1
|
Nashef A, Qabaja R, Hazan R, Schafer A, Hasturk H, Kantarci A, Houri-Haddad Y, Iraqi FA. The Collaborative Cross-Mouse Population for Studying Genetic Determinants Underlying Alveolar Bone Loss Due to Polymicrobial Synergy and Dysbiosis. Int J Mol Sci 2023; 25:473. [PMID: 38203644 PMCID: PMC10778843 DOI: 10.3390/ijms25010473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Dysbiosis of oral microbiota is associated with the initiation and progression of periodontitis. The cause-and-effect relationship between genetics, periodontitis, and oral microbiome dysbiosis is poorly understood. Here, we demonstrate the power of the collaborative cross (CC) mice model to assess the effect of the genetic background on microbiome diversity shifts during periodontal infection and host suitability status. We examined the bacterial composition in plaque samples from seven different CC lines using 16s rRNA sequencing before and during periodontal infection. The susceptibility/resistance of the CC lines to alveolar bone loss was determined using the micro-CT technique. A total of 53 samples (7 lines) were collected before and after oral infection using oral swaps followed by DNA extraction and 16 s rRNA sequencing analysis. CC lines showed a significant variation in response to the co-infection (p < 0.05). Microbiome compositions were significantly different before and after infection and between resistant and susceptible lines to periodontitis (p < 0.05). Gram-positive taxa were significantly higher at the resistant lines compared to susceptible lines (p < 0.05). Gram-positive bacteria were reduced after infection, and gram-negative bacteria, specifically anaerobic groups, increased after infection. Our results demonstrate the utility of the CC mice in exploring the interrelationship between genetic background, microbiome composition, and periodontitis.
Collapse
Affiliation(s)
- Aysar Nashef
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
- Department of Oral and Maxillofacial Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rawan Qabaja
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Arne Schafer
- Department of Periodontology and Synoptic Dentistry, Institute for Dental and Craniofacial Sciences, Charité–Medical University, 10117 Berlin, Germany;
| | - Hatice Hasturk
- The Forsyth Institute, Applied Oral Sciences, Cambridge, MA 02142, USA; (H.H.); (A.K.)
| | - Alpdogan Kantarci
- The Forsyth Institute, Applied Oral Sciences, Cambridge, MA 02142, USA; (H.H.); (A.K.)
| | - Yael Houri-Haddad
- Department of Prosthodontics, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel; (A.N.); (R.Q.); (Y.H.-H.)
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Krayem I, Sohrabi Y, Havelková H, Gusareva ES, Strnad H, Čepičková M, Volkova V, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions. Front Immunol 2023; 14:1145269. [PMID: 37600780 PMCID: PMC10437074 DOI: 10.3389/fimmu.2023.1145269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/02/2023] [Indexed: 08/22/2023] Open
Abstract
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Elena S. Gusareva
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, Prague, Czechia
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Valeryia Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kurey
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Webster HC, Gamino V, Andrusaite AT, Ridgewell OJ, McCowan J, Shergold AL, Heieis GA, Milling SWF, Maizels RM, Perona-Wright G. Tissue-based IL-10 signalling in helminth infection limits IFNγ expression and promotes the intestinal Th2 response. Mucosal Immunol 2022; 15:1257-1269. [PMID: 35428872 PMCID: PMC9705258 DOI: 10.1038/s41385-022-00513-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Type 2 immunity is activated in response to both allergens and helminth infection. It can be detrimental or beneficial, and there is a pressing need to better understand its regulation. The immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and the draining mesenteric lymph node, with higher expression in the infected tissue. In vitro, exogenous IL-10 enhanced Th2 differentiation in isolated CD4+ T cells, increasing expression of GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided with its suppression of IFNγ expression and in vivo we found that, in intestinal helminth infection, IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same tissue, or on any Th cell in the draining lymph node. In vivo blockade of IL-10 signalling during helminth infection resulted in an expansion of IFNγ+ and Tbet+ Th1 cells in the small intestine and a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. These changes in Th2 cytokines correlated with reduced expression of type 2 effector molecules, such as RELMα, and increased parasite egg production. Together our data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in part by regulating competing Th1 cells in the infected tissue.
