1
|
Wang W, Liu W, Wang B. Identification of CDK gene family and functional analysis of CqCDK15 under drought and salt stress in quinoa. BMC Genomics 2023; 24:461. [PMID: 37592203 PMCID: PMC10433607 DOI: 10.1186/s12864-023-09570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
as one of the oldest cultivated crops in the world, quinoa has been widely valued for its rich nutritional value and green health. In this study, 22 CDK genes (CqCDK01-CqCDK22) were identified from quinoa genome using bioinformatics method. The number of amino acids was 173-811, the molecular weight was 19,554.89 Da-91,375.70 Da, and the isoelectric point was 4.57-9.77. The phylogenetic tree divided 21 CqCDK genes into six subfamilies, the gene structure showed that 12 (54.5%) CqCDK genes (CqCDK03, CqCDK04, CqCDK05, CqCDK06, CqCDK07, CqCDK11, CqCDK14, CqCDK16, CqCDK18, CqCDK19, CqCDK20 and CqCDK21) had UTR regions at 5' and 3' ends. Each CDK protein had different motifs (3-9 motifs), but the genes with the same motifs were located in the same branch. Promoter analysis revealed 41 cis-regulatory elements related to plant hormones, abiotic stresses, tissue-specific expression and photoresponse. The results of real-time fluorescence quantitative analysis showed that the expression level of some CDK genes was higher under drought and salt stress, which indicated that CDK genes could help plants to resist adverse environmental effects. Subcellular localization showed that CqCDK15 gene was localized to the nucleus and cytoplasm, and transgenic plants overexpressing CqCDK15 gene showed higher drought and salt tolerance compared to the controls. Therefore, CDK genes are closely related to quinoa stress resistance. In this study, the main functions of quinoa CDK gene family and its expression level in different tissues and organs were analyzed in detail, which provided some theoretical support for quinoa stress-resistant breeding. Meanwhile, this study has important implications for further understanding the function of the CDK gene family in quinoa and our understanding of the CDK family in vascular plant.
Collapse
Affiliation(s)
- Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of life science and technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Baoqiang Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of life science and technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Meng J, Peng M, Yang J, Zhao Y, Hu J, Zhu Y, He H. Genome-Wide Analysis of the Cyclin Gene Family and Their Expression Profile in Medicago truncatula. Int J Mol Sci 2020; 21:E9430. [PMID: 33322339 PMCID: PMC7763586 DOI: 10.3390/ijms21249430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Cyclins, together with highly conserved cyclin-dependent kinases (CDKs), play an important role in the process of cell cycle in plants, but less is known about the functions of cyclins in legume plants, especially Medicago truncatula. Our genome-wide analysis identified 58, 103, and 51 cyclin members in the M. truncatula, Glycine max, and Phaseolus vulgaris genomes. Phylogenetic analysis suggested that these cyclins could be classified into 10 types, and the CycB-like types (CycBL1-BL8) were the specific subgroups in M. truncatula, which was one reason for the expansion of the B-type in M. truncatula. All putative cyclin genes were mapped onto their own chromosomes of each genome, and 9 segmental duplication gene pairs involving 20 genes were identified in M. truncatula cyclins. Determined by quantitative real-time PCR, the expression profiling suggested that 57 cyclins in M. truncatula were differentially expressed in 9 different tissues, while a few genes were expressed in some specific tissues. Using the publicly available RNAseq data, the expression of Mtcyclins in the wild-type strain A17 and three nodule mutants during rhizobial infection showed that 23 cyclins were highly upregulated in the nodulation (Nod) factor-hypersensitive mutant sickle (skl) mutant after 12 h of rhizobium inoculation. Among these cyclins, six cyclin genes were also specifically expressed in roots and nodules, which might play specific roles in the various phases of Nod factor-mediated cell cycle activation and nodule development. Our results provide information about the cyclin gene family in legume plants, serving as a guide for further functional research on plant cyclins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengbin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (J.M.); (M.P.); (J.Y.); (Y.Z.); (J.H.); (Y.Z.)
| |
Collapse
|
3
|
Guo J, Wu J, Zhang T, Gong H. Over-expression of SlCycA3 gene in Arabidopsis accelerated the cell cycle transition. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:659-670. [PMID: 32481021 DOI: 10.1071/fp13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/18/2013] [Indexed: 06/11/2023]
Abstract
We characterised an A-type cyclin SlCycA3 (AJ243453) from tomato (Solanum lycopersicum L.). Phylogenetic analysis based on the deduced amino acid sequence revealed that SlCycA3 was 71% identical to A3-type cyclin in Nicotiana tabacum L. (CAA63540), 48% identical to its homologue found in Arabidopsis thaliana (NP_199122), and 48% identical to its homologue in Pisum sativum L. (CAB77269). SlCycA3 gene was transformed into Arabidopsis plants in order to study its function. The hypocotyl length of transgenic plants was approximately half the length of wild-type plants, and the cell size in the transgenic lines was also smaller. The transgenic plants had longer roots than the wild type. Overexpression of SlCycA3 gene accelerated the cell cycle from G1/S transition to early M-phase, thereby accelerating the cell division. When the plants were treated with IAA and 3-indolebutyric acid (IBA) for 2 days, the transgenic plants produced more lateral roots than wild type. Treatment with IBA significantly increased the cell number in the G2-phase in transgenic plants compared with wild type after treatment for 10 days, whereas the proportion of cells in the S-phase was strongly increased by IAA treatment both in wild-type and transgenic plants. These results suggest a possible key role for cyclin in regulating root growth and development and provide some evidence of cell division underlying hormone treatment in plants.
