1
|
Kastner P, Aukenova A, Chan S. Evolution of the Ikaros family transcription factors: From a deuterostome ancestor to humans. Biochem Biophys Res Commun 2024; 694:149399. [PMID: 38134477 DOI: 10.1016/j.bbrc.2023.149399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Ikaros family proteins (Ikaros, Helios, Aiolos, Eos) are zinc finger transcription factors essential for the development and function of the adaptive immune system. They also control developmental events in neurons and other cell types, suggesting that they possess crucial functions across disparate cell types. These functions are likely shared among the organisms in which these factors exist, and it is thus important to obtain a view of their distribution and conservation across organisms. How this family evolved remains poorly understood. Here we mined protein, mRNA and DNA databases to identify proteins with DNA-binding domains homologous to that of Ikaros. We show that Ikaros-related proteins exist in organisms from all four deuterostome phyla (chordates, echinoderms, hemichordates, xenacoelomorpha), but not in more distant groups. While most non-vertebrates have a single family member, this family grew to six members in the acoel worm Hofstenia miamia, three in jawless and four in jawed vertebrates. Most residues involved in DNA contact from zinc fingers 2 to 4 were identical across the Ikaros family, suggesting conserved mechanisms for target sequence recognition. Further, we identified a novel KRKxxxPxK/R motif that inhibits DNA binding in vitro which was conserved across the deuterostome phyla. We also identified a EψψxxxψM(D/E)QAIxxAIxYLGA(D/E)xL motif conserved among human Ikaros, Aiolos, Helios and subsets of chordate proteins, and motifs that are specific to subsets of vertebrate family members. Some of these motifs are targets of mutations in human patients. Finally we show that the atypical family member Pegasus emerged only in vertebrates, which is consistent with its function in bone. Our data provide a novel evolutionary perspective for Ikaros family proteins and suggest that they have conserved regulatory functions across deuterostomes.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Adina Aukenova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France.
| |
Collapse
|
2
|
Santos KO, Costa-Filho J, Riet J, Spagnol KL, Nornberg BF, Kütter MT, Tesser MB, Marins LF. Probiotic expressing heterologous phytase improves the immune system and attenuates inflammatory response in zebrafish fed with a diet rich in soybean meal. FISH & SHELLFISH IMMUNOLOGY 2019; 93:652-658. [PMID: 31412282 DOI: 10.1016/j.fsi.2019.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Although aquaculture is among the fastest growing food production sectors in the world, one of the bottlenecks for the continuity of its expansion is the dependence of animal protein on commercial feed formulations. Vegetable proteins are an alternative due to the low cost and high availability. However, this protein source is accompanied by a series of antinutritional and pro-inflammatory compounds, including phytate. Phytases can be added in feed for phytate degradation and increase nutrient availability. However, the use of purified phytases significantly increases the production costs. An interesting alternative is to use probiotics genetically modified as bioreactors for phytase production. In the present study, a strain of Bacillus subtilis secreting a fungal phytase was used to evaluate the effect of a feed with high content of soybean meal on zebrafish (Danio rerio). We analysed the condition factor (K) of fish, and the expression of genes related to the immune system, inflammatory response and oxidative. stress. The results obtained demonstrate that the transgenic probiotic was efficient in improving the fish condition factor, stimulating the immune system, reducing the inflammatory response and oxidative stress. Thus, probiotics acting as phytase bioreactors can be considered an interesting tool for the adaptation of commercial species to feed of lower cost.
Collapse
Affiliation(s)
- Kamila Oliveira Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - João Costa-Filho
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Jade Riet
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Kérolin Luana Spagnol
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Bruna Félix Nornberg
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Mateus Tavares Kütter
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcelo Borges Tesser
- Laboratory of Nutrition of Aquatic Organisms, Institute of Oceanography (IO), Federal, University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Im SP, Lee JS, Kim SW, Yu JE, Kim YR, Kim J, Lee JH, Jung TS. Investigation of variable lymphocyte receptors in the alternative adaptive immune response of hagfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:203-210. [PMID: 26449649 DOI: 10.1016/j.dci.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Jawless vertebrates have an alternative adaptive immune system mediated by variable lymphocyte receptors (VLRs), VLRA, VLRC and VLRB. In investigation on the adaptive immunity of hagfish, avian influenza virus hemagglutinin (H9N2-HA1) was used as a model antigen, with mRNA expression levels of VLRA, VLRC and Ikaros were up-regulated in the first week post-immunization. CD45 was up-regulated after the first week; and expression of VLRB progressively increased over the course of the trial. The transcriptional/translational activation of VLRB in blood was verified. The VLRBs cloned from these transcripts showed diversity in their leucine-rich repeats (LRRs). The production of specific VLRB increased in a time- and dose-dependent manner, detected by an anti-VLRB antibody (11G5). The plasma VLRB could distinguish H9N2-HA1 from unrelated proteins, but not from other HA1 subtypes. Together, our findings show that VLRs play a major role in the alternative adaptive immune system of hagfish by responding to specific foreign substances, such as H9N2-HA1.