Collapse
Affiliation(s)
- Holly C Webster
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Virginia Gamino
- Department of Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Anna T Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Olivia J Ridgewell
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jack McCowan
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Amy L Shergold
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Graham A Heieis
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georgia Perona-Wright
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Mouse Chromosome 4 Is Associated with the Baseline and Allergic IgE Phenotypes. G3-GENES GENOMES GENETICS 2017; 7:2559-2564. [PMID: 28696925 PMCID: PMC5555462 DOI: 10.1534/g3.117.042739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regulation of IgE concentration in the blood is a complex trait, with high concentrations associated with parasitic infections as well as allergic diseases. A/J strain mice have significantly higher plasma concentrations of IgE, both at baseline and after ovalbumin antigen exposure, when compared to C57BL/6J strain mice. Our objective was to determine the genomic regions associated with this difference in phenotype. To achieve this, we used a panel of recombinant congenic strains (RCS) derived from A/J and C57BL/6J strains. We measured IgE in the RCS panel at baseline and following allergen exposure. Using marker by marker analysis of the RCS genotype and phenotype data, we identified multiple regions associated with the IgE phenotype. A single region was identified to be associated with baseline IgE level, while multiple regions wereassociated with the phenotype after allergen exposure. The most significant region was found on Chromosome 4, from 81.46 to 86.17 Mbp. Chromosome 4 substitution strain mice had significantly higher concentration of IgE than their background parental strain mice, C57BL/6J. Our data presents multiple candidate regions associated with plasma IgE concentration at baseline and following allergen exposure, with the most significant one located on Chromosome 4.
Collapse
|
5
|
Abstract
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Collapse
|
6
|
De Simone M, Spagnuolo L, Lorè NI, Cigana C, De Fino I, Broman KW, Iraqi FA, Bragonzi A. Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice. BMC Genomics 2016; 17:351. [PMID: 27169516 PMCID: PMC4866434 DOI: 10.1186/s12864-016-2676-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Background P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2676-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maura De Simone
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenza Spagnuolo
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Evidence for genes controlling resistance to Heligmosomoides bakeri on mouse chromosome 1. Parasitology 2014; 142:566-75. [PMID: 25377239 DOI: 10.1017/s0031182014001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resistance to infections with Heligmosomoides bakeri is associated with a significant quantitative trait locus (QTL-Hbnr1) on mouse chromosome 1 (MMU1). We exploited recombinant mice, with a segment of MMU1 from susceptible C57Bl/10 mice introgressed onto MMU1 in intermediate responder NOD mice (strains 1094 and 6109). BALB/c (intermediate responder) and C57Bl/6 mice (poor responder) were included as control strains and strain 1098 (B10 alleles on MMU3) as NOD controls. BALB/c mice resisted infection rapidly and C57Bl/6 accumulated heavy worm burdens. Fecal egg counts dropped by weeks 10-11 in strain 1098, but strains 1094 and 6109 continued to produce eggs, harbouring more worms when autopsied (day 77). PubMed search identified 3 genes (Ctla4, Cd28, Icos) as associated with 'Heligmosomoides' in the B10 insert. Single nucleotide polymorphism (SNP) differences in Ctla4 could be responsible for regulatory changes in gene function, and a SNP within a splice site in Cd28 could have an impact on function, but no polymorphisms with predicted effects on function were found in Icos. Therefore, one or more genes encoded in the B10 insert into NOD mice contribute to the response phenotype, narrowing down the search for genes underlying the H. bakeri resistance QTL, and suggest Cd28 and Ctla4 as candidate genes.
