1
|
Daly J, Carlsten M, O'Dwyer M. Sugar Free: Novel Immunotherapeutic Approaches Targeting Siglecs and Sialic Acids to Enhance Natural Killer Cell Cytotoxicity Against Cancer. Front Immunol 2019; 10:1047. [PMID: 31143186 PMCID: PMC6521797 DOI: 10.3389/fimmu.2019.01047] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes that play a key role in the immune system, targeting and destroying invading pathogens and malignantly transformed cells. Evading NK cell-mediated immunosurveillance is therefore critical to facilitating cancer cell survival and metastasis. Signals from a range of inhibitory and activating receptors located on the NK cell surface regulate NK cell cytotoxicity. Recently, attention has turned to the role of hypersialylated tumor cell surfaces in mediating immune-evasion of NK cells. Two inhibitory sialic acid-binding immunoglobulin-like lectin (Siglec) receptors are expressed by NK cells: Siglec-7 and Siglec-9. The abundance of sialic acids on tumor cell surface is hypothesized to regulate NK cell-mediated cytotoxicity by interacting with Siglec-7 and Siglec-9, causing a dampening of NK cell activation pathways. Targeting Siglec-7 and Siglec-9, or the sialic acid coated tumor cell surface is therefore being investigated as a novel therapeutic approach to enhance the NK cell response against cancer. In this review we report on the currently published documentation of the role for Siglec-7 and Siglec-9 receptors on NK cells and their ligands expressed by tumor cells. We also discuss the strategies currently explored to target Siglec-7, Siglec-9 and the sialylated tumor cell surface as well as the impact abrogation of these interactions have on NK cell cytotoxicity against several cancer types.
Collapse
Affiliation(s)
- John Daly
- Department of Hematology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Mattias Carlsten
- Department of Medicine, Huddinge, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O'Dwyer
- Department of Hematology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
2
|
Giltiay NV, Shu GL, Shock A, Clark EA. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Res Ther 2017; 19:91. [PMID: 28506291 PMCID: PMC5433084 DOI: 10.1186/s13075-017-1284-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/24/2017] [Indexed: 12/03/2022] Open
Abstract
Background Abnormal B-cell activation is implicated in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). The B-cell surface molecule CD22, which regulates activation through the B-cell receptor (BCR), is a potential target for inhibiting pathogenic B cells; however, the regulatory functions of CD22 remain poorly understood. In this study, we determined how targeting of CD22 with epratuzumab (Emab), a humanized anti-CD22 IgG1 monoclonal antibody, affects the activation of human B-cell subsets in response to Toll-like receptor 7 (TLR7) and BCR engagement. Methods B-cell subsets were isolated from human tonsils and stimulated with F(ab′)2 anti-human IgM and/or the TLR7 agonist R848 in the presence of Emab or a human IgG1 isotype control. Changes in mRNA levels of genes associated with B-cell activation and differentiation were analyzed by quantitative PCR. Cytokine production was measured by ELISA. Cell proliferation, survival, and differentiation were assessed by flow cytometry. Results Pretreatment of phenotypically naïve CD19+CD10–CD27– cells with Emab led to a significant increase in IL-10 expression, and in some but not all patient samples to a reduction of IL-6 production in response to TLR7 stimulation alone or in combination with anti-IgM. Emab selectively inhibited the expression of PRDM1, the gene encoding B-lymphocyte-induced maturation protein 1 (Blimp-1) in activated CD10–CD27– B cells. CD10–CD27–IgD– cells were highly responsive to stimulation through TLR7 as evidenced by the appearance of blasting CD27hiCD38hi cells. Emab significantly inhibited the activation and differentiation of CD10–CD27–IgD– B cells into plasma cells. Conclusions Emab can both regulate cytokine expression and block Blimp1-dependent B-cell differentiation, although the effects of Emab may depend on the stage of B-cell development or activation. In addition, Emab inhibits the activation of CD27–IgD– tonsillar cells, which correspond to so-called double-negative memory B cells, known to be increased in SLE patients with more active disease. These data may be relevant to the therapeutic effect of Emab in vivo via modulation of the production of pro-inflammatory and anti-inflammatory cytokines by B cells. Because Blimp-1 is required by B cells to mature into antibody-producing cells, inhibition of Blimp1 may reduce autoantibody production. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA. .,Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | | | - Edward A Clark
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
3
|
Kohnz RA, Roberts LS, DeTomaso D, Bideyan L, Yan P, Bandyopadhyay S, Goga A, Yosef N, Nomura DK. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity. ACS Chem Biol 2016; 11:2131-9. [PMID: 27380425 PMCID: PMC4994060 DOI: 10.1021/acschembio.6b00433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Many mechanisms have been proposed
for how heightened aerobic glycolytic
metabolism fuels cancer pathogenicity, but there are still many unexplored
pathways. Here, we have performed metabolomic profiling to map glucose
incorporation into metabolic pathways upon transformation of mammary
epithelial cells by 11 commonly mutated human oncogenes. We show that
transformation of mammary epithelial cells by oncogenic stimuli commonly
shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine
pathway metabolite that is converted to CMP-sialic acid by cytidine
monophosphate N-acetylneuraminic acid synthase (CMAS)
as a precursor to glycoprotein and glycolipid sialylation. We show
that CMAS knockdown leads to elevations in intracellular sialic acid
levels, a depletion of cellular sialylation, and alterations in the
expression of many cancer-relevant genes to impair breast cancer pathogenicity.
