences Area, Community University of Chapecó Region (Unochapecó), Chapecó
| | | | - Samara Cristina Mazon
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Gean Pablo Silva Aguiar
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Marina Galdino da Rocha Pitta
- Nucleus of Research in Therapeutic Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife
| | - Ivan da Rocha Pitta
- Nucleus of Research in Therapeutic Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife
| | - Léder Leal Xavier
- Postgraduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Liz Girardi Müller
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Günther Gehlen
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
- Postgraduate Program in Environmental Quality, Health Sciences Institute, Feevale University, Novo Hamburgo
| | - Andresa Heemann Betti
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
| |
Collapse
|
2
|
Brodersen K, Mose M, Ramer Mikkelsen U, Jørgensen JOL, Festersen Nielsen M, Møller N, Wegeberg A, Brock C, Hartmann B, Holst JJ, Rittig N. Prolonged lipopolysaccharide-induced illness elevates glucagon-like peptide-1 and suppresses peptide YY: A human-randomized cross-over trial. Physiol Rep 2022; 10:e15462. [PMID: 36117310 PMCID: PMC9483438 DOI: 10.14814/phy2.15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023] Open
Abstract
Severe systemic inflammation is associated with nausea, loss of appetite, and delayed gastric emptying, which increases hospitalization admission length and mortality rate. There is a lack of human controlled studies exploring gastric emptying rates and underlying mechanisms during inflammatory conditions. We aimed to investigate if systemic inflammation in young men delays gastro-intestinal transit times, lowers motility, and affects gastrointestinal hormone secretion. This substudy of a randomized crossover trial investigated eight healthy young men on two separate occasions; (I) following an overnight fast (healthy conditions/HC) and (II) fasting and bedrest combined with two lipopolysaccharide (LPS) injections of 1 ng kg-1 following an overnight fast and 0.5 ng kg-1 following another 24 h (systemic inflammation/SI). A standardized protein beverage and a SmartPill capsule (a wireless gastrointestinal monitoring system) were swallowed during each occasion. Whole gut transit time was comparable between HC and SI. SI decreased gastric mean pressure peak amplitude (p = 0.04) and increased pH rise across the pylorus and small bowel pH (p = 0.02) compared with HC. Glucagon-like peptide-1 was elevated during SI compared with HC (p = 0.04). Peptide YY was lower during SI compared with HC (p = 0.007). Prolonged LPS exposure combined with fasting and bedrest elevated glucagon-like peptide 1 concentrations, which may play a role for the nausea and loss of appetite typically associated with SI.
Collapse
Affiliation(s)
- Katrine Brodersen
- Department of SurgeryViborg Regional HospitalViborgDenmark
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Maike Mose
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
| | | | - Jens Otto Lunde Jørgensen
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | | | - Niels Møller
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
| | - Anne‐Marie Wegeberg
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark
| | - Christina Brock
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark
- Steno Diabetes Center North DenmarkAalborg University HospitalAalborgDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenKøbenhavnDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenKøbenhavnDenmark
| | - Nikolaj Rittig
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
3
|
Jardi F, Aguilera M, Vergara P, Martinez V. Lipopolysaccharides facilitate colonic motor alterations associated to the sensitization to a luminal antigen in rats. J Neurogastroenterol Motil 2015; 21:222-35. [PMID: 25843075 PMCID: PMC4398237 DOI: 10.5056/jnm14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
Background/Aims Enteric dysbiosis is a risk factor for dietary proteins-associated intestinal alterations, contributing to the development of food allergies and the symptomatology of functional gastrointestinal disorders, mainly irritable bowel syndrome (IBS). We explored if a dysbiotic-like state, simulated by intraperitoneal administration of bacterial lipopolysaccharides (LPS), facilitates the sensitization to a luminal antigen, ovalbumin (OVA), in rats. Methods Rats were exposed to oral OVA for 1 week, alone or with LPS. Thereafter, colonic histology, goblet cell density, mucosal eosinophils and mucosal mast cell (MMC) and connective tissue mast cell (CTMC) were evaluated. Colonic expression (real-time quantitative polymerase chain reaction) of interleukins, IFN-α1 and integrins was assessed to determine local immune responses. Luminal and wall adhered microbiota were characterized by fluorescence in situ hybridization. Colonic contractility (in vitro) served to assess functional changes associated to OVA and/or LPS. Results Neither OVA nor LPS, alone or combined, lead to structural alterations, except for a reduced goblet cell density in OVA-LPS-treated rats. MMC density was unaffected, while CTMC counts increased within the submucosa of OVA-LPS-treated animals. Marginal immune activation (IFN-α1 up-regulation) was observed in OVA-LPS-treated rats. LPS induced a dysbiotic-like state characterized by decreased luminal bacterial counts, with a specific loss of clostridia. LPS facilitated Clostridium spp. wall adherence, an effect prevented by OVA. Colonic contractility was altered in OVA-LPS-treated animals, showing increased basal activity and enhanced motor responses to OVA. Conclusions Changes in gut microbiota and/or direct effects of LPS might enhance/facilitate local neuroimmune responses to food antigens leading to motor alterations similar to those observed in IBS.