Collapse
Affiliation(s)
- Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Wu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tiantian Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Downie JA. A eulogy to Adam Kondorosi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1272-1275. [PMID: 21995795 DOI: 10.1094/mpmi-06-11-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A tribute to Adam Kondorosi, a pioneer in the field of nitrogen fixation and bacterial-plant symbiosis, Former director of the Institut des Sciences Végétales (France), member of the Hungarian Academy of Sciences, the Academy of Europe, and the European Molecular Biology Organization.
Collapse
|
5
|
Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Mergaert P, Kondorosi E. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana. PLoS One 2011; 6:e20618. [PMID: 21687678 PMCID: PMC3110789 DOI: 10.1371/journal.pone.0020618] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/09/2011] [Indexed: 12/21/2022] Open
Abstract
Background The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development. Methodology/Principal Findings Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth. Conclusions/Significance The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly “retrogenes” and have hitherto undefined functions or are pseudogenes.
Collapse
Affiliation(s)
- Zoltán Kevei
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, Szeged, Hungary
| | - Mikhail Baloban
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Olivier Da Ines
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Hilda Tiricz
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, Szeged, Hungary
| | - Alexandra Kroll
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Krzysztof Regulski
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
- Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, Szeged, Hungary
- * E-mail:
| |
Collapse
|
6
|
Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. PLANT CELL REPORTS 2010; 29:307-15. [PMID: 20532512 DOI: 10.1007/s00299-010-0817-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 05/08/2023]
Abstract
The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Hu X, Cheng X, Jiang H, Zhu S, Cheng B, Xiang Y. Genome-wide analysis of cyclins in maize (Zea mays). GENETICS AND MOLECULAR RESEARCH 2010; 9:1490-503. [PMID: 20690081 DOI: 10.4238/vol9-3gmr861] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cyclins are primary regulators of the activity of cyclin-dependent kinases and play crucial roles in cell cycle progression in eukaryotes. Although extensive studies have revealed the roles of some cyclins and underlying mechanisms in plants, relatively few cyclins have been functionally analyzed in maize. We identified 59 cyclins in the maize genome, distributed on 10 chromosomes; these were grouped into six types by phylogenetic analysis. The cyclin genes in the maize genome went through numerous tandem gene duplications on five chromosomes. However, no segmental duplications, which occur in rice, were found on maize chromosomes. This information allows us to assess the position of plant cyclin genes in terms of evolution and classification, which will be useful for functional studies of maize cyclins.
Collapse
Affiliation(s)
- X Hu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
8
|
Doonan JH, Kitsios G. Functional evolution of cyclin-dependent kinases. Mol Biotechnol 2009; 42:14-29. [PMID: 19145493 DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases with a well established role in the regulation of the eukaryotic cell cycle. Recent studies with animal cells have implicated CDK activity in additional diverse cellular processes, including transcription, translation and mRNA processing. In plants, such CDK functions are poorly characterized and the implication of CDK phosphorylation in regulation of gene expression is just begining to emerge. In this review we compare CDK functions in plants, animals and yeasts with particular focus on the biological processes that different members participate in and regulate. Finally, based on the available information of CDK function, we propose an alternative evolutionary scenario for the CDK gene family.
Collapse
Affiliation(s)
- John H Doonan
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
9
|
Wang H, Zhou Y, Bird DA, Fowke LC. Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors. J Microsc 2008; 231:234-46. [PMID: 18778421 DOI: 10.1111/j.1365-2818.2008.02039.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell cycle is regulated by the cyclin-dependent kinase (CDK), and CDK inhibitors can bind to CDKs and inhibit their activities. This review examines plant CDK inhibitors, with particular emphasis on their molecular and cellular functions, regulation and cellular localization. In plants, a family of ICK/KRP CDK inhibitors represented by ICK1 is known and another type of CDK inhibitor represented by the SIMESE (SIM) has recently been reported. Considerable understanding has been gained with the ICK/KRP CDK inhibitors. These plant CDK inhibitors share only limited sequence similarity in the C-terminal region with the KIP/CIP family of mammalian CDK inhibitors. The ICK/KRP CDK inhibitors thus provide good tools to understand the basic machinery as well as the unique aspects of the plant cell cycle. The ICK/KRP CDK inhibitors interact with D-type cyclins or A-type CDKs or both. Several functional regions and motifs have been identified in ICK1 for CDK inhibition, nuclear localization and protein instability. Clear evidence shows that ICK/KRP proteins are important for the cell cycle and endoreduplication. Preliminary evidence suggests that they may also be involved in cell differentiation and cell death. Results so far show that plant CDK inhibitors are exclusively localized in the nucleus. The molecular sequences regulating the localization and functional significance will be discussed.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon SK, S7N 5E5, Canada
| | | | | | | |
Collapse
|
10
|
Pillitteri LJ, Bemis SM, Shpak ED, Torii KU. Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development 2007; 134:3099-109. [PMID: 17652352 DOI: 10.1242/dev.004788] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Arabidopsis genome contains three ERECTA-family genes, ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERL2 that encode leucine-rich repeat receptor-like kinases. This gene family acts synergistically to coordinate cell proliferation and growth during above-ground organogenesis with the major player, ER, masking the loss-of-function phenotypes of the other two members. To uncover the specific developmental consequence and minimum threshold requirement for signaling, ER-family gene function was successively eliminated. We report here that ERL2 is haploinsufficient for maintaining female fertility in the absence of ER and ERL1. Ovules of the haploinsufficient er-105 erl1-2 erl2-1/+ mutant exhibit abnormal development with reduced cell proliferation in the integuments and gametophyte abortion. Our analysis indicates that progression of integument growth requires ER-family signaling in a dosage-dependent manner and that transcriptional compensation among ER-family members occurs to maintain the required signaling threshold. The specific misregulation of cyclin A genes in the er-105 erl1-2 erl2-1/+ mutant suggests that downstream targets of the ER-signaling pathway might include these core cell-cycle regulators. Finally, genetic interaction of the ER family and the WOX-family gene, PFS2, reveals their contribution to integument development through interrelated mechanisms.