Collapse
Affiliation(s)
- Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jong Earn Yu
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jeong-Ho Lee
- Inland Aquaculture Research Center, NFRDI, Changwon, 645-806, Republic of Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
4
|
Abstract
Jawless vertebrates represented by lampreys and hagfish mount antigen-specific immune responses using variable lymphocyte receptors. These receptors generate diversity comparable to that of T-cell and B-cell receptors by assembling multiple leucine-rich repeat modules with highly variable sequences. Although it is true that jawed and jawless vertebrates have structurally unrelated antigen receptors, their adaptive immune systems have much in common. Most notable is the conservation of lymphocyte lineages. It appears that specialized lymphocyte lineages emerged in a common vertebrate ancestor and that jawed and jawless vertebrates co-opted different antigen receptors within the context of such lymphocyte lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 060-8638, Japan.
| |
Collapse
|
5
|
|
6
|
The research of W.E. Mayer (1953-2012): a spectrum of immune systems. Immunogenetics 2012; 64:849-54. [PMID: 23053060 DOI: 10.1007/s00251-012-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Over a period of some 20 years, Werner Eugen Mayer played a significant role in establishing a framework for molecular studies of Mhc genes in multiple vertebrates. His work largely concerned gene isolation, sequencing, and related bioinformatic analyses both for the Mhc and for immune system genes of about 200 species, ranging from apes, monkeys, rodents, and marsupials, through to birds, bony fishes, and lampreys. In addition to his exploration of diverse Mhc genes, Werner is remembered for playing a critical role in the development of two important insights into the evolution of immune systems. His was among the first published DNA sequence-based descriptions of trans-species evolution of Mhc alleles, including the first description of the long-lived polymorphisms shared by humans and chimpanzees. This research opened the way for using Mhc polymorphisms in demographic analyses. The second important insight in which he played a prominent role involved the characterization of immune cells and their expressed genes in the lamprey, a jawless vertebrate. His findings helped to indicate the considerable degree to which extant immune mechanisms were co-opted in the creation of the adaptive immune system of jawed vertebrates.
Collapse
|
7
|
McCurley N, Hirano M, Das S, Cooper MD. Immune related genes underpin the evolution of adaptive immunity in jawless vertebrates. Curr Genomics 2012; 13:86-94. [PMID: 23024600 PMCID: PMC3308329 DOI: 10.2174/138920212799860670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.
Collapse
Affiliation(s)
- Nathanael McCurley
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
8
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
9
|
John LB, Ward AC. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 2011; 48:1272-8. [PMID: 21477865 DOI: 10.1016/j.molimm.2011.03.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 01/10/2023]
Abstract
The Ikaros family of proteins - comprising Ikaros, Aiolos, Helios, Eos and Pegasus - are zinc finger transcription factors. These proteins participate in a complex network of interactions with gene regulatory elements, other family members and a raft of other transcriptional regulators to control gene expression including via chromatin remodelling. In this way, Ikaros family members regulate important cell-fate decisions during hematopoiesis, particularly in the development of the adaptive immune system. Mutation of several family members results in hematological malignancies,especially those of a lymphoid nature. This review describes the key roles of Ikaros proteins in development and disease, their mechanisms of action and gene targets, as well as explaining their evolutionary origins and role in the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Liza B John
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | |
Collapse
|
10
|
Ikaros expression in tongue sole macrophages: a marker for lipopolysaccharide- and lipoteichoic acid-induced inflammatory responses. Mol Biol Rep 2010; 38:2273-9. [PMID: 21069465 DOI: 10.1007/s11033-010-0358-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 10/21/2010] [Indexed: 12/30/2022]
Abstract
Ikaros, an important transcription factor plays a role in the development of hemato-lymphoid system, yet its functional importance in fish macrophages remains unknown. In this study, an Ikaros cDNA was cloned from the half-smooth tongue sole Cynoglossus semilaevis. The cDNA contained an open reading frame of 1,290 nucleotides that encoded a 430 amino acid protein. The deduced protein is structurally similar to dul from other species, for example human, axolotl, and possesses 3-zinc finger and 2-zinc finger domains at its N- and C-termini, respectively. Phylogenetic analysis revealed C. semilaevis Ikaros to be grouped with all the fish Ikaros, but branching from other Ikaros family members. Both semi-quantitative PCR and quantitative real-time PCR indicated Ikaros to be predominantly expressed in the immune-relevant tissues such as kidney, thymus, spleen and liver. In the macrophages cultured from C. semilaevis head kidney and challenged with lipopolysaccharide and lipoteichoic acid not only induced expression of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin 1-beta but also caused up-regulation of Ikaros in a dose- and time-dependent fashions. All these data suggest that Ikaros might be a useful marker for inflammatory responses in C. semilaevis.