Collapse
|
8
|
Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat Protoc 2014; 9:2740-54. [PMID: 25375989 DOI: 10.1038/nprot.2014.184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heligmosomoides polygyrus bakeri (Hpb) infection in mice is a convenient model for studying the pathophysiology and immunology of gastrointestinal (GI) helminth infection. Hpb infection suppresses immune responses to bystander antigens and unrelated pathogens, and it slows the progression and modifies the outcome of immune-mediated diseases. Hpb-derived excretory-secretory (ES) products potently modulate CD4(+) helper T cell (TH) responses by inducing regulatory T cells, tolerogenic dendritic cells (DCs) and immunoregulatory cytokines. This observation has spiked interest in identifying the immunomodulatory molecules, especially proteins, in ES products from Hpb and other GI nematodes for development as novel therapies to treat individuals with immune-mediated diseases, such as inflammatory bowel diseases (IBDs). In this protocol, we describe how to (i) maintain Hpb in the laboratory for experimental infections, (ii) collect adult worms from infected mice to generate ES products and (iii) evaluate the modulatory effects of ES products on toll-like receptor (TLR) ligand-induced maturation of CD11c(+) DCs. The three major sections of the PROCEDURE can be used independently, and they require ∼6, 10 and 27 h, respectively. Although other methods use a modified Baermann apparatus to collect Hpb adult worms, we describe a method that involves dissection of adult worms from intestinal tissue. The protocol will be useful to investigators studying the host-parasite interface and identifying and analyzing helminth-derived molecules with therapeutic potential.
Collapse
|
9
|
Reynolds LA, Harcus Y, Smith KA, Webb LM, Hewitson JP, Ross EA, Brown S, Uematsu S, Akira S, Gray D, Gray M, MacDonald AS, Cunningham AF, Maizels RM. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2984-93. [PMID: 25114104 PMCID: PMC4157852 DOI: 10.4049/jimmunol.1401056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4+ cells. In addition, MyD88−/− mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain–containing adapter–inducing IFN-β adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1−/− mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R–MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1−/− and MyD88−/− mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1−/−) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Katherine A Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Lauren M Webb
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Ewan A Ross
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sheila Brown
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Satoshi Uematsu
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - David Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Mohini Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Andrew S MacDonald
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom;
| |
Collapse
|
10
|
The Collaborative Cross – A next generation mouse genetic resource population for high resolution genomic analysis of complex traits. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Harris NL, Pleass R, Behnke JM. Understanding the role of antibodies in murine infections with Heligmosomoides (polygyrus) bakeri: 35 years ago, now and 35 years ahead. Parasite Immunol 2014; 36:115-24. [PMID: 23889357 DOI: 10.1111/pim.12057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
Abstract
The rodent intestinal nematode H.p.bakeri has played an important role in the exploration of the host-parasite relationship of chronic nematode infections for over six decades, since the parasite was first isolated in the 1950s by Ehrenford. It soon became a popular laboratory model providing a tractable experimental system that is easy to maintain in the laboratory and far more cost-effective than other laboratory nematode-rodent model systems. Immunity to this parasite is complex, dependent on antibodies, but confounded by the parasite's potent immunosuppressive secretions that facilitate chronic survival in murine hosts. In this review, we remind readers of the state of knowledge in the 1970s, when the first volume of Parasite Immunology was published, focusing on the role of antibodies in protective immunity. We show how our understanding of the host-parasite relationship then developed over the following 35 years to date, we propose testable hypotheses for future researchers to tackle, and we speculate on how the new technologies will be applied to enable an increasingly refined understanding of the role of antibodies in host-protective immunity, and its evasion, to be achieved in the longer term.
Collapse
Affiliation(s)
- N L Harris
- Global Health Institute and Swiss Vaccine Research Institute, École Polytechnique Fédèrale de Lausanne (EPFL), Switzerland
| | | | | |
Collapse
|
12
|
Gusareva ES, Kurey I, Grekov I, Lipoldová M. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc 2013; 89:375-405. [DOI: 10.1111/brv.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 06/14/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Elena S. Gusareva
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Iryna Kurey
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Igor Grekov
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Marie Lipoldová
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| |
Collapse
|
13
|
Shusterman A, Durrant C, Mott R, Polak D, Schaefer A, Weiss E, Iraqi F, Houri-Haddad Y. Host Susceptibility to Periodontitis. J Dent Res 2013; 92:438-43. [DOI: 10.1177/0022034513484039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Host susceptibility to periodontal infection is controlled by genetic factors. As a step toward identifying and cloning these factors, we generated an A/J x BALB/cJ F2 mouse resource population. A genome-wide search for Quantitative Trait Loci (QTL) associated with periodontitis was performed. We aimed to quantify the phenotypic response of the progenies to periodontitis by microCT analysis, to perform a genome-wide search for QTL associated with periodontitis, and, finally, to suggest candidate genes for periodontitis. We were able to produce 408 F2 mice. All mice were co-infected with Porphyromonas gingivalis and Fusobacterium nucleatum bacteria. Six weeks following infection, alveolar bone loss was quantified by computerized tomography (microCT) technology. We found normal distribution of the phenotype, with 2 highly significant QTL on chromosomes 5 and 3. A third significant QTL was found on chromosome 1. Candidate genes were suggested, such as Toll-like receptors (TLR) 1 and 6, chemokines, and bone-remodeling genes (enamelin, ameloblastin, and amelotin). This report shows that periodontitis in mice is a polygenic trait with highly significant mapped QTL.