Collapse
|
11
|
Foyer CH, Kiddle G, Verrier P. Transcriptional profiling approaches to understanding how plants regulate growth and defence: a case study illustrated by analysis of the role of vitamin C. EXS 2007; 97:55-86. [PMID: 17432263 DOI: 10.1007/978-3-7643-7439-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In this chapter, basic technical aspects concerning the design of DNA microarray experiments are discussed including sample preparation, hybridisation conditions and statistical significance of the acquired data are detailed. Given that microarrays are perhaps the most used tool in plant systems biology there is much experience in the pitfalls in using them. Herein important considerations are presented for both the experimental biologists and data analyst in order to maximise the utility of these resources. Finally a case study using the analysis of vitamin C deficient plants is presented to illustrate the power of this approach in enhancing comprehension of important and complex biological functions.
Collapse
Affiliation(s)
- Christine H Foyer
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | |
Collapse
|
12
|
Abstract
Cell cycle regulation is of pivotal importance for plant growth and development. Although plant cell division shares basic mechanisms with all eukaryotes, plants have evolved novel molecules orchestrating the cell cycle. Some regulatory proteins, such as cyclins and inhibitors of cyclin-dependent kinases, are particularly numerous in plants, possibly reflecting the remarkable ability of plants to modulate their postembryonic development. Many plant cells also can continue DNA replication in the absence of mitosis, a process known as endoreduplication, causing polyploidy. Here, we review the molecular mechanisms that regulate cell division and endoreduplication and we discuss our understanding, albeit very limited, on how the cell cycle is integrated with plant development.
Collapse
Affiliation(s)
- Dirk Inzé
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
13
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
14
|
Kawamura K, Murray JAH, Shinmyo A, Sekine M. Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro. PLANT MOLECULAR BIOLOGY 2006; 61:311-27. [PMID: 16786309 DOI: 10.1007/s11103-006-0014-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 01/23/2006] [Indexed: 05/10/2023]
Abstract
Tobacco (Nicotiana tabacum L.) cv Bright Yellow-2 (BY-2) cells are the most highly synchronizable plant cell culture, and previously we used them to analyze cell cycle regulation of cyclin-dependent kinases (CDKs) containing the cyclin binding motifs PSTAIRE (CDKA) and PPTA/TLRE (CDKB). Here we describe the analysis of tobacco CycD3 cyclins whose transcripts predominantly accumulate during G2 to M phase, which represents a unique feature of this type of cyclin D in plants. Although protein levels of CycD3s fluctuate with different patterns during the cell cycle, kinase assays revealed that the CycD3-associated kinases phosphorylate histone H1 and the tobacco retinoblastoma related protein (NtRBR1) with two peaks at the G1/S and G2/M boundaries. In vitro pull-down assays revealed that cell cycle-regulated CycD3s bind to CDKA, but more weakly than does CycD3;3, and that they also bind to CDKB and the CDK inhibitor NtKIS1a. Mutations in the cyclin box of the CycD3s showed that two amino acids are required for binding with CDKA and NtKIS1a, but no diminished interaction was observed with CDKB. A reconstituted kinase assay was adapted for use with bacterially produced GST-CycD3s, and kinase activity could be activated by incubation of extracts from exponentially growing BY-2 cells. Such activated complexes contained CDKA and CDKB, and the reconstituted GST-CycD3 mutants, retaining binding ability to CDKB, showed kinase activity, suggesting that these cell cycle-regulated CycD3s form active complexes with both A- and B-type CDKs in vitro.
Collapse
Affiliation(s)
- Kazue Kawamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Japan
| | | | | | | |
Collapse
|
15
|
Pettkó-Szandtner A, Mészáros T, Horváth GV, Bakó L, Csordás-Tóth E, Blastyák A, Zhiponova M, Miskolczi P, Dudits D. Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:111-23. [PMID: 16553899 DOI: 10.1111/j.1365-313x.2006.02677.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Kip-related proteins (KRPs) play a central role in the regulation of the cell cycle and differentiation through modulation of cyclin-dependent kinase (CDK) functions. We have identified a CDK inhibitor gene from Medicago truncatula (Mt) by a yeast two-hybrid screen. The KRPMt gene was expressed in all plant organs and cultured cells, and its transcripts accumulated after abscisic acid and NaCl treatment. The KRPMt protein exhibits seven conserved sequence domains and a PEST motif that is also detected in various Arabidopsis KRPs. In the yeast two-hybrid test, the KRPMt protein interacted with CDK (Medsa;CDKA;1) and D-type cyclins. However, in the pull-down assays, B-type CDK complexes were also detectable. Recombinant KRPMt differentially inhibited various alfalfa CDK complexes in phosphorylation assays. The immunoprecipitated Medsa;CDKA;1/A;2 complex was strongly inhibited, whereas the mitotic Medsa;CDKB2;1 complex was the most sensitive to inhibition. Function of Medsa;CDKB1;1 complex was not inhibited by the KRPMt protein. The mitotic Medsa;CYCB2 and Medsa;CYCA2;1 complexes responded weakly to this inhibitor protein. Kinase complexes from G2/M cells showed increased sensitivity towards the inhibitor compared with those isolated from G1/S-phase cells. In vitro phosphorylation of Medicago retinoblastoma-related protein was also reduced in the presence of KRPMt. Phosphorylation of this inhibitor protein by the recombinant calmodulin-like domain protein kinase (MsCPK3) resulted in enhanced inhibition of CDK function. The data presented emphasize the selective sensitivity of various cyclin-dependent kinase complexes to this inhibitor protein, and suggest a role for CDK inhibitors and CPKs in cross-talk between Ca2+ signalling and regulation of cell-cycle progression in plants.