Our study reveals the heretofore unrecognized role of sialic acid
metabolism and protein sialylation in regulating the expression of
genes that maintain breast cancer pathogenicity.
Collapse
Affiliation(s)
- Rebecca A. Kohnz
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lindsay S. Roberts
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - David DeTomaso
- Department
of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lara Bideyan
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peter Yan
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sourav Bandyopadhyay
- Division
of Hematology/Oncology, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue HSW616, San Francisco, California 94143, United States
- University of California, San Francisco Helen Diller
Family Comprehensive Cancer Center, Box
0128, San Francisco, California 94143, United States
| | - Andrei Goga
- Division
of Hematology/Oncology, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue HSW616, San Francisco, California 94143, United States
- University of California, San Francisco Helen Diller
Family Comprehensive Cancer Center, Box
0128, San Francisco, California 94143, United States
| | - Nir Yosef
- Department
of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, Fitzgerald M, Beck J, Bains BK, Smyth P, Themistou E, Small DM, Schmid D, O'Kane CM, Fitzgerald DC, Abdelghany SM, Johnston JA, Fallon PG, Burrows JF, McAuley DF, Kissenpfennig A, Scott CJ. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med 2016; 7:303ra140. [PMID: 26333936 DOI: 10.1126/scitranslmed.aab3459] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.
Collapse
Affiliation(s)
- Shaun Spence
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | | | - François Fay
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Umar Hamid
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Marianne Fitzgerald
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Jonathan Beck
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | | | - Peter Smyth
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Donna M Small
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Daniela Schmid
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Cecilia M O'Kane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Denise C Fitzgerald
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Sharif M Abdelghany
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - James A Johnston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK. Inflammation Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland. National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - James F Burrows
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Daniel F McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Adrien Kissenpfennig
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | | |
Collapse
|
5
|
High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris. Appl Microbiol Biotechnol 2014; 98:10023-39. [PMID: 25239038 DOI: 10.1007/s00253-014-6071-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022]
Abstract
Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.
Collapse
|
6
|
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2014; 94:193-205. [PMID: 25080849 DOI: 10.1111/ejh.12427] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.
Collapse
Affiliation(s)
- Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
7
|
Lehmann B, Schwab I, Böhm S, Lux A, Biburger M, Nimmerjahn F. FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol 2014; 8:243-54. [DOI: 10.1586/eci.12.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Cao H, Crocker PR. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 2011; 132:18-26. [PMID: 21070233 PMCID: PMC3015071 DOI: 10.1111/j.1365-2567.2010.03368.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022] Open
Abstract
Sialic-acid-binding immunoglobulin-like lectins, siglecs, are important immune receptors expressed widely in mammals. A unique feature of siglecs is their ability to bind sialylated glycans and transmit signals to immune cells. The CD33-related siglecs (CD33rSiglecs) form a major subfamily of the siglecs, containing a large, rapidly evolving group of genes that expanded in mammals through an inverse duplication event involving a primordial cluster of siglec genes over 180 million years ago. Humans express a much larger set of CD33rSiglecs than mice and rats, a feature that can be explained by a dramatic loss of CD33rSiglec genes in rodents. Most CD33rSiglecs have immune receptor tyrosine-based inhibitory motifs and signal negatively. Interestingly, novel DAP-12-coupled 'activating' CD33rSiglecs have been identified, such as siglec-14 and siglec-16, which are paired with the inhibitory receptors, siglec-5 and siglec-11, respectively. The evolution of these activating receptors may have been driven in part by pathogen exploitation of inhibitory siglecs, thereby providing the host with additional pathways by which to combat these pathogens. Inhibitory siglecs seem to play important and varied roles in the regulation of host immune responses. For example, several CD33rSiglecs have been implicated in the negative regulation of Toll-like receptor signalling during innate responses; siglec-G functions as a negative regulator of B1-cell expansion and appears to suppress inflammatory responses to host-derived 'danger-associated molecular patterns'. Recent work has also shown that engagement of neutrophil-expressed siglec-9 by certain strains of sialylated Group B streptococci can suppress killing responses, thereby providing experimental support for pathogen exploitation of host CD33rSiglecs.