Collapse
Affiliation(s)
- A. Shusterman
- Department of Prosthodontics, Hadassah Medical Center, Israel
| | - C. Durrant
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - R. Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - D. Polak
- Department of Periodontology, Hadassah Medical Center, Israel
| | - A. Schaefer
- Christian-Albrechts-University, Institute for Clinical Molecular Biology, Kiel, Germany
| | - E.I. Weiss
- Department of Prosthodontics, Hadassah Medical Center, Israel
| | - F.A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Y. Houri-Haddad
- Department of Prosthodontics, Hadassah Medical Center, Israel
| |
Collapse
|
14
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
15
|
Brown EA, Pilkington JG, Nussey DH, Watt KA, Hayward AD, Tucker R, Graham AL, Paterson S, Beraldi D, Pemberton JM, Slate J. Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Mol Ecol 2012; 22:757-73. [PMID: 22998224 DOI: 10.1111/j.1365-294x.2012.05757.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
Identifying the genes underlying phenotypic variation in natural populations can provide novel insight into the evolutionary process. The candidate gene approach has been applied to studies of a number of traits in various species, in an attempt to elucidate their genetic basis. Here, we test the application of the candidate gene approach to identify the loci involved in variation in gastrointestinal parasite burden, a complex trait likely to be controlled by many loci, in a wild population of Soay sheep. A comprehensive literature review, Gene Ontology databases, and comparative genomics resources between cattle and sheep were used to generate a list of candidate genes. In a pilot study, these candidates, along with 50 random genes, were then sequenced in two pools of Soay sheep; one with low gastrointestinal nematode burden and the other high, using a NimbleGen sequence capture experiment. Further candidates were identified from single nucleotide polymorphisms (SNPs) that were highly differentiated between high- and low-resistance sheep breeds. A panel of 192 candidate and control SNPs were then typed in 960 individual Soay sheep to examine whether they individually explained variation in parasite burden, as measured as faecal egg count, as well as two immune measures (Teladorsagia circumcincta-specific antibodies and antinuclear antibodies). The cumulative effect of the candidate and control SNPs were estimated by fitting genetic relationship matrices (GRMs) as random effects in animal models of the three traits. No more significant SNPs were identified in the pilot sequencing experiment and association study than expected by chance. Furthermore, no significant difference was found between the proportions of candidate or control SNPs that were found to be significantly associated with parasite burden/immune measures. No significant effect of the candidate or control gene GRMs was found. There is thus little support for the candidate gene approach to the identification of loci explaining variation in parasitological and immunological traits in this population. However, a number of SNPs explained significant variation in multiple traits and significant correlations were found between the proportions of variance explained by individual SNPs across multiple traits. The significant SNPs identified in this study may still, therefore, merit further investigation.