Collapse
Affiliation(s)
- Ferran Jardi
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Spain
| | - Monica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Spain.,Instituto de Neurociencias, Universitat Autonoma de Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Spain.,Instituto de Neurociencias, Universitat Autonoma de Barcelona, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Martinez
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Spain.,Instituto de Neurociencias, Universitat Autonoma de Barcelona, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Bashashati M, Storr MA, Nikas SP, Wood JT, Godlewski G, Liu J, Ho W, Keenan CM, Zhang H, Alapafuja SO, Cravatt BF, Lutz B, Mackie K, Kunos G, Patel KD, Makriyannis A, Davison JS, Sharkey KA. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol 2012; 165:1556-71. [PMID: 21883147 PMCID: PMC3372737 DOI: 10.1111/j.1476-5381.2011.01644.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal (GI) motility is regulated in part by fatty acid ethanolamides (FAEs), including the endocannabinoid (EC) anandamide (AEA). The actions of FAEs are terminated by fatty acid amide hydrolase (FAAH). We investigated the actions of the novel FAAH inhibitor AM3506 on normal and enhanced GI motility. EXPERIMENTAL APPROACH We examined the effect of AM3506 on electrically-evoked contractility in vitro and GI transit and colonic faecal output in vivo, in normal and FAAH-deficient mice treated with saline or LPS (100 µg·kg(-1), i.p.), in the presence and absence of cannabinoid (CB) receptor antagonists. mRNA expression was measured by quantitative real time-PCR, EC levels by liquid chromatography-MS and FAAH activity by the conversion of [(3)H]-AEA to [(3)H]-ethanolamine in intestinal extracts. FAAH expression was examined by immunohistochemistry. KEY RESULTS FAAH was dominantly expressed in the enteric nervous system; its mRNA levels were higher in the ileum than the colon. LPS enhanced ileal contractility in the absence of overt inflammation. AM3506 reversed the enhanced electrically-evoked contractions of the ileum through CB(1) and CB(2) receptors. LPS increased the rate of upper GI transit and faecal output. AM3506 normalized the enhanced GI transit through CB(1) and CB(2) receptors and faecal output through CB(1) receptors. LPS did not increase GI transit in FAAH-deficient mice. CONCLUSIONS AND IMPLICATIONS Inhibiting FAAH normalizes various parameters of GI dysmotility in intestinal pathophysiology. Inhibition of FAAH represents a new approach to the treatment of disordered intestinal motility.
Collapse
MESH Headings
- Alkanesulfonates/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Colon/drug effects
- Colon/metabolism
- Colon/physiology
- Endotoxins/pharmacology
- Enteric Nervous System/drug effects
- Enteric Nervous System/metabolism
- Gastrointestinal Motility/drug effects
- Gastrointestinal Motility/genetics
- Gastrointestinal Motility/physiology
- Ileum/drug effects
- Ileum/metabolism
- Ileum/physiology
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Lipopolysaccharides/adverse effects
- Male
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Motor Activity/genetics
- Phenols/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity & Inflammation, Department of Physiology & Pharmacology, University Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hamano N, Inada T, Iwata R, Asai T, Shingu K. The alpha2-adrenergic receptor antagonist yohimbine improves endotoxin-induced inhibition of gastrointestinal motility in mice. Br J Anaesth 2007; 98:484-90. [PMID: 17363407 DOI: 10.1093/bja/aem011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sepsis inhibits gastrointestinal motility. Although the exact mechanism of this is unclear, lipopolysaccharide is known to activate macrophages in the gastrointestinal wall, which upregulate their expression of inducible nitric oxide synthase (iNOS). This leads to an increased production of nitric oxide, which relaxes the gastrointestinal muscles. We studied endotoxaemic mice to determine whether yohimbine improved delayed gastric emptying and gastrointestinal transit. METHODS Male Balb/c mice (n = 49) were randomly allocated to two groups, and either yohimbine 25 microg or saline was injected s.c. Four hours later, mice in each group were further randomly allocated to two groups, and either lipopolysaccharide 100 microg or saline was injected intraperitoneally. Eight hours later, liquid containing fluorescent microbeads was infused into the stomach, and 30 min later, gastric emptying and gastrointestinal transit were measured using flow cytometry. We also studied whether yohimbine given after injection of lipopolysaccharide was effective (n = 22). In another group of mice (n = 32), iNOS in the gastrointestinal tract was measured using western blotting. RESULTS Lipopolysaccharide significantly inhibited gastric emptying and gastrointestinal transit. Yohimbine, given before or after lipopolysaccharide, significantly attenuated the inhibitory effects of lipopolysaccharide. Lipopolysaccharide increased the expression of iNOS in the small intestine and yohimbine suppressed the effects of lipopolysaccharide. CONCLUSIONS In endotoxaemic mice, yohimbine improved delayed gastric emptying and gastrointestinal transit, possibly by downregulating lipopolysaccharide-induced increased expression of iNOS.