Collapse
|
11
|
Saha NR, Smith J, Amemiya CT. Evolution of adaptive immune recognition in jawless vertebrates. Semin Immunol 2010; 22:25-33. [PMID: 20056434 DOI: 10.1016/j.smim.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/18/2022]
Abstract
All extant vertebrates possess an adaptive immune system wherein diverse immune receptors are created and deployed in specialized blood cell lineages. Recent advances in DNA sequencing and developmental resources for basal vertebrates have facilitated numerous comparative analyses that have shed new light on the molecular and cellular bases of immune defense and the mechanisms of immune receptor diversification in the "jawless" vertebrates. With data from these key species in hand, it is becoming possible to infer some general aspects of the early evolution of vertebrate adaptive immunity. All jawed vertebrates assemble their antigen-receptor genes through combinatorial recombination of different "diversity" segments into immunoglobulin or T-cell receptor genes. However, the jawless vertebrates employ an analogous, but independently derived set of immune receptors in order to recognize and bind antigens: the variable lymphocyte receptors (VLRs). The means by which this locus generates receptor diversity and achieves antigen specificity is of considerable interest because these mechanisms represent a completely independent strategy for building a large immune repertoire. Therefore, studies of the VLR system are providing insight into the fundamental principles and evolutionary potential of adaptive immune recognition systems. Here we review and synthesize the wealth of data that have been generated towards understanding the evolution of the adaptive immune system in the jawless vertebrates.
Collapse
Affiliation(s)
- Nil Ratan Saha
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
12
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
13
|
Progress of adaptive immunity system of agnathan vertebrates. YI CHUAN = HEREDITAS 2009; 31:969-76. [DOI: 10.3724/sp.j.1005.2009.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
John LB, Yoong S, Ward AC. Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:4792-9. [PMID: 19342657 DOI: 10.4049/jimmunol.0802372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ikaros family of transcription factors are important for immune system development. Analysis of Ikaros-related genes from a range of species suggests the Ikaros family derived from a primordial gene, possibly related to the present-day protostome Hunchback genes. This duplicated before the divergence of urochordates to produce two distinct lineages: one that generated the Ikaros factor-like (IFL) 2 genes of urochordates/lower vertebrates and the Pegasus genes of higher vertebrates, and one that generated the IFL1 genes of urochordates/lower vertebrates, the IKFL1 and IKFL2 genes of agnathans and the remaining four Ikaros members of higher vertebrates. Expansion of the IFL1 lineage most likely occurred via the two intervening rounds of whole genome duplication. A proposed third whole genome duplication in teleost fish produced a further increase in complexity of the gene family with additional Pegasus and Eos members. These findings question the use of IFL sequences as evidence for the existence of adaptive immunity in early chordates and vertebrates. Instead, this study is consistent with a later emergence of adaptive immunity coincident with the appearance of the definitive lymphoid markers Ikaros, Aiolos, and Helios.