Collapse
Affiliation(s)
- E A Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sayre BL, Harris GC. Systems genetics approach reveals candidate genes for parasite resistance from quantitative trait loci studies in agricultural species. Anim Genet 2011; 43:190-8. [PMID: 22404355 DOI: 10.1111/j.1365-2052.2011.02231.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systems genetics approach combining pathway analysis of quantitative trait loci (QTL) and gene expression information has provided strong evidence for common pathways associated with genetic resistance to internal parasites. Gene data, collected from published QTL regions in sheep, cattle, mice, rats and humans, and microarray data from sheep, were converted to human Entrez Gene IDs and compared to the KEGG pathway database. Selection of pathways from QTL data was based on a selection index that ensured that the selected pathways were in all species and the majority of the projects overall and within species. Pathways with either up- and down-regulated genes, primarily up-regulated genes or primarily down-regulated genes, were selected from gene expression data. After comparing the data sets independently, the pathways from each data set were compared and the common set of pathways and genes was identified. Comparisons within data sets identified 21 pathways from QTL data and 66 pathways from gene expression data. Both selected sets were enriched with pathways involved in immune functions, disease and cell responses to signals. The analysis identified 14 pathways that were common between QTL and gene expression data, and four directly associated with IFNγ or MHCII, with 31 common genes, including three MHCII genes. In conclusion, a systems genetics approach combining data from multiple QTL and gene expression projects led to the discovery of common pathways associated with genetic resistance to internal parasites. This systems genetics approach may prove significant for the discovery of candidate genes for many other multifactorial, economically important traits.
Collapse
Affiliation(s)
- B L Sayre
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA.
| | | |
Collapse
|
17
|
Quantitative trait loci for resistance to Heligmosomoides bakeri and associated immunological and pathological traits in mice: comparison of loci on chromosomes 5, 8 and 11 in F2 and F6/7 inter-cross lines of mice. Parasitology 2009; 137:311-20. [PMID: 19925689 DOI: 10.1017/s0031182009991028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A comparison of F2 and F6/7 inter-cross lines of mice, derived from CBA and SWR parental strains, has provided strong evidence for several previously undetected quantitative trait loci (QTL) for resistance to Heligmosomoides bakeri. Five QTL affecting average faecal egg counts and/or worm burdens in week 6 were detected on mouse chromosomes 5 (Hbnr9 and Hbnr10), 8 (Hbnr11) and 11 (Hbnr13 and Hbnr14). Three QTL for faecal egg counts in weeks 4 and 6 were found on both chromosomes 5 (Hbnr9) and 11 (Hbnr13 and Hbnr14). Two QTL for the mucosal mast cell protease 1 (MCPT1) response were located on chromosomes 8 (Hbnr11) and 11 (Hbnr13), two for the IgG1 antibody response to adult worms on chromosomes 5 (Hbnr10) and 8 (Hbnr11), two for PCV in week 6 on chromosomes 5 (Hbnr9) and 11 (Hbnr13), and two for the granulomatous response on chromosome 8 (Hbnr12) and 11 (Hbnr15). Our data emphasize that the control of resistance to H. bakeri is multigenic, and regulated by genes within QTL regions that have a complex range of hierarchical relationships.
Collapse
|
18
|
Heligmosomoides bakeri: a model for exploring the biology and genetics of resistance to chronic gastrointestinal nematode infections. Parasitology 2009; 136:1565-80. [PMID: 19450375 DOI: 10.1017/s0031182009006003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intestinal nematode Heligmosomoides bakeri has undergone 2 name changes during the last 4 decades. Originally, the name conferred on the organism in the early 20th century was Nematospiroides dubius, but this was dropped in favour of Heligmosomoides polygyrus, and then more recently H. bakeri, to distinguish it from a closely related parasite commonly found in wood mice in Europe. H. bakeri typically causes long-lasting infections in mice and in this respect it has been an invaluable laboratory model of chronic intestinal nematode infections. Resistance to H. bakeri is a dominant trait and is controlled by genes both within and outside the MHC. More recently, a significant QTL has been identified on chromosome 1, although the identity of the underlying genes is not yet known. Other QTL for resistance traits and for the accompanying immune responses were also defined, indicating that resistance to H. bakeri is a highly polygenic phenomenon. Hence marker-assisted breeding programmes aiming to improve resistance to GI nematodes in breeds of domestic livestock will need to be highly selective, focussing on genes that confer the greatest proportion of overall genetic resistance, whilst leaving livestock well-equipped genetically to cope with other types of pathogens and preserving important production traits.