Collapse
Affiliation(s)
- Huan Cao
- Wellcome Trust Biocentre, Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, UK.
| | | |
Collapse
|
9
|
Stephan JP, Chan P, Lee C, Nelson C, Elliott JM, Bechtel C, Raab H, Xie D, Akutagawa J, Baudys J, Saad O, Prabhu S, Wong WLT, Vandlen R, Jacobson F, Ebens A. Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug Chem 2008; 19:1673-83. [PMID: 18637680 DOI: 10.1021/bc800059t] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD22 represents a promising target for antibody-drug conjugate therapy in the context of B cell malignancies since it rapidly internalizes, importing specifically bound antibodies with it. To determine the pharmacokinetic parameters of anti-CD22-MCC-DM1 and MC-MMAF conjugates, various approaches to quantifying total and conjugated antibody were investigated. Although the total antibody assay formats gave similar results for both conjugates, the mouse pharmacokinetic profile for the anti-CD22-MCC-DM1 and MC-MMAF appeared significantly different depending on the conjugated antibody assay format. Since these differences significantly impacted the PK parameters determination, we investigated the effect of the drug/antibody ratio on the total and conjugated antibody quantification using multiple assay formats. Our investigations revealed the limitations of some assay formats to quantify anti-CD22-MCC-DM1 and MC-MMAF with different drug load and in the context of a heterogeneous ADC population highlight the need to carefully plan the assay strategy for the total and conjugated antibody quantification in order to accurately determine the ADC PK parameters.
Collapse
Affiliation(s)
- Jean-Philippe Stephan
- Department of Assay and Automation Technology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Azuma Y, Higurashi K, Matsumoto K. Immobilized alpha2,6-linked sialic acid suppresses caspase-3 activation during anti-IgM antibody-induced apoptosis in Ramos cells. Biochim Biophys Acta Gen Subj 2006; 1770:279-85. [PMID: 17118559 DOI: 10.1016/j.bbagen.2006.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/07/2006] [Accepted: 10/18/2006] [Indexed: 11/18/2022]
Abstract
In Ramos cells, a human Burkitt's lymphoma cell line, stimulation of the B cell antigen receptor with anti-IgM antibody (Ab) induces apoptosis as indicated by a decrease in cell viability and an increase in DNA fragmentation and cell surface exposure of phosphatidylserine. Furthermore, these changes are suppressed by incubating the cells in alpha(1)-acid glycoprotein (AGP)-coated tissue culture plates. Here, we found that, during Anti-IgM Ab-induced apoptosis in Ramos cells, caspase-3 is activated downstream of caspase-8 and the mitochondrial pathway is activated, as indicated by a loss of mitochondrial membrane potential, an increase in the release of cytochrome c to the cytoplasm, and enhanced Bax expression. Anti-IgM Ab-induced apoptosis of neuraminidase-treated Ramos cells was suppressed by incubating the cells on plates coated with AGP, which contains a high concentration of alpha2,6-linked sialic acid. The incubation on plates coated with AGP also suppressed anti-IgM Ab-stimulated caspase-3 activity and increased the level of X-linked inhibitor of apoptosis protein (XIAP), but it did not affect caspase-8 activity, the mitochondrial membrane potential, cytochrome c release, or Bax expression. The results indicate that the interaction of Ramos cells with immobilized alpha2,6-linked sialic acid enhances XIAP expression, directly or indirectly suppressing caspase-3 activity and inhibiting anti-IgM Ab-induced apoptosis.
Collapse
Affiliation(s)
- Yutaro Azuma
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | | | | |
Collapse
|
11
|
Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, McVicar DW, Johnston JA. CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 2006; 109:1061-8. [PMID: 17008544 DOI: 10.1182/blood-2006-05-023556] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD33 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to alpha-CD33 therapy.
Collapse
Affiliation(s)
- Selinda J Orr
- Infection and Immunity, centre for Cancer Research and Biology, Queens University, Belfast, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
13
|
DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, Khandke K, Armellino DC, Boghaert ER, Hamann PR, Zinkewich-Peotti K, Stephens S, Weir N, Damle NK. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 2005; 54:11-24. [PMID: 15693135 PMCID: PMC11033002 DOI: 10.1007/s00262-004-0572-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 05/21/2004] [Indexed: 11/29/2022]
Abstract
Antibody-targeted chemotherapy with immunoconjugates of calicheamicin is a clinically validated strategy in cancer therapy. This study describes the selection of a murine anti-CD22 mAb, m5/44, as a targeting agent, its conjugation to a derivative of calicheamicin (CalichDM) via either acid-labile or acid-stable linkers, the antitumor activity of CalichDM conjugated to m5/44, and its subsequent humanization by CDR grafting. Murine IgG1 mAb m5/44 was selected based on its subnanomolar affinity for CD22 and ability to be internalized into B cells. CalichDM conjugated to m5/44 caused potent growth inhibition of CD22+ human B-cell lymphomas (BCLs) in vitro. The conjugate of m5/44 with an acid-labile linker was more potent than an acid-stable conjugate, a nonbinding conjugate with a similar acid-labile linker, or unconjugated CalichDMH in inhibiting BCL growth. CalichDM conjugated to m5/44 caused regression of established BCL xenografts in nude mice. In contrast, both unconjugated m5/44 and a nonbinding conjugate were ineffective against these xenografts. Based on the potent antitumor activity of m5/44-CalichDM conjugates, m5/44 was humanized by CDR grafting to create g5/44, an IgG4 anti-CD22 antibody. Both m5/44 and g5/44 bound CD22 with subnanomolar affinity. Competitive blocking with previously characterized murine anti-CD22 mAbs suggested that g5/44 recognizes epitope A located within the first N-terminal Ig-like domain of human CD22. Antitumor efficacy of CalichDM conjugated to g5/44 against BCL xenografts was more potent than its murine counterpart. Based on these results, a calicheamicin conjugate of g5/44, CMC-544, was selected for further development as a targeted chemotherapeutic agent for the treatment of B-cell malignancies.
Collapse
MESH Headings
- Amino Acid Sequence
- Aminoglycosides/chemistry
- Aminoglycosides/immunology
- Aminoglycosides/therapeutic use
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antineoplastic Agents/immunology
- Antineoplastic Agents/therapeutic use
- Binding, Competitive
- Cell Adhesion Molecules/immunology
- Cell Line, Tumor
- Epitopes/immunology
- Female
- Humans
- Immunoconjugates/immunology
- Immunoconjugates/therapeutic use
- Lectins/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- Sialic Acid Binding Ig-like Lectin 2
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- John F. DiJoseph
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | | | | | | | | | - Arthur Kunz
- Chemical Sciences, Wyeth Research, Pearl River, New York USA
| | - Kiran Khandke
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Douglas C. Armellino
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Erwin R. Boghaert
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | | | | | | | | | - Nitin K. Damle
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| |
Collapse
|
14
|
DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, Popplewell AG, Stephens S, Frost P, Damle NK. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004; 103:1807-14. [PMID: 14615373 DOI: 10.1182/blood-2003-07-2466] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractAntibody-targeted chemotherapy with gemtuzumab ozogamicin (CMA-676, a CD33-targeted immunoconjugate of N-acetyl-γ-calicheamicin dimethyl hydrazide [CalichDMH], a potent DNA-binding cytotoxic antitumor antibiotic) is a clinically validated therapeutic option for patients with acute myeloid leukemia (AML). Here, we describe the preclinical profile of another immunoconjugate of CalichDMH, CMC-544, targeted to CD22 expressed by B-lymphoid malignancies. CMC-544 comprises a humanized IgG4 anti-CD22 monoclonal antibody (mAb), G5/44, covalently linked to CalichDMH via an acid-labile 4-(4′-acetylphenoxy) butanoic acid (AcBut) linker. Both CMC-544 and unconjugated G5/44 bound human CD22 with subnanomolar affinity. CMC-544, but not unconjugated G5/44, exerted potent cytotoxicity against CD22+ B-cell lymphoma (BCL) cell lines (inhibitory concentration of 50%: 6-600 pM CalichDMH). CMC-544 caused a potent inhibition of growth of small but established BCL xenografts leading to cures (therapeutic index > 10). CMC-544 prevented the establishment of BCL xenografts and also caused regression of large BCLs (> 1.5 g tumor mass). In contrast, unconjugated CalichDMH, unconjugated G5/44, and an isotype-matched control conjugate, CMA-676, were ineffective against these BCL xenografts. Thus, CD22-targeted delivery of CalichDMH is a potent and effective preclinical therapeutic strategy for BCLs. The strong antitumor profile of CMC-544 supports its clinical evaluation as a treatment option for B-lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antineoplastic Agents/pharmacology
- Cell Adhesion Molecules
- Cell Line, Tumor
- Female
- Humans
- Immunoconjugates/therapeutic use
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Inhibitory Concentration 50
- Inotuzumab Ozogamicin
- Lectins/biosynthesis
- Lectins/metabolism
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/therapy
- Lymphoma, Non-Hodgkin/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Models, Chemical
- Neoplasm Transplantation
- Protein Binding
- Sialic Acid Binding Ig-like Lectin 2
- Time Factors
Collapse
Affiliation(s)
- John F DiJoseph
- Department of Oncology Discovery, Wyeth Research, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mills DM, Stolpa JC, Cambier JC. Cognate B Cell Signaling via MHC Class II: Differential Regulation of B Cell Antigen Receptor and MHC Class II/Ig-αβ Signaling by CD22. THE JOURNAL OF IMMUNOLOGY 2003; 172:195-201. [PMID: 14688326 DOI: 10.4049/jimmunol.172.1.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies demonstrate that MHC class II molecules can signal via associated Ig-alphabeta dimers, signal transducers previously thought to function only in B cell Ag receptor (BCR) signaling. Surprisingly, the biologic outputs of MHC class II and BCR ligation (by thymus-dependent Ags) differ, e.g., MHC class II signaling leads to robust proliferation and extension of pseudopods. It seemed possible that these differences might be due, at least in part, to differential use of inhibitory coreceptors thought to modulate membrane Ig signals. In this study, we demonstrate that CD22, an inhibitory BCR coreceptor, neither associates with nor functions in MHC class II/Ig-alphabeta signaling. Interestingly, CD22 is actively excluded from cell surface MHC class II aggregates.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Biological Transport
- CD79 Antigens
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Cell Adhesion Molecules
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- Dimerization
- Down-Regulation/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Immunoglobulin M/metabolism
- Immunoglobulin M/physiology
- Lectins/deficiency
- Lectins/genetics
- Lectins/metabolism
- Lectins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Precipitin Tests
- Pseudopodia/immunology
- Pseudopodia/physiology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Tyrosine/metabolism
Collapse
Affiliation(s)
- David M Mills
- Integrated Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
16
|
Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 2003; 278:31007-19. [PMID: 12773526 DOI: 10.1074/jbc.m304331200] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ten of the 11 known human siglecs or their murine orthologs have been evaluated for their specificity for over 25 synthetic sialosides representing most of the major sequences terminating carbohydrate groups of glycoproteins and glycolipids. Analysis has been performed using a novel multivalent platform comprising biotinylated sialosides bound to a streptavidin-alkaline phosphatase conjugate. Each siglec was found to have a unique specificity for binding 16 different sialoside-streptavidin-alkaline phosphatase probes. The relative affinities of monovalent sialosides were assessed for each siglec in competitive inhibition studies. The quantitative data obtained allows a detailed analysis of each siglec for the relative importance of sialic acid and the penultimate oligosaccharide sequence on binding affinity and specificity. Most remarkable was the finding that myelin-associated glycoprotein (Siglec-4) binds with 500-10,000-fold higher affinity to a series of mono- and di-sialylated derivatives of the O-linked T-antigen (Galbeta(1-3)-GalNAc(alpha)OThr) as compared with alpha-methyl-NeuAc.
Collapse
MESH Headings
- Alkaline Phosphatase
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- CHO Cells
- Carbohydrate Sequence
- Cell Adhesion Molecules
- Chimera
- Cricetinae
- Enzyme-Linked Immunosorbent Assay
- Galactosides/chemical synthesis
- Galactosides/metabolism
- Glycolipids/chemical synthesis
- Glycolipids/metabolism
- Glycoproteins/chemical synthesis
- Glycoproteins/metabolism
- Humans
- Lectins/genetics
- Lectins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- N-Acetylneuraminic Acid/metabolism
- Protein Binding
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sialic Acid Binding Ig-like Lectin 1
- Sialic Acid Binding Ig-like Lectin 2
- Sialic Acid Binding Immunoglobulin-like Lectins
- Streptavidin
Collapse
Affiliation(s)
- Ola Blixt
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
As activated B cells differentiate into plasma cells they complete a final series of migration steps that take them to locations where they can efficiently carry out their effector function, secreting immunoglobulin (Ig) M or IgG into circulation or releasing dimeric IgA adjacent to the epithelium for transcytosis. Recent experiments have established a key role for chemokines in directing antibody secreting cell (ASC) movement within the secondary lymphoid organs where they are generated, as well as in guiding the cells to the bone marrow or mucosal surfaces. This review discusses the chemokines involved in directing ASC movements, particularly focusing on the role of CXCR4 and CXCL12/SDF1. The function of CCR9 and CCR10 in IgA ASC homing and contributions made by integrins and lectins are also discussed.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414, USA.
| |
Collapse
|
18
|
Lajaunias F, Ida A, Kikuchi S, Fossati-Jimack L, Martinez-Soria E, Moll T, Law CL, Izui S. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus. ARTHRITIS AND RHEUMATISM 2003; 48:1612-21. [PMID: 12794829 DOI: 10.1002/art.11021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE CD22, a B cell-restricted transmembrane glycoprotein, regulates B cell antigen receptor signaling upon interaction with alpha2,6-linked sialic acid-bearing glycans, which act as ligands and are expressed on B and T cells. In this study, we investigated how the expression of CD22 ligand (CD22L) is modulated following lymphocyte activation or during the course of systemic lupus erythematosus (SLE). METHODS The expression levels of CD22L on B and T cells in nonautoimmune mice were assessed by flow cytometric analysis using a soluble recombinant form of CD22, following stimulation with antigen or mitogen in vitro. In addition, the expression levels of CD22L on circulating lymphocytes were correlated with the progression of SLE in lupus-prone mice. RESULTS We observed a constitutive expression of CD22L on mature B cells, but not T cells, in nonautoimmune mice. However, CD22L levels were up-regulated selectively on T cells (but not B cells) stimulated with antigens in vitro, while their expression levels on B cells was up-modulated following polyclonal activation with lipopolysaccharide. Furthermore, expression of CD22L was increased on circulating B cells (and to a lesser extent on T cells) in parallel with progression of SLE in several different lupus-prone mice and in a cohort of (C57BL/6 x [NZB x C57BL/6.Yaa]F(1)) backcross mice. CONCLUSION The expression of CD22L is differentially regulated in B and T cells, and high expression of CD22L on circulating B cells is a marker for development of severe SLE, suggesting a role for CD22-CD22L interactions in SLE as well as in the regulation of humoral immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Disease Models, Animal
- Female
- Flow Cytometry
- Lectins/metabolism
- Ligands
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Lupus Nephritis/metabolism
- Lupus Nephritis/mortality
- Lupus Nephritis/pathology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Proteins
- Sialic Acid Binding Ig-like Lectin 2
- Spleen/cytology
- Spleen/immunology
- Survival Rate
- T-Lymphocytes/metabolism
- Up-Regulation
Collapse
|
19
|
Kaplan BLF, Yu DC, Clay TM, Nishimura MI. Redirecting T lymphocyte specificity using T cell receptor genes. Int Rev Immunol 2003; 22:229-53. [PMID: 12745641 DOI: 10.1080/08830180305227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redirecting T cells by transferring T cell receptor (TCR) genes from tumor-associated antigen (TAA)-reactive T cell clones into human peripheral blood lymphocytes (PBL) has therapeutic potential for the treatment of diseases, including cancer. T cell specificity can be altered using retroviruses encoding TCRalpha and TCRbeta chain genes, or chimeric immunoglobulin (cIg) genes containing signaling domains of CD3 zeta or Fc epsilon RI-gamma. This review evaluates recent studies using TCRs and cIgs to redirect T cell specificity and discusses some of the technical and biological hurdles that need to be addressed before these approaches can be successfully used to treat patients.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
20
|
John B, Herrin BR, Raman C, Wang YN, Bobbitt KR, Brody BA, Justement LB. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3534-43. [PMID: 12646615 DOI: 10.4049/jimmunol.170.7.3534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The B cell coreceptor CD22 plays an important role in regulating signal transduction via the B cell Ag receptor. Studies have shown that surface expression of CD22 can be modulated in response to binding of ligand (i.e., mAb). Thus, it is possible that alterations in the level of CD22 expression following binding of natural ligand(s) may affect its ability to modulate the Ag receptor signaling threshold at specific points during B cell development and differentiation. Therefore, it is important to delineate the physiologic mechanism by which CD22 expression is controlled. In the current study, yeast two-hybrid analysis was used to demonstrate that CD22 interacts with AP50, the medium chain subunit of the AP-2 complex, via tyrosine-based internalization motifs in its cytoplasmic domain. This interaction was further characterized using yeast two-hybrid analysis revealing that Tyr(843) and surrounding amino acids in the cytoplasmic tail of CD22 comprise the primary binding site for AP50. Subsequent studies using transfectant Jurkat cell lines expressing wild-type or mutant forms of CD22 demonstrated that either Tyr(843) or Tyr(863) is sufficient for mAb-mediated internalization of CD22 and that these motifs are involved in its interaction with the AP-2 complex, as determined by coprecipitation of alpha-adaptin. Finally, experiments were performed demonstrating that treatment of B cells with either intact anti-Ig Ab or F(ab')(2) blocks ligand-mediated internalization of CD22. In conclusion, these studies demonstrate that internalization of CD22 is dependent on its association with the AP-2 complex via tyrosine-based internalization motifs.
Collapse
MESH Headings
- Adaptor Protein Complex 2/genetics
- Adaptor Protein Complex 2/metabolism
- Adaptor Protein Complex mu Subunits/genetics
- Adaptor Protein Complex mu Subunits/metabolism
- Amino Acid Motifs/genetics
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Adhesion Molecules
- Clathrin/metabolism
- Clathrin/physiology
- Cross-Linking Reagents/metabolism
- Endocytosis/genetics
- Endocytosis/immunology
- Humans
- Jurkat Cells
- Lectins/antagonists & inhibitors
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Protein Binding/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transfection
- Tumor Cells, Cultured
- Tyrosine/genetics
- Tyrosine/metabolism
- Tyrosine/physiology
Collapse
Affiliation(s)
- BinuJoy John
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Riley DE, Krieger JN. Diverse eukaryotic transcripts suggest short tandem repeats have cellular functions. Biochem Biophys Res Commun 2002; 298:581-6. [PMID: 12408991 DOI: 10.1016/s0006-291x(02)02509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previously thought "junk" DNA, short tandem repeats consisting of (GATA)n, or its compliment, were found in varied metazoan eukaryotic genomes but were rare in yeast and bacterial genomes. The (GATA)n sequence was found in cDNAs encoding mRNAs with known functions. At least 16 of 18 such transcripts encode membrane-associated proteins including: plasma membranes, synapses, mitochondrial membranes, nuclear envelopes, and brush border membranes. Flanking sequences were diverse but (GATA)n sequences clustered around 500 bases from stop codons. The (GATA)n sequences occurred in both orientations and showed constrained polymorphism. In sets of splice variants with and without (GAUA)n, the STR containing transcripts were the most abundant. These observations suggest that (GATA)n sequences probably function. In many cases, the function may be to encode post-transcriptional signals for mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Donald E Riley
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
22
|
Collins BE, Blixt O, Bovin NV, Danzer CP, Chui D, Marth JD, Nitschke L, Paulson JC. Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 2002; 12:563-71. [PMID: 12213789 DOI: 10.1093/glycob/cwf067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of CD22 with glycoprotein ligands bearing the Siaalpha2,6Gal-R sequence is believed to modulate its function as a regulator of B cell signaling. Although a commercial sialoside-polyacrylamide (PAA) probe, NeuAc- alpha2,6Gal-PAA, has facilitated studies on ligand binding by human CD22, murine CD22 binds instead with high affinity to NeuGcalpha2,6Gal-R. A multivalent probe with this sequence was constructed to facilitate investigations of ligand binding in CD22 function using genetically defined murine models. The probe is based on the sialoside-PAA platform, which is then biotinylated for easy detection. A series of sialoside probes were constructed with two different length linker arms between the sialoside and the backbone and three different sialoside to PAA molar ratios. The NeuGcalpha2,6Gal-PAA probe is specific for CD22: it binds to sialidase-treated B cells of wild-type mice but not B cells of CD22-null mice. Additionally, because the probe only binds to sialidase-treated wild-type cells, it confirms that CD22 is constitutively "masked" on most B cells from wild-type mice by binding to ligands in cis. In contrast, the probe bound equally well to native or sialidase-treated B cells from the immunocompromised ligand-deficient ST6Gal I knockout mice, demonstrating that CD22 is constitutively "unmasked" in these cells.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., MEM-L71, La Jolla, CA 92075, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kelm S, Gerlach J, Brossmer R, Danzer CP, Nitschke L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J Exp Med 2002; 195:1207-13. [PMID: 11994426 PMCID: PMC2193707 DOI: 10.1084/jem.20011783] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
CD22 is a B cell-specific transmembrane protein of the Siglec family. It binds specifically to alpha2,6-linked sialic acid (Sia) residues, which are also present on glycoproteins on the B cell surface. CD22 acts as a negative regulator in B cell receptor-mediated signaling by recruitment of Src homology 2 domain-containing tyrosine phosphatase (SHP)-1 to its intracellular tail. To analyze how ligand-binding of CD22 influences its intracellular signaling domain, we designed synthetic sialosides as inhibitors for the lectin domain of CD22. One of these compounds inhibited binding of human CD22-Fc to target cells over 200-fold better than Sia and was highly selective for human CD22. When Daudi cells or primary B cells were stimulated with anti-immunoglobulin (Ig)M in presence of this sialoside inhibitor, a higher Ca(2+) response was observed, similar to CD22-deficient B cells. Accordingly, a lower tyrosine-phosphorylation of CD22 and SHP-1 recruitment was demonstrated in presence of the sialoside. Thus, by interfering with ligand binding of CD22 on the B cell surface, we have shown for the first time that the lectin domain of CD22 has a direct, positive influence on its intracellular inhibitory domain. Also, we have developed a novel low molecular weight compound which can enhance the response of human B cells.
Collapse
Affiliation(s)
- Soerge Kelm
- Centre for Biomolecular Interactions Bremen, University Bremen, Department for Biology and Chemistry, 28334 Bremen, Germany
| | | | | | | | | |
Collapse
|
24
|
Moyron-Quiroz JE, Partida-Sánchez S, Donís-Hernández R, Sandoval-Montes C, Santos-Argumedo L. Expression and function of CD22, a B-cell restricted molecule. Scand J Immunol 2002; 55:343-51. [PMID: 11967115 DOI: 10.1046/j.1365-3083.2002.01063.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this work, we studied the expression and function of CD22 in murine B cells. CD22 has been previously characterized as an activation marker of mature B lymphocytes. However, we found that CD22 is expressed early during the ontogeny of B cells in the bone marrow and spleen, and was found on B cells isolated from all the different lymphoid compartments. We also found that B cells stimulated through the B-cell antigen receptor (BCR), CD38 and CD40, upregulated CD22 expression to maximal levels within 24 h after stimulation, but that the levels of CD22 declined at later times (48 and 72 h). CD22 is rapidly phosphorylated after BCR signal transduction, and is believed to downregulate B-cell activation. In this study, we did not detect CD22 phosphorylation in activated B cells after CD38 or CD40 cross-linking, even though CD22 was clearly phosphorylated in the BCR-stimulated B cells. Consistent with this, we found no evidence of physical association between CD38 or CD40 and CD22 in B cells. The lack of association or phosphorylation of CD22 induced by CD38 and CD40 cross-linking indicates that CD22 may not downregulate the activation induced by these two molecules.
Collapse
MESH Headings
- ADP-ribosyl Cyclase
- ADP-ribosyl Cyclase 1
- Animals
- Antigens, CD/analysis
- Antigens, CD/physiology
- Antigens, Differentiation/physiology
- Antigens, Differentiation, B-Lymphocyte/analysis
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocytes/chemistry
- B-Lymphocytes/physiology
- Bone Marrow/chemistry
- CD40 Antigens/physiology
- Cell Adhesion Molecules
- Lectins
- Membrane Glycoproteins
- Mice
- Mice, Inbred BALB C
- NAD+ Nucleosidase/physiology
- Phosphorylation
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2
Collapse
Affiliation(s)
- J E Moyron-Quiroz
- Department of Cellular Biology, Centro de Investigación y Estudios Avanzados del I.P.N., 07360 México D.F., México
| | | | | | | | | |
Collapse
|