Collapse
Affiliation(s)
- Liza B John
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Kasahara M, Kasamatsu J, Sutoh Y. Two types of antigen receptor systems in vertebrates. Zoolog Sci 2009; 25:969-75. [PMID: 19267632 DOI: 10.2108/zsj.25.969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extant jawless vertebrates, represented by lampreys and hagfishes, have innate immune receptors with variable domains structurally resembling those of T/B-cell receptors. However, they appear to lack cardinal elements of adaptive immunity shared by all jawed vertebrates: major histocompatibility complex molecules and T/B-cell receptors. Thus, it was widely believed that adaptive immunity is unique to jawed vertebrates. Recently, this belief was overturned by the discovery of agnathan antigen receptors named variable lymphocyte receptors. These receptors generate diversity in their antigen-binding sites through assembling highly diverse leucine-rich repeat modules. The crystal structures of hagfish variable lymphocyte receptor monomers indicate that they adopt a horseshoe-shaped structure and likely bind antigens through the hypervariable concave surface. Secreted variable lymphocyte receptors form pentamers or tetramers of dimers and bind antigens with high specificity and avidity. The fact that variable lymphocyte receptors are structurally unrelated to T/B-cell receptors indicates that jawed and jawless vertebrates have developed antigen receptors independently.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | | | |
Collapse
|
16
|
[The evolution of adaptive immunity system of Agnathan vertebrates]. YI CHUAN = HEREDITAS 2008; 30:13-9. [PMID: 18244897 DOI: 10.3724/sp.j.1005.2008.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All along peoples pay extensive attention on the origin and evolution of adaptive immunity system. Agnathans, taking lamprey as the representative, are generally thought at the edge of evolving the adaptive immunity system. Therefore, it is very significantly important to further study the mechanism of adaptive immunity of agnathans for revealing the origin and evolution of adaptive immunity system. Previous studies indicated that agnathans shared some characters of adaptive immunity with higher vertebrates. In addition, a few researchers also found that some genes are homologous in the structure or function with the immunologically relevant genes of higher vertebrates. In this article, we have summarized some recent research progresses about the mechanism of adaptive immunity system of agnathans. The aim of this paper is to provide valuable clues for further studying of the origin and evolution of the adaptive immunity system of vertebrate.
Collapse
|
17
|
Huang G, Xie X, Han Y, Fan L, Chen J, Mou C, Guo L, Liu H, Zhang Q, Chen S, Dong M, Liu J, Xu A. The identification of lymphocyte-like cells and lymphoid-related genes in amphioxus indicates the twilight for the emergence of adaptive immune system. PLoS One 2007; 2:e206. [PMID: 17299586 PMCID: PMC1784065 DOI: 10.1371/journal.pone.0000206] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/22/2007] [Indexed: 11/19/2022] Open
Abstract
To seek evidence of a primitive adaptive immune system (AIS) before vertebrate, we examined whether lymphocytes or lymphocyte-like cells and the related molecules participating in the lymphocyte function existed in amphioxus. Anatomical analysis by electron microscopy revealed the presence of lymphocyte-like cells in gills, and these cells underwent morphological changes in response to microbial pathogens that are reminiscent of those of mammalian lymphocytes executing immune response to microbial challenge. In addition, a systematic comparative analysis of our cDNA database of amphioxus identified a large number of genes whose vertebrate counterparts are involved in lymphocyte function. Among these genes, several genes were found to be expressed in the vicinity of the lymphocyte-like cells by in situ hybridization and up-regulated after exposure to microbial pathogens. Our findings in the amphioxus indicate the twilight for the emergence of AIS before the invertebrate-vertebrate transition during evolution.
Collapse
Affiliation(s)
- Gonghua Huang
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojin Xie
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Han
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lifei Fan
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunyan Mou
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Guo
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiling Dong
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianzhong Liu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Dong M, Fu Y, Yu C, Su J, Huang S, Wu X, Wei J, Yuan S, Shen Y, Xu A. Identification and characterisation of a homolog of an activation gene for the recombination activating gene 1 (RAG 1) in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2005; 19:165-174. [PMID: 15752655 DOI: 10.1016/j.fsi.2004.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/27/2004] [Accepted: 11/15/2004] [Indexed: 05/24/2023]
Abstract
Expression of recombination activating genes (RAG) involved in the V (D) J recombination is regulated by the RAG1 gene activator (RGA) in mammals. The sequence of a cDNA clone from an amphioxus cDNA library was found to be homologous to that of RGA from mouse stromal cells with 45% identity. The full-length cDNA sequence comprises 1119 bp and encodes a putative protein of 210 amino acid residues. Characterisation of the amino acid sequence revealed that two MtN3 domains and seven transmembrane spans are present in this protein, indicating a potential role as a plasma membrane protein. This gene is expressed in many tissues and at differential developmental stages. A high expression level of RGA is detected in gonad tissues, and gastrula embryo and adult stages. The presence of the RGA gene in amphioxus suggests that the signal pathway required for the expression of RAG could exist in this primitive protochordate. It also implies that in the related molecules, primitive adaptive immunity may have existed in cephalochordate although the complete machinery of VDJ rearrangement may not be formed.