Collapse
|
19
|
FVB/N mice are highly resistant to primary infection with Nippostrongylus brasiliensis. Parasitology 2009; 136:93-106. [PMID: 19126273 DOI: 10.1017/s0031182008005192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nippostrongylus brasiliensis larvae are particularly susceptible to immunological attack during the pre-lung stage of primary and secondary infections in mice. Whilst most of the common laboratory strains of mice are permissive hosts for the parasite, in this study we report for the first time, the strong resistance of naive FVB/N mice to N. brasiliensis. Damage to larvae is evident within the first 24 h of infection and this may be critical to later larval development and reproductive success. Inflammatory responses in the skin, and larval escape from this tissue were comparable in susceptible CBA/Ca and resistant FVB/N mice, with most larvae exiting within 4 h of a primary infection. Lung larval burdens were also similar between strains, but larvae recovered from FVB/N mice were smaller and less motile. In FVB/N mice, larval colonization of the gut was impaired and worms produced very few eggs. However FVB/N mice did not show enhanced resistance to Heligmosomoides bakeri (also known as Heligmosomoides polygyrus), a nematode largely restricted to the gut. Damage done in the pre-lung or lung stages of infection with N. brasiliensis is likely to contribute to ongoing developmental and functional abnormalities, which are profoundly evident in the gut phase of infection.
Collapse
|
20
|
Innate immune response mechanisms in the intestinal epithelium: potential roles for mast cells and goblet cells in the expulsion of adult Trichinella spiralis. Parasitology 2008; 135:655-70. [PMID: 18413001 DOI: 10.1017/s0031182008004319] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARYGastrointestinal infection with the nematode Trichinella spiralis is accompanied by a rapid and reversible expansion of the mucosal mast cell and goblet cell populations in the intestinal epithelium, which is associated with the release of their mediators into the gut lumen. Both goblet cell and mast cell hyperplasia are highly dependent on mucosal T-cells and augmented by the cytokines IL-4 and IL-13. However, the contribution of both mast and goblet cells, and the mediators they produce, to the expulsion of the adults of T. spiralis is only beginning to be elucidated through studies predominantly employing T. spiralis-mouse models. In the present article, we review the factors proposed to control T. spiralis-induced mucosal mast cell (MMC) and goblet cell differentiation in the small intestine, and focus on some key MMC and goblet cell effector molecules which may contribute to the expulsion of adult worms and/or inhibition of larval development.
Collapse
|
21
|
Marra NM, Amarante AF, Amarante MR. Genetic basis of the resistance to Strongyloides venezuelensis (Nematoda, Rhabdiasidae) infection in mice (Mus musculus). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Rzepecka J, Lucius R, Doligalska M, Beck S, Rausch S, Hartmann S. Screening for immunomodulatory proteins of the intestinal parasitic nematode Heligmosomoides polygyrus. Parasite Immunol 2006; 28:463-72. [PMID: 16916370 DOI: 10.1111/j.1365-3024.2006.00891.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parasitic nematodes are constantly exposed to the immune effector mechanisms of their hosts. One strategy of the worms to cope with these defence reactions is the secretion of modulatory proteins that down-regulate cell-mediated immune responses. We analysed the proliferation of mesenteric lymph node cells of mice infected with Heligmosomoides polygyrus and showed that cellular proliferation was strongly suppressed in the chronic phase of infection. To identify proteins of H. polygyrus that are involved in parasite-induced immunomodulation, worm extract and culture supernatant of adult H. polygyrus were fractionated by gel chromatography and activity of each fraction was determined. One of the fractions (fraction 9) of worm extract as well as worm secretory products inhibited the antigen-specific cellular proliferation by about 40%. This reduced cellular reactivity coincided with a down-regulation of inducible nitric oxide production of mouse macrophages by 57%. Furthermore, fraction 9 contained antigens that were recognized by IgE antibodies of H. polygyrus-infected mice and induced degranulation of an IgE-sensitized basophil cell line. Single proteins of fraction 9 were analysed by mass spectrometry. These data suggest that antigens that are recognised by IgE antibodies might play an important role in immunomodulation exerted by nematode infections.