Collapse
Affiliation(s)
- N Hamano
- Department of Anaesthesiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | |
Collapse
|
6
|
Collares EF, Vinagre AM. [The effect of bacterial lipopolysaccharide on the gastric emptying of rats: a pretreatment evaluation using Nw-nitro-L-arginine methyl ester (L-NAME)]. ARQUIVOS DE GASTROENTEROLOGIA 2006; 43:229-32. [PMID: 17160240 DOI: 10.1590/s0004-28032006000300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/08/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is evidence that nitric oxide plays a role in the decrease in gastric emptying induced by bacterial lipopolysaccharide. AIM To evaluate the effect of pretreatment with Nw-nitro-L-arginine methyl to ester, one competitive inhibitor of the nitric oxide synthases, on the gastric emptying delay induced by lipopolysaccharide. MATERIAL AND METHODS Male Wistar rats, SPF, were used after 24 h fast and 1 h-water withdrawn. The pretreatment was done intravenously with vehicle (saline) or N(w)-nitro-L-arginine methyl to ester in the doses of 0.5, 1, 2.5 e 5 mg/kg. After 10 min, the animals were treated iv with lipopolysaccharide (50 microg/kg) or received vehicle (saline). The gastric emptying was evaluated 1 h after the lipopolysaccharide administration. A saline solution containing phenol red was used as the test meal. The gastric emptying was indirectly assessed by the determination of percent gastric retention of the test meal 10 min after orogastric administration. RESULTS The animals pretreated with vehicle and treatment with lipopolysaccharide have significant rise of the gastric retention (average = 57%) in comparison with the controls receiving only vehicle (38.1%). The pretreatment with the different doses of N(w)-nitro-L-arginine methyl to ester did not modify per se the gastric retention in comparison with the animals pretreated with vehicle. Pretreatment with N(w)-nitro-L-arginine methyl to ester with the dose of 1 mg/kg determined a discrete but significant reduction in the gastric retention (52%) of animals treated with lipopolysaccharide in comparison with vehicle-pretreated rats. Paradoxically, animals pretreated with 2.5 or 5 mg of N(w)-nitro-L-arginine methyl to ester/kg followed by treatment with lipopolysaccharide displayed a significantly higher gastric retention (74.7% and 80.5%, respectively) as compared to their controls, pretreated with the same doses of the inhibitor and treated with vehicle (40.5% and 38.7%, respectively) and to those pretreated with vehicle and treated with the same toxin. CONCLUSION The pretreatment with N(w)-nitro-L-arginine methyl to ester at low dose (1 mg/kg) resulted in a discrete inhibition of the gastric emptying delay induced by lipopolysaccharide. Nevertheless, N(w)-nitro-L-arginine methyl to ester at higher doses (2.5 and 5 mg/kg) induced an enhancement of the lipopolysaccharide effect on gastric emptying, despite not interfering with the gastric emptying per se.
Collapse
Affiliation(s)
- Edgard Ferro Collares
- Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, SP.
| | | |
Collapse
|
7
|
Rehn M, Hübschle T, Diener M. TNF-alpha hyperpolarizes membrane potential and potentiates the response to nicotinic receptor stimulation in cultured rat myenteric neurones. ACTA ACUST UNITED AC 2004; 181:13-22. [PMID: 15086448 DOI: 10.1111/j.1365-201x.2004.01269.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Tumour necrosis factor-alpha (TNF-alpha) plays a central role in the pathophysiology of inflammatory bowel disease. The present experiments were designed to characterize the action of this cytokine on enteric neurones. METHODS Myenteric ganglia from newborn rats were treated for 20 h with TNF-alpha (100 ng mL(-1)) and studied with the patch-clamp technique. RESULTS Control neurones showed a membrane potential of -34.6 +/- 2.2 mV (n = 22), whereas TNF-alpha-treated cells exhibited a membrane potential of -50.8 +/- 3.5 mV (n = 25). The depolarization evoked by carbachol (50 microm) was potentiated from 5.2 +/- 0.7 mV (n = 6) in control neurones to 27.5 +/- 2.0 mV (n = 10) in TNF-alpha-treated cells. This effect was mimicked by 1,1-dimethyl-4-phenylpiperazinium iodide, but not by bethanechol. The changes in basal membrane potential and in the nicotinic receptor response were suppressed by the non-selective cyclooxygenase (COX) inhibitor indomethacin (10 microm), and the COX II-specific inhibitor, nimesulide (100 microm), whereas the COX-I selective inhibitor SC-560 (5 microm) and the proteintyrosinekinase inhibitor genistein (50 microm) only partially inhibited the action of TNF-alpha. Staining of the ganglionic cells with an antibody against the transcription factor STAT5 revealed that TNF-alpha induced a nuclear translocation of STAT5 in non-neuronal cells. CONCLUSION TNF-alpha changes the electrophysiological properties of myenteric neurones via cyclooxygenase metabolites and protein tyrosine phosphorylation; the cells primarily responding to the cytokine seem to be non-neuronal cells in the ganglion culture, which respond with a nuclear STAT5 translocation suggesting an action on gene transcription.