Collapse
Affiliation(s)
- Meiling Dong
- Department of Biochemistry, State Open Laboratory for Marine Function Genomics, Guangzhou Center for Bioinformatics, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wyffels JT, Walsh CJ, Luer CA, Bodine AB. In vivo exposure of clearnose skates, Raja eglanteria, to ionizing X-radiation: acute effects on the thymus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:315-331. [PMID: 15859236 DOI: 10.1016/j.dci.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To investigate for the first time the effects of ionizing radiation on thymus of a representative cartilaginous fish, juvenile clearnose skates, Raja eglanteria, were exposed to 0-75 Gy of X-radiation and sacrificed after 12 days. Morphometrics (weight, disc width and total length) and thymus and thymic cyst area were compared to controls using ANOVA. Thymus area declined logarithmically and medullary cysts increased as a function of dose (P < or = 0.05). To assess thymic recovery, skates were exposed to 0, 9, 13.5 or 18 Gy of X-radiation and sacrificed when moribund or on days 10, 20, 30 and 40 post-irradiation. Complete restoration of the thymus was not achieved during the 40-day observation period, although repopulation with pro-thymocytes and partial recovery of thymic architecture were evident histologically. The observed high radiosensitivity of R. eglanteria thymocytes was similar to responses of other vertebrates, but recovery time was prolonged.
Collapse
Affiliation(s)
- Jennifer T Wyffels
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | | | |
Collapse
|
20
|
Klein J, Nikolaidis N. The descent of the antibody-based immune system by gradual evolution. Proc Natl Acad Sci U S A 2004; 102:169-74. [PMID: 15618397 PMCID: PMC544055 DOI: 10.1073/pnas.0408480102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antibody-based immune system (AIS) is one of many means by which organisms protect themselves against pathogens and parasites. The AIS is present in jawed vertebrates (gnathostomes) but absent in all other taxa, including jawless vertebrates (agnathans). We argue that the AIS has been assembled from elements that have primarily evolved to serve other functions and incorporated existing molecular cascades, resulting in the appearance of new organs and new types of cells. Some molecules serving other functions have been appropriated by the AIS, whereas others have been modified to serve new functions, either after the duplication of their encoding genes or through the acquisition of an additional function without gene duplication. A few molecules may have been created de novo. The deployment and integration of the ready-made elements gives the impression of a sudden origin of the AIS. In reality, however, the AIS is an example of an organ system that has evolved gradually through a series of small steps over an extended period.
Collapse
Affiliation(s)
- Jan Klein
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
21
|
Pancer Z, Mayer WE, Klein J, Cooper MD. Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc Natl Acad Sci U S A 2004; 101:13273-8. [PMID: 15328402 PMCID: PMC516559 DOI: 10.1073/pnas.0405529101] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All jawed vertebrates have highly diverse lymphocyte receptors, which allow discrimination between self and nonself antigens as well as the recognition of potential pathogens. Key elements of the anticipatory recombinatorial immune system in jawed vertebrates are the TCR, Ig, and MHC genes, but their ancestral genes have not been found in more basal vertebrates. In this study, we extended our analysis of the transcriptome of lymphocyte-like cells in the lamprey to identify the TCR-like and CD4-like genes. The structural features of these genes and their preferential expression in lymphocytes make them attractive candidates for ancestral TCR and CD4 genes. The TCR-like gene contains both V (variable) and J (joining) sequences in its first exon and exists as a single-copy gene that is invariant. Thus, the TCR-like gene cannot account for the receptor diversity that is required for the immune responses reported for lamprey, but it could have been easily modified to serve as an evolutionary precursor of modern TCR and Ig genes.