Collapse
Affiliation(s)
- J Rzepecka
- Department of Parasitology, University of Warsaw, 02096 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Murcia CL, Gulden FO, Cherosky NA, Herrup K. A genetic study of the suppressors of the Engrailed-1 cerebellar phenotype. Brain Res 2006; 1140:170-8. [PMID: 16884697 DOI: 10.1016/j.brainres.2006.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 11/23/2022]
Abstract
The mouse Engrailed genes, En1 and En2, play an important role in the development of the cerebellum from its inception at the mid/hindbrain boundary in early embryonic development through cell type specification events and beyond. In the absence of En1, the cerebellum and caudal midbrain fail to develop normally--a phenotype that we have previously reported to be strain dependent. On the 129/S1 strain background, En1 null alleles lead to mid/hindbrain failure, whereas on the C57BL/6 background, En1 deficiency is compatible with near normal cerebellar development. We have pursued this dramatic effect of genetic background by performing a genetic modifier screen through F1 backcross and F1 intercross matings. The backcross has yielded two strong candidate intervals with suggestive linkage to a third region. Moreover, variations in rescue frequency among subgroups within the backcross indicate gender and parent of origin influences on rescue penetrance. The intercross data reveal locus heterogeneity of the En1 modifiers, with more than one compliment of C57BL/6 and 129/S1 alleles capable of mediating the rescue phenotype. These findings highlight the complexity and plasticity of gene networks involved in brain development.
Collapse
Affiliation(s)
- Crystal L Murcia
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
24
|
Behnke JM, Iraqi FA, Mugambi JM, Clifford S, Nagda S, Wakelin D, Kemp SJ, Baker RL, Gibson JP. High resolution mapping of chromosomal regions controlling resistance to gastrointestinal nematode infections in an advanced intercross line of mice. Mamm Genome 2006; 17:584-97. [PMID: 16783640 DOI: 10.1007/s00335-005-0174-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Fine mapping of quantitative trait loci (QTL) associated with resistance to the gastrointestinal parasite Heligmosomoides polygyrus was achieved on F(6)/F(7) offspring (1076 mice) from resistant (SWR) and susceptible (CBA) mouse strains by selective genotyping (top and bottom 20% selected on total worm count in week 6). Fecal egg counts were recorded at weeks 2, 4, and 6, and the average was also analyzed. Blood packed cell volume in weeks 3 and 6 and five immunological traits (mucosal mast cell protease 1, granuloma score, IgG1 against adult worm, IgG1, and IgE to L4 antigen) were also recorded. On Chromosome 1 single-trait analyses identified a QTL with effects on eight traits located at about 24 cM on the F(2) mouse genome database (MGD) linkage map, with a 95% confidence interval (CI) of 20-32 cM established from a multitrait analysis. On Chromosome 17 a QTL with effects on nine traits was located at about 18 cM on the MGD map (CI 17.9-18.4 cM). Strong candidate genes for the QTL position on Chromosome 1 include genes known to be involved in regulating immune responses and on Chromosome 17 genes within the MHC, notably the Class II molecules and tumor necrosis factor.
Collapse
Affiliation(s)
- Jerzy M Behnke
- School of Biological Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hedeler C, Paton NW, Behnke JM, Bradley JE, Hamshere MG, Else KJ. A classification of tasks for the systematic study of immune response using functional genomics data. Parasitology 2006; 132:157-67. [PMID: 16472413 DOI: 10.1017/s0031182005008796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/25/2005] [Accepted: 06/30/2005] [Indexed: 11/07/2022]
Abstract
A full understanding of the immune system and its responses to infection by different pathogens is important for the development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are being used to gain a better understanding of the immune system. To analyse the data generated by these experiments, methods such as clustering are widely used. However, individual applications of these methods tend to analyse the experimental data without taking publicly available biological and immunological knowledge into account systematically and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to support the findings in the experimental data, available biological information should be included in the analysis in a systematic manner. In this review we present a classification of tasks that shows how experimental data produced by studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the classification can be used to identify different ways of analysing the experimental data systematically. We have used the classification to identify alternative ways of analysing microarray data, and illustrate its application using studies of immune responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.
Collapse
Affiliation(s)
- C Hedeler
- School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Behnke JM, Mugambi JM, Clifford S, Iraqi FA, Baker RL, Gibson JP, Wakelin D. Genetic variation in resistance to repeated infections with Heligmosomoides polygyrus bakeri, in inbred mouse strains selected for the mouse genome project. Parasite Immunol 2006; 28:85-94. [PMID: 16441506 DOI: 10.1111/j.1365-3024.2005.00810.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the publication of the mouse genome, attention has focused on the strains that were selected for sequencing. In this paper we report the results of experiments that characterized the response to infection with the murine gastrointestinal nematode Heligmosomoides polygyrus of eight new strains (A/J, C57BL/6, C3H, DBA/2, BALB/c, NIH, SJL and 129/J), in addition to the well-characterized CBA (poor responder) and SWR (strong responder) as our controls. We employed the repeated infection protocol (consisting of 7 superimposed doses of 125L3 each administered at weekly intervals, faecal egg counts in weeks 2, 4 and 6 and assessment of worm burdens in week 6) that was used successfully to identify quantitative trait loci for genes involved in resistance to H. polygyrus. SWR, SJL and NIH mice performed indistinguishably and are confirmed as strong responder strains to H. polygyrus. CBA, C3H and A/J mice all tolerated heavy infections and are assessed as poor responders. In contrast, DBA/2, 129/J and BALB/c mice performed variably between experiments, some tolerating heavy worm burdens comparable to those in poor responders, and some showing evidence of resistance, although only in one experiment with female 129/J females and one with female BALB/c was the pattern and extent of worm loss much like that in SWR mice. Because the genetic relationships between six of the strains exploited in this study are now well-understood, our results should enable analysis through single nucleotide polymorphisms and thereby provide more insight into the role of the genes that control resistance to H. polygyrus.
Collapse
Affiliation(s)
- J M Behnke
- School of Biology, University of Nottingham, University Park, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Suzuki T, Ishih A, Kino H, Muregi FW, Takabayashi S, Nishikawa T, Takagi H, Terada M. Chromosomal mapping of host resistance loci to Trichinella spiralis nematode infection in rats. Immunogenetics 2006; 58:26-30. [PMID: 16465509 DOI: 10.1007/s00251-005-0079-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
The differences in host response among strains of rats to intestinal nematode parasite Trichinella spiralis infection could provide a powerful benefit for further elucidation of molecular interactions between the host and the parasite. Using several strains of rats, we previously observed that DA strain is a strong responder and F344 strain is a weak responder with respect to expulsion of the adult worm. To identify the host resistance loci, quantitative trait loci (QTLs) analysis in F2 population from crosses between DA and F344 strains was performed. One significant QTL (designated as Tspe) was mapped to the middle region of chromosome 9. In addition, the effect of DA allele at Tspe locus could act recessively and lead to the rejection of more adult worms from the gut. The results from the present study provide more insights on host-parasite interactions, which may be useful in facilitating the development of novel approaches for treatment and control of intestinal parasites in human and domestic livestock.
Collapse
Affiliation(s)
- Tohru Suzuki
- Department of Parasitology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Scott ME. High transmission rates restore expression of genetically determined susceptibility of mice to nematode infections. Parasitology 2006; 132:669-79. [PMID: 16393368 DOI: 10.1017/s0031182005009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 11/06/2022]
Abstract
This study investigated why the susceptible or resistance phenotype to the nematode Heligmosomoides polygyrus was lost when susceptible (C57BL/6) and resistant (Balb/c) strains of mice were housed together in indoor arenas with continuous transmission of the parasite larvae present in peat trays (Scott, 1991). First, both strains expressed their normal phenotype when given a controlled challenge while living in arenas, and when experimentally infected with only 5 parasite larvae. To test whether chronic exposure to peat altered the resistance phenotype, mice were given a challenge infection while living on peat. C57BL/6 mice living on peat had higher egg production and higher worm numbers than Balb/c mice, except at 2 months post-challenge. Finally, natural transmission rates were increased in arena experiments through either regular replacement of arena mice with naïve mice or direct introduction of additional larvae. A transient difference in infection levels between strains was detected in response to a modest increase in transmission whereas a 10-fold increase in transmission allowed C57BL/6 mice to exhibit the typical profile of high egg production and elevated worm numbers. These data indicate that C57BL/6 mice are less able to regulate parasite numbers at high transmission rates compared with lower transmission rates.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, Canada H9X 3V9.
| |
Collapse
|