Collapse
Affiliation(s)
- Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Temesvári krt. 62, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T. The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. THE PLANT CELL 2006; 18:382-96. [PMID: 16415207 PMCID: PMC1356546 DOI: 10.1105/tpc.105.037309] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant cells frequently undergo endoreduplication, a process in which chromosomal DNA is successively duplicated in the absence of mitosis. It has been proposed that endoreduplication is regulated at its entry by mitotic cyclin-dependent kinase activity. However, the regulatory mechanisms for its termination remain unclear, although plants tightly control the ploidy level in each cell type. In the process of searching for regulatory factors of endoreduplication, the promoter of an Arabidopsis thaliana cyclin A gene, CYCA2;3, was revealed to be active in developing trichomes during the termination period of endoreduplication as well as in proliferating tissues. Taking advantage of the situation that plants encode highly redundant cyclin A genes, we were able to perform functional dissection of CYCA2;3 using null mutant alleles. Null mutations of CYCA2;3 semidominantly promoted endocycles and increased the ploidy levels achieved in mature organs, but they did not significantly affect the proportion of cells that underwent endoreduplication. Consistent with this result, expression of the CYCA2;3-green fluorescent protein fusion protein restrained endocycles in a dose-dependent manner. Moreover, a mutation in the destruction box of CYCA2;3 stabilized the fusion protein in the nuclei and enhanced the restraint. We conclude that CYCA2;3 negatively regulates endocycles and acts as a key regulator of ploidy levels in Arabidopsis endoreduplication.
Collapse
Affiliation(s)
- Kumiko K. Imai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yohei Ohashi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takeshi Yoshizumi
- Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Atsuhiro Oka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- To whom correspondence should be addressed. E-mail ; fax 81-774-38-3259
| |
Collapse
|
17
|
La H, Li J, Ji Z, Cheng Y, Li X, Jiang S, Venkatesh PN, Ramachandran S. Genome-wide analysis of cyclin family in rice (Oryza Sativa L.). Mol Genet Genomics 2006; 275:374-86. [PMID: 16435118 DOI: 10.1007/s00438-005-0093-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 12/17/2005] [Indexed: 11/24/2022]
Abstract
The cyclins together with highly conserved cyclin-dependent kinases regulate cell cycle progression in plants. Although extensive and systematic study on cell cycle mechanisms and cyclin functions in yeasts and animals has been carried out, only a small number of plant cyclins have been characterized and classified functionally and phylogenetically. We identified several types of cyclin genes in the rice genome and characterized them by phylogenetic, tandem and segmental duplications analyses. Our results indicated that there were at least 49 predicted rice cyclin genes in the rice genome, and they were distributed on 12 chromosomes. Of these cyclins, one possessed only cyclin_C domain and no cyclin_N domain, and the remaining 48 cyclins with cyclin_N domains were classified as nine types based on evolutionary relationships. Eight of these nine types were common between rice and Arabidopsis, whereas only one, known as F-type cyclins, was unique to rice. No homologues of the F-type cyclins in plants could be retrieved from the public databases, and reverse transcription-PCR analysis supported an existence of the F-type cyclin genes. Sequence alignment suggested that the cyclin genes in the rice genome experienced a mass of gene tandem and segmental duplications occurred on seven chromosomes related to the origins of new cyclin genes. Our study provided an opportunity to facilitate assessment and classification of new members, serving as a guide for further functional elucidation of rice cyclins.
Collapse
Affiliation(s)
- Honggui La
- Rice Functional Genomics, Joint Laboratory of Temasek Life Sciences Laboratory of Singapore and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vanneste S, De Rybel B, Beemster GTS, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. THE PLANT CELL 2005; 17:3035-50. [PMID: 16243906 PMCID: PMC1276028 DOI: 10.1105/tpc.105.035493] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the auxin/indole-3-acetic acid (AUX/IAA) signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.
Collapse
Affiliation(s)
- Steffen Vanneste
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. PLANT PHYSIOLOGY 2005; 138:2323-36. [PMID: 16055680 PMCID: PMC1183418 DOI: 10.1104/pp.105.063917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1 is present in the endosperm between 7 and 21 d after pollination, a period that encompasses the onset of endoreduplication, while the Zeama;KRP;2 protein declines during this time. Nevertheless, Zeama;KRP;1 accounts for only part of the CDK inhibitory activity that peaks coincident with the endoreduplication phase of endosperm development. In vitro assays showed that Zeama;KRP;1 and Zeama;KRP;2 are able to inhibit endosperm Cdc2-related CKD activity that associates with p13(Suc1). They were also shown to specifically inhibit cyclin A1;3- and cyclin D5;1-associated CDK activities, but not cyclin B1;3/CDK. Overexpression of Zeama;KRP;1 in maize embryonic calli that ectopically expressed the wheat dwarf virus RepA protein, which counteracts retinoblastoma-related protein function, led to an additional round of DNA replication without nuclear division.
Collapse
Affiliation(s)
- Cintia M Coelho
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kondorosi E, Redondo-Nieto M, Kondorosi A. Ubiquitin-mediated proteolysis. To be in the right place at the right moment during nodule development. PLANT PHYSIOLOGY 2005; 137:1197-204. [PMID: 15824282 PMCID: PMC1088313 DOI: 10.1104/pp.105.060004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 05/18/2023]
Affiliation(s)
- Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique Unité Propre de Recherche 2355, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
21
|
Kondorosi E, Kondorosi A. Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 2004; 567:152-7. [PMID: 15165909 DOI: 10.1016/j.febslet.2004.04.075] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 04/19/2004] [Indexed: 11/15/2022]
Abstract
Postembryonic development of plant organs requires a constant interplay between the cell cycle and the developmental programs. Upon endo- and exogenous signals, plant cells can enter, exit or modify the cell cycle. Alteration of mitotic cycles to endoreduplication cycles, where the genome is duplicated without mitosis, is common in plants and may play a role in cell differentiation. The switch from the mitotic to endocycles is regulated by Ccs52A, a plant orthologue of the yeast and animal Cdhl proteins, acting as substrate-specific activator of the anaphase-promoting complex E3 ubiquitin ligase. Here, several aspects of endoreduplication are discussed with special attention on nitrogen-fixing nodule development where endoreduplication is an integral part of symbiotic cell differentiation.
Collapse
Affiliation(s)
- Eva Kondorosi
- Institut des Sciences du Végétal, CNRS UPR 2355, Avenue de la Terrasse, 91198 Gif-sur- Yvette, France
| | | |
Collapse
|
22
|
Tarayre S, Vinardell JM, Cebolla A, Kondorosi A, Kondorosi E. Two classes of the CDh1-type activators of the anaphase-promoting complex in plants: novel functional domains and distinct regulation. THE PLANT CELL 2004; 16:422-34. [PMID: 14742878 PMCID: PMC341914 DOI: 10.1105/tpc.018952] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 12/12/2003] [Indexed: 05/17/2023]
Abstract
The Cdc20 and Cdh1/Fzr proteins are the substrate-specific activators of the anaphase-promoting complex (APC). In Medicago truncatula, the MtCcs52A and MtCcs52B proteins represent two subgroups of the Cdh1-type activators, which display differences in their cell cycle regulation, structure, and function. The ccs52A transcripts are present in all phases of the cell cycle. By contrast, expression of ccs52B is restricted to late G2-phase and M-phase, and its induced overexpression in BY2 cells inhibited mitosis. MtCcs52A is active in Schizosaccharomyces pombe and binds to the S. pombe APC, whereas MtCcs52B does not because of differences in the N-terminal region. We identified a new functional domain, the Cdh1-specific motif conserved in the Cdh1 proteins that, in addition to the C-box and the terminal Ile and Arg residues, was essential for the activity and required for efficient binding to the APC. Moreover, we demonstrate that cyclin-dependent kinase phosphorylation sites adjacent to the C-box may regulate the interaction with the APC. In the different plant organs, the expression of Mtccs52A and Mtccs52B displayed differences and indicated the involvement of the APC in differentiation processes.
Collapse
Affiliation(s)
- Sylvie Tarayre
- Institut des Sciences du Végétal, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
23
|
Kono A, Umeda-Hara C, Lee J, Ito M, Uchimiya H, Umeda M. Arabidopsis D-type cyclin CYCD4;1 is a novel cyclin partner of B2-type cyclin-dependent kinase. PLANT PHYSIOLOGY 2003; 132:1315-21. [PMID: 12857813 PMCID: PMC167071 DOI: 10.1104/pp.103.020644] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 03/15/2003] [Accepted: 03/29/2003] [Indexed: 05/20/2023]
Abstract
B-type cyclin-dependent kinases (CDKs) are unique to plants and are assumed to be involved in the control of the G2-to-M phase progression and mitotic events. However, little is known about their cyclin partners. In Arabidopsis, we isolated cDNA encoding the D-type cyclin CYCD4;1 by a yeast (Saccharomyces cerevisiae) two-hybrid screening using CDKB2;1 as bait. In vitro pull-down assay showed that CYCD4;1 bound to CDKB2;1 and CDKA;1. Protein complexes of CYCD4;1-CDKA;1 and CYCD4;1-CDKB2;1 in insect cells exhibited histone H1-kinase activity. Promoter analysis using the luciferase reporter gene showed that CDKB2;1 was expressed from early G2 to M phase, whereas CYCD4;1 was expressed throughout the cell cycle. In situ hybridization of plant tissues revealed that both CDKB2;1 and CYCD4;1 transcripts accumulated in the shoot apical meristem, leaf primordia, vasculature of leaves, and tapetal cells in anthers. Our results suggest that CDKB2;1 and CYCD4;1 may form an active kinase complex during G2/M phase and control the development of particular tissues.
Collapse
Affiliation(s)
- Atsushi Kono
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Lee J, Das A, Yamaguchi M, Hashimoto J, Tsutsumi N, Uchimiya H, Umeda M. Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:417-25. [PMID: 12753582 DOI: 10.1046/j.1365-313x.2003.01736.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.
Collapse
Affiliation(s)
- Jeongkyung Lee
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Roudier F, Fedorova E, Lebris M, Lecomte P, Györgyey J, Vaubert D, Horvath G, Abad P, Kondorosi A, Kondorosi E. The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. PLANT PHYSIOLOGY 2003; 131:1091-103. [PMID: 12644661 PMCID: PMC166874 DOI: 10.1104/pp.102.011122] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones as well as temporal and spatial regulation of the cell cycle play a key role in plant development. Here, we investigated the function and regulation of an alfalfa (Medicago sativa) A2-type cyclin in three distinct root developmental programs: in primary and secondary root development, nodule development, and nematode-elicited gall formation. Using transgenic plants carrying the Medsa;cycA2;2 promoter-beta-glucuronidase gene fusion, in combination with other techniques, cycA2;2 expression was localized in meristems and proliferating cells in the lateral root and nodule primordia. Rapid induction of cycA2;2 by Nod factors demonstrated that this gene is implicated in cell cycle activation of differentiated cells developing to nodule primordia. Surprisingly, cycA2;2 was repressed in the endoreduplicating, division-arrested cells both during nodule development and formation of giant cells in nematode-induced galls, indicating that CycA2;2 was dispensable for S-phase in endoreduplication cycles. Overexpression of cycA2;2 in transgenic plants corresponded to wild type protein levels and had no apparent phenotype. In contrast, antisense expression of cycA2;2 halted regeneration of somatic embryos, suggesting a role for CycA2;2 in the formation or activity of apical meristems. Expression of cycA2;2 was up-regulated by auxins, as expected from the presence of auxin response elements in the promoter. Moreover, auxin also affected the spatial expression pattern of this cyclin by shifting the cycA2;2 expression from the phloem to the xylem poles.
Collapse
Affiliation(s)
- François Roudier
- Institut des Sciences du Végétale, Centre National de la Recherche Scientiique Unité Propre de Recherche, Gi-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weingartner M, Pelayo HR, Binarova P, Zwerger K, Melikant B, de la Torre C, Heberle-Bors E, Bögre L. A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. J Cell Sci 2003; 116:487-98. [PMID: 12508110 DOI: 10.1242/jcs.00250] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitotic progression is timely regulated by the accumulation and degradation of A- and B-type cyclins. In plants, there are three classes of A-, and two classes of B-type cyclins, but their specific roles are not known. We have generated transgenic tobacco plants in which the ectopic expression of a plant cyclin B2 gene is under the control of a tetracycline-inducible promoter. We show that the induction of cyclin B2 expression in cultured cells during G2 phase accelerates the entry into mitosis and allows cells to override the replication checkpoint induced by hydroxyurea in the simultaneous presence of caffeine or okadaic acid, drugs that are known to alleviate checkpoint control. These results indicate that in plants, a B2-type cyclin is a rate-limiting regulator for the entry into mitosis and a cyclin B2-CDK complex might be a target for checkpoint control pathways. The cyclin B2 localization and the timing of its degradation during mitosis corroborate these conclusions: cyclin B2 protein is confined to the nucleus and during mitosis it is only present during a short time window until mid prophase, but it is effectively degraded from this timepoint onwards. Although cyclin B2 is not present in cells arrested by the spindle checkpoint in metaphase, cyclin B1 is accumulating in these cells. Ectopic expression of cyclin B2 in developing plants interferes with differentiation events and specifically blocks root regeneration, indicating the importance of control mechanisms at the G2- to M-phase transition during plant developmental processes.
Collapse
Affiliation(s)
- Magdalena Weingartner
- Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cell division in plants is controlled by the activity of cyclin-dependent kinase (CDK) complexes. Although this basic mechanism is conserved with all other eukaryotes, plants show novel features of cell-cycle control in the molecules involved and their regulation, including novel CDKs showing strong transcriptional regulation in mitosis. Plant development is characterized by indeterminate growth and reiteration of organogenesis and is therefore intimately associated with cell division. This may explain why plants have a large number of cell-cycle regulators that appear to have overlapping and distinct functions. Here we review the recent considerable progress in understanding how core cell-cycle regulators are involved in integrating and coordinating cell division at the molecular level.
Collapse
Affiliation(s)
- Walter Dewitte
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom.
| | | |
Collapse
|
28
|
Criqui MC, Genschik P. Mitosis in plants: how far we have come at the molecular level? CURRENT OPINION IN PLANT BIOLOGY 2002; 5:487-493. [PMID: 12393010 DOI: 10.1016/s1369-5266(02)00297-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The basic mechanism of mitosis is universally conserved in all eucaryotes, but specific solutions to achieve this process have been adapted by different organisms during evolution. Although cytological studies of plant cells have contributed to our understanding of chromatin dynamics during mitosis, many of the molecular mechanisms that control mitosis have been identified in yeast and animal cells. Nevertheless, recent advances have begun to fill the gaps in our understanding of how mitosis is regulated in plants, and raise intriguing questions to be answered in the future.
Collapse
Affiliation(s)
- Marie Claire Criqui
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, 67084 Cédex, Strasbourg, France
| | | |
Collapse
|
29
|
Abstract
Plants and animals use the E2F-Rb pathway as a major mechanism of control in the decision to continue or stop cell division. The E2F-Rb pathway controls the G1-to-S-phase transition by the timely activation of genes involved in DNA synthesis and cell-cycle control. Recent findings reveal that the E2F-Rb pathway communicates with chromatin-remodelling factors in the control of transcription and cell-cycle progression. This article highlights the fast-moving advances in the molecular and functional characterization of plant E2F proteins, and in our understanding of how the E2F-Rb pathway is activated and repressed.
Collapse
Affiliation(s)
- Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS-ULP, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
30
|
Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A. The Role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. PLANT PHYSIOLOGY 2002; 129:1807-19. [PMID: 12177494 PMCID: PMC166769 DOI: 10.1104/pp.000810] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Revised: 02/19/2002] [Accepted: 04/10/2002] [Indexed: 05/18/2023]
Abstract
Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 microM) or high (10 microM) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types. Cells exposed to high 2,4-D concentration remain small with dense cytoplasm and can develop into proembryogenic cell clusters, whereas protoplasts cultured at low auxin concentration elongate and subsequently die or form undifferentiated cell colonies. Fe stress applied at nonlethal concentrations (1 mM) in the presence of 1 microM 2,4-D also resulted in the development of the embryogenic cell type. Although cytoplasmic alkalinization was detected during cell activation of both types, embryogenic cells could be characterized by earlier cell division, a more alkalic vacuolar pH, and nonfunctional chloroplasts as compared with the elongated, nonembryogenic cells. Buffering of the 10 microM 2,4-D-containing culture medium by 10 mM 2-(N-morpholino)ethanesulfonic acid delayed cell division and resulted in nonembryogenic cell-type formation. The level of endogenous indoleacetic acid (IAA) increased transiently in all protoplast cultures during the first 4 to 5 d, but an earlier peak of IAA accumulation correlated with the earlier activation of the division cycle in embryogenic-type cells. However, this IAA peak could also be delayed by buffering of the medium pH by 2-(N-morpholino)ethanesulfonic acid. Based on the above data, we propose the involvement of stress responses, endogenous auxin synthesis, and the establishment of cellular pH gradients in the formation of the embryogenic cell type.
Collapse
Affiliation(s)
- Taras P Pasternak
- Laboratory of Cell Division and Differentiation, Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Menges M, Murray JAH. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:203-12. [PMID: 12000456 DOI: 10.1046/j.1365-313x.2002.01274.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synchronized suspension cultures are powerful tools in plant cell-cycle studies. However, few Arabidopsis cell cultures are available, and synchrony extending over several sequential phases of the cell cycle has not been reported. Here we describe the first useful synchrony in Arabidopsis, achieved by selecting the rapidly dividing Arabidopsis cell suspensions MM1 and MM2d. Synchrony may be achieved either by removing and re-supplying sucrose to the growth media or by applying an aphidicolin block/release. Synchronization with aphidicolin produced up to 80% S-phase cells and up to 92% G2 cells, together with clear separation of different cell-cycle phases. These synchronization procedures can be used for analysis of gene expression and protein activity. We show that representatives of three CDK gene classes of Arabidopsis (CDKA, CDKB1 and CDKB2) show differential expression timing, and that three CDK inhibitor genes show strikingly different expression patterns during cell-cycle re-entry. We propose that ICK2 (KRP2) may have a specific role in this process.
Collapse
Affiliation(s)
- Margit Menges
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | | |
Collapse
|
32
|
Hirsch AM, Lum MR, Downie JA. What makes the rhizobia-legume symbiosis so special? PLANT PHYSIOLOGY 2001. [PMID: 11743092 DOI: 10.1104/pp.010866] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- A M Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
33
|
Potuschak T, Doerner P. Cell cycle controls: genome-wide analysis in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:501-506. [PMID: 11641065 DOI: 10.1016/s1369-5266(00)00207-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The first decade of molecular analysis of plant cell cycle control genes revealed how well the important regulators are conserved among eukaryotes. The recent completion of the Arabidopsis genome sequence, and the use of increasingly sophisticated biochemical assays and genetic approaches, heralds a period of more detailed functional analysis of cell cycle regulators aimed at resolving their role in plant growth and development.
Collapse
Affiliation(s)
- T Potuschak
- Institute for Cell and Molecular Biology, University of Edinburgh, EH9 3JR, Edinburgh, UK.
| | | |
Collapse
|
34
|
Criqui MC, Weingartner M, Capron A, Parmentier Y, Shen WH, Heberle-Bors E, Bögre L, Genschik P. Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:569-81. [PMID: 11849596 DOI: 10.1046/j.1365-313x.2001.01180.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have previously shown that the tobacco cyclin B1;1 protein accumulates during the G2 phase of the cell cycle and is subsequently destroyed during mitosis. Here, we investigated the sub-cellular localisation of two different B1-types and one A3-type cyclin during the cell cycle by using confocal imaging and differential interference contrast (DIC) microscopy. The cyclins were visualised as GFP-tagged fusion proteins in living tobacco cells. Both B1-type cyclins were found in the cytoplasm and in the nucleus during G2 but when cells entered into prophase, both cyclins became associated with condensing chromatin and remained on chromosomes until metaphase. As cells exited metaphase, the B1-type cyclins became degraded, as shown by time-lapse images. A stable variant of cyclin B1;1-GFP fusion protein, in which the destruction box had been mutated, maintained its association with the nuclear material at later phases of mitosis such as anaphase and telophase. Furthermore, we demonstrated that cyclin B1;1 protein is stabilised in metaphase-arrested cells after microtubule destabilising drug treatments. In contrast to the B1-type cyclins, the cyclin A3;1 was found exclusively in the nucleus in interphase cells and disappeared earlier than the cyclin B1 proteins during mitosis.
Collapse
Affiliation(s)
- M C Criqui
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hemsley R, McCutcheon S, Doonan J, Lloyd C. P34(cdc2) kinase is associated with cortical microtubules from higher plant protoplasts. FEBS Lett 2001; 508:157-61. [PMID: 11707288 DOI: 10.1016/s0014-5793(01)03046-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cell cycle regulatory enzyme p34(cdc2) kinase is known to be localized to the preprophase band, the spindle and the phragmoplast, but not to interphase cortical microtubules. This was investigated further by mechanically cleaving substrate-attached protoplasts to leave plasma membrane disks bearing microtubules freed of nuclear and cytosolic signal. Antibodies to PSTAIRE and to specific C-terminal peptides of cdc2a, were used in immunofluorescence, protein blotting and immunogold electron microscopy to demonstrate that antigen is located on the cortical microtubules of carrot, tobacco BY-2 and Arabidopsis cells.
Collapse
Affiliation(s)
- R Hemsley
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
36
|
Boniotti MB, Gutierrez C. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:341-50. [PMID: 11722776 DOI: 10.1046/j.1365-313x.2001.01160.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The activity of cyclin-dependent kinases (CDK) is crucial for cell-cycle transitions. Here, we report the identification of a CDK activity that phosphorylates the retinoblastoma-related (RBR) protein. A CDK/cyclin complex that binds to and phosphorylates RBR may be isolated from various plant sources, e.g. wheat, maize, Arabidopsis thaliana and tobacco, and from cells growing under various conditions. The presence of an RBR-associated CDK activity correlates with the proliferative activity, suggesting that phosphorylation of RBR is a major event in actively proliferating tissues. In A. thaliana, this activity comprises a PSTAIRE CDKA and at least cyclin D2. Furthermore, this CDK activity is cell-cycle-regulated, as revealed by studies with highly synchronized tobacco BY-2 cells where it is maximal in late G1 and early S phase cells and progressively decreases until G2 phase. Aphidicolin-arrested but not roscovitine-arrested cells contain a PSTAIRE-type CDK that binds to and phosphorylates RBR. Thus, association with a D-type cyclin is a likely mechanism leading to CDK activation late in G1. Our studies constitute the first report measuring the activity of CDK/cyclin complexes formed in vivo on RBR, an activity that fluctuates in a cell-cycle-dependent manner. This work provides the basis for further studies on the impact of phosphorylation of RBR on its function during the cell cycle and development.
Collapse
Affiliation(s)
- M B Boniotti
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
37
|
Joubès J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C. A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. PLANT PHYSIOLOGY 2001; 126:1403-15. [PMID: 11500540 PMCID: PMC117141 DOI: 10.1104/pp.126.4.1403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Revised: 04/04/2001] [Accepted: 05/01/2001] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases (CDKs) form a conserved superfamily of eukaryotic serine-threonine protein kinases whose activity requires the binding of a cyclin protein. CDKs are involved in many aspects of cell biology and notably in the regulation of the cell cycle. Three cDNAs encoding a C-type CDK, and a member of each B-type CDK subfamily, were isolated from tomato (Lycopsersicon esculentum Mill.) and designated Lyces;CDKC;1 (accession no. AJ294903), Lyces; CDKB1;1 (accession no. AJ297916), and Lyces;CDKB2;1 (accession no. AJ297917). The predicted amino acid sequences displayed the characteristic PITAIRE (CDKC), PPTALRE (CDKB1), and PPTTLRE (CDKB2) motives in the cyclin-binding domain, clearly identifying the type of CDK. The accumulation of all transcripts was associated preferentially with dividing tissues in developing tomato fruit and vegetative organs. In contrast to that of CDKA and CDKBs, the transcription pattern of Lyces;CDKC;1 was shown to be independent of hormone and sugar supply in tomato cell suspension cultures and excised roots. This observation, together with the absence of a patchy expression profile in in situ hybridization experiments, suggests a non-cell cycle regulation of Lyces;CDKC;1. Using a two-hybrid assay, we showed that Lyces;CDKC;1 did not interact with mitotic and G1 cyclins. The role of plant CDKCs in the regulation of cell division and differentiation is discussed with regard to the known function of their animal counterparts.
Collapse
Affiliation(s)
- J Joubès
- Unité Mixte de Recherche en Physiologie et Biotechnologie Végétales, Institut de Biologie Végétale Moléculaire et Institut National de la Recherche Agronomique, Centre de Recherche de Bordeaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Progression through the cell cycle is central to cell proliferation and fundamental to the growth and development of all multicellular organisms, including higher plants. The periodic activation of complexes containing cyclins and cyclin-dependent kinases mediates the temporal regulation of the cell-cycle transitions. Here, we highlight recent advances in the molecular controls of the cell cycle in plant cells, with special emphasis on how hormonal signals can modulate the regulation of cyclin-dependent kinases.
Collapse
Affiliation(s)
- H Stals
- Vakgroep Moleculaire Genetica, Dept Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, B-9000, Gent, Belgium
| | | |
Collapse
|
39
|
Healy JM, Menges M, Doonan JH, Murray JA. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J Biol Chem 2001; 276:7041-7. [PMID: 11096103 DOI: 10.1074/jbc.m009074200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-type cyclins (CycD) play key roles in linking the Arabidopsis cell cycle to extracellular and developmental signals, but little is known of their regulation at the post-transcriptional level or of their cyclin-dependent kinase (CDK) partners. Using new antisera to CycD2 and CycD3, we demonstrate that the CDK partner of these Arabidopsis cyclins is the PSTAIRE-containing CDK Cdc2a. Previous analysis has shown that transcript levels of CycD2 and CycD3 are regulated in response to sucrose levels and that both their mRNA levels and kinase activity are induced with different kinetics during the G(1) phase of cells reentering the division cycle from quiescence. Here we analyze the protein levels and kinase activity of CycD2 and CycD3. We show that CycD3 protein and kinase activity parallel the abundance of its mRNA and that CycD3 protein is rapidly lost from cells in stationary phase or following sucrose removal. In contrast to both CycD3 and the regulation of its own mRNA levels, CycD2 protein is present at constant levels. CycD2 kinase activity is regulated by sequestration of CycD2 protein in a form inaccessible to immunoprecipitation and probably not complexed to Cdc2a.
Collapse
Affiliation(s)
- J M Healy
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
40
|
Meijer M, Murray JA. Cell cycle controls and the development of plant form. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:44-49. [PMID: 11163167 DOI: 10.1016/s1369-5266(00)00134-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The relationship between cell division and plant form has long been a battleground for the debate between those proclaiming and disclaiming an important role for cell division in morphogenetic and developmental processes. Recent evidence suggests that cell division and morphogenesis are intimately interconnected, and whereas overall architecture is determined by patterning genes, the elaboration and execution of developmental programmes require proper control of the cell-division cycle.
Collapse
Affiliation(s)
- M Meijer
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT, Cambridge, UK.
| | | |
Collapse
|
41
|
Magyar Z, Atanassova A, De Veylder L, Rombauts S, Inzé D. Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Lett 2000; 486:79-87. [PMID: 11108847 DOI: 10.1016/s0014-5793(00)02238-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E2F/DP complexes play a pivotal role in the regulation of the G1/S transition in animals. Recently, plant E2F homologs have been cloned, but DP-related sequences have not been identified so far. Here we report that Arabidopsis thaliana contains at least two different DP-related genes, AtDPa and AtDPb. They exhibit an overall domain organization similar to that of their animal counterparts, although phylogenetic analysis demonstrated that they form a separate subgroup. AtDPs efficiently heterodimerize in vitro with the Arabidopsis E2F-related proteins, AtE2Fa and AtE2Fb through their dimerization domains. AtDPa and AtE2Fa are predominantly produced in actively dividing cells with highest transcript levels in early S phase cells.
Collapse
Affiliation(s)
- Z Magyar
- Vakgroep Moleculaire Genetica, Departement