Collapse
Affiliation(s)
- Zeev Pancer
- Department of Medicine, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | | | |
Collapse
|
22
|
Suzuki T, Shin-I T, Kohara Y, Kasahara M. Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:993-1003. [PMID: 15236930 DOI: 10.1016/j.dci.2004.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/16/2004] [Indexed: 05/24/2023]
Abstract
Jawless fishes occupy a critical phylogenetic position in understanding the origin of the adaptive immune system. Here, we performed large-scale expressed sequence tag analysis of leukocytes isolated from the inshore hagfish Eptatretus burgeri. Although we found many immunity-related genes such as those involved in lymphocyte or hematopoietic cell signaling and development as well as cytokine and cytokine receptor genes, MHC molecules or antigen receptors were not identified. We characterized two hagfish cDNAs that closely resembled mammalian proteins with essential roles in adaptive immunity, one encoding a GATA3-like molecule and another encoding a Bruton's tyrosine kinase (Btk)-like molecule. The GATA3-like gene of hagfish was equidistant from GATA3 and GATA2 in jawed vertebrates. Similarly, the hagfish Btk-like molecule was not Btk itself, but qualified as a pre-duplicated form of Btk and Bmx in jawed vertebrates. In total, our work provides circumstantial evidence that adaptive immunity is unique to jawed vertebrates.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Biosystems Science, School of Advanced Sciences, The Graduate University for Advanced Studies (Sokendai), Shonan Village, Hayama 240-0193, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
This review explores the evolutionary origins of lymphocyte development by focusing on the transcription factors that direct mammalian lymphocyte development today. Gene expression data suggest that the programs to make lymphocytes involve the same transcription factor ensembles in all animals with lymphocytes. Most of these factors, GATA, Runx, PU.1/Spi, EBF/Olf, Ikaros, and Pax-2/5/8 family members, are also encoded in the genomes of animals without lymphocytes. We consider the functions of these factors in animals without lymphocytes in terms of discrete program components, which could have been assembled in a new way to create the lymphocyte developmental program approximately 500 My ago.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
24
|
Abstract
Abstract Helios (Znfn1a2) is an Ikaros-related lymphoid regulatory protein with possible involvement in T-cell development and function as well as in the early events of haematopoietic stem cell differentiation. To evaluate the role of Helios in avian haemato/lymphopoiesis, we have characterized the avian Helios gene. In contrast to studies in mouse and human, we have found that the highly conserved avian Helios encodes a novel exon and three isoforms. Furthermore, the avian Helios expression precedes Ikaros in the ontogeny, being present already on the first day of embryonic development. Additionally, expression in the bursa of Fabricius, germinal centres and B-cell lines suggests a role for Helios also in the B-cell lineage. Phylogenetic studies of the Ikaros family along with data on paralogous chromosome segments in the human genome connect the expansion of the Ikaros family and thus possibly the emergence of the adaptive immune system with the putative second round of genome duplications and indicate that the Ikaros gene family is linked with the Hox gene clusters.
Collapse
Affiliation(s)
- P Kohonen
- Department of Medical Microbiology, Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland.
| | | | | |
Collapse
|
25
|
Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 2004; 430:174-80. [PMID: 15241406 DOI: 10.1038/nature02740] [Citation(s) in RCA: 487] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/11/2004] [Indexed: 11/09/2022]
Abstract
Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans (jawless fish) and of immunoglobulin gene segments in gnathostomes (jawed vertebrates).