Collapse
Affiliation(s)
- M Rehn
- Institute for Veterinary Physiology, University of Giessen, Giessen, Germany
| | | | | |
Collapse
|
8
|
Fruhwald S, Herk E, Schöll G, Shahbazian A, Hammer HF, Metzler H, Holzer P. Endotoxin pretreatment modifies peristalsis and attenuates the antipropulsive action of adrenoceptor agonists in the guinea-pig small intestine. Neurogastroenterol Motil 2004; 16:213-22. [PMID: 15086875 DOI: 10.1111/j.1365-2982.2004.00509.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The action of endotoxin to alter gastrointestinal motility in vivo may reflect a direct effect on the gut or result from vascular and other systemic manifestations of this sepsis model. Here we examined whether in vivo pretreatment of guinea-pigs with endotoxin modifies peristalsis in the isolated gut and influences the antipropulsive action of adrenoceptor agonists. Distension-induced peristalsis was recorded in fluid-perfused segments of the small intestine taken from animals pretreated intraperitoneally with endotoxin (1 mg kg(-1)Escherichia coli lipopolysaccharide) or vehicle 4 or 20 h before. Clonidine, adrenaline, noradrenaline, dopamine and dobutamine inhibited peristalsis with differential potency. Endotoxin pretreatment lowered the peristaltic pressure threshold and altered other parameters of baseline peristalsis in a time-related manner. The potency and efficacy of clonidine to inhibit peristalsis were markedly decreased after endotoxin administration, while the potency of the other test drugs was less attenuated. The antipropulsive action of clonidine in control segments was reduced by yohimbine and prazosin, whereas in segments from endotoxin-pretreated animals it was antagonized by yohimbine but not prazosin. We conclude that systemic endotoxin pretreatment of guinea-pigs modifies baseline peristalsis by an action on the gut and inhibits the antipropulsive action of adrenoceptor agonists through changes in adrenoceptor activity.
Collapse
Affiliation(s)
- S Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
9
|
CEREGRZYN M, KUWAHARA A. The effect of epigallocatechin gallate on intestinal motility in normal and endotoxemic mice. Biomed Res 2004. [DOI: 10.2220/biomedres.25.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Guerrero-Lindner E, Castro M, Muñoz JM, Arruebo MP, Murillo MD, Buéno L, Plaza MA. Central tumour necrosis factor-alpha mediates the early gastrointestinal motor disturbances induced by lipopolysaccharide in sheep. Neurogastroenterol Motil 2003; 15:307-16. [PMID: 12787340 DOI: 10.1046/j.1365-2982.2003.00402.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokines are involved in fever and other symptoms of the acute phase response induced by endotoxins. The aim of this work was to study the involvement of central tumour necrosis factor-alpha (TNF-alpha) in the changes induced by lipopolysaccharide (LPS) on gastrointestinal (GI) motility in sheep. Body temperature and myoelectric activity of the antrum, duodenum and jejunum was recorded continuously. Intravenous (i.v.) administration of LPS (0.1 micro g kg-1)-induced hyperthermia, decreased gastrointestinal myoelectric activity and increased the frequency of the migrating motor complex (MMC). These effects started 40-50 min after LPS and lasted for 6-7 h. TNF-alpha (50 and 100 ng kg-1) mimicked these effects when injected intracerebroventricularly (i.c.v.) but not i.v. Pretreatment with soluble recombinant TNF receptor (TNFR:Fc, 10 micro g kg-1, i.c.v.) abolished the TNF-induced actions and reduced those evoked by LPS. Furthermore, the effects induced by either LPS or TNF were suppressed by prior i.c.v. injection of indomethacin (100 micro g kg-1). In contrast, the i.v. injections of TNFR:Fc or indomethacin were ineffective. Our data suggest that LPS disturbs GI motility in sheep through a central pathway that involves TNF-alpha and prostaglandins sequentially.
Collapse
Affiliation(s)
- E Guerrero-Lindner
- Department of Pharmacology and Physiology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|