Collapse
Affiliation(s)
- Zeev Pancer
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cupit PM, Hansen JD, McCarty AS, White G, Chioda M, Spada F, Smale ST, Cunningham C. Ikaros family members from the agnathan Myxine glutinosa and the urochordate Oikopleura dioica: emergence of an essential transcription factor for adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2004; 171:6006-13. [PMID: 14634112 DOI: 10.4049/jimmunol.171.11.6006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ikaros multigene family encodes a number of zinc finger transcription factors that play key roles in vertebrate hemopoietic stem cell differentiation and the generation of B, T, and NK cell lineages. In this study, we describe the identification and characterization of an Ikaros family-like (IFL) protein from the agnathan hagfish Myxine glutinosa and the marine urochordate Oikopleura dioica, both of which lie on the evolutionary boundary between the vertebrates and invertebrates. The IFL molecules identified in these animals displayed high conservation in the zinc finger motifs critical for DNA binding and dimerization in comparison with those of jawed vertebrates. Expression of the IFL gene in hagfish was strongest in blood, intestine, and gills. In O. dioica, transcription from the IFL gene was initiated at or around the time of hatching and maintained throughout the life span of the animal. In situ hybridization localized O. dioica IFL expression to the Fol cells, which are responsible for generating the food filter of the house. Biochemical analysis of the DNA binding and dimerization domains from M. glutinosa and O. dioici IFLs showed that M. glutinosa behaves as a true Ikaros family member. Taken together, these results indicate that the properties associated with the Ikaros family preceded the emergence of the jawed vertebrates and thus adaptive immunity.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, High Technology Centre, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Uinuk-ool TS, Mayer WE, Sato A, Takezaki N, Benyon L, Cooper MD, Klein J. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics 2003; 55:38-48. [PMID: 12679854 DOI: 10.1007/s00251-003-0548-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Revised: 01/27/2003] [Indexed: 11/30/2022]
Abstract
An expressed sequence tag obtained from a sea lamprey ( Petromyzon marinus) cDNA library was used to obtain a full-length coding sequence showing significant similarity to ABCB transporter proteins. The sequence is closely related to the mammalian ABCB9 protein and the TAP1 and TAP2 proteins that transport peptides for loading onto nascent Mhc class I molecules. The Pema-ABCB9 gene has an exon-intron organization similar to that of the mammalian TAP genes, with the exception of exon 2, which in the lamprey is split into two by a 949-bp long intron. The gene probably occurs in a single copy in the haploid lamprey genome. The ABCB9 genes appear to be evolving four-to-ten times slower than the TAP1 and TAP2 genes. Six putative transmembrane helices and the nucleotide-binding domain of the lamprey ABCB9 protein show high sequence similarity with the TAP1 and TAP2 molecules. The lamprey protein also contains sequence stretches that resemble the putative peptide interacting parts of the TAP1 and TAP2 molecules, but are peppered with ABCB9-specific residues.
Collapse
Affiliation(s)
- Tatiana S Uinuk-ool
- Abteilung Immungenetik, Max-Planck-Institut für Biologie, Corrensstrasse 42, 72076, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD. Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci U S A 2002; 99:14350-5. [PMID: 12388781 PMCID: PMC137887 DOI: 10.1073/pnas.212527499] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocyte-like cells in the intestine of the sea lamprey, Petromyzon marinus, were isolated by flow cytometry under light-scatter conditions used for the purification of mouse intestinal lymphocytes. The purified lamprey cells were morphologically indistinguishable from mammalian lymphocytes. A cDNA library was prepared from the lamprey lymphocyte-like cells, and more than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the databases led to the identification of numerous genes homologous to those predominantly or characteristically expressed in mammalian lymphocytes, which included genes controlling lymphopoiesis, intracellular signaling, proliferation, migration, and involvement of lymphocytes in innate immune responses. Genes closely related to those that in gnathostomes control antigen processing and transport of antigenic peptides could be ascertained, although no sequences with significant similarity to MHC, T cell receptor, or Ig genes were found. The data suggest that the evolution of lymphocytes in the lamprey has reached a stage poised for the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Werner E Mayer
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A 2002; 99:14356-61. [PMID: 12391333 PMCID: PMC137888 DOI: 10.1073/pnas.212527699] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2002] [Indexed: 01/13/2023] Open
Abstract
To shed light on the origin of adaptive immunity, a cDNA library was prepared from purified lymphocyte-like cells of a jawless vertebrate, the sea lamprey (Petromyzon marinus). Randomly selected cDNA clones were sequenced, and their homologies to proteins in the databases were determined. Of the sequences homologous to proteins involved in immune responses, five were selected for further characterization. Their encoding genes corresponded to loci that in jawed vertebrates are essential for activities of lymphocytes. These activities include regulation of T and B cell stimulation and proliferation (CD45); stabilization of molecular complexes involved in lymphocyte activation, adhesion, migration, and differentiation (CD9/CD81); adaptor functions in signaling leading to the activation of B lymphocytes (BCAP) and T lymphocytes (CAST); and amino acid transport associated with cell activation (CD98). The presence of these genes in the lamprey genome and their expression in lymphocyte-like cells support the notion that these cells perform many of the functions of gnathostome lymphocytes. It reopens the question of the stage jawless fishes reached in the evolution of their immune system.
Collapse
Affiliation(s)
- Tatiana Uinuk-Ool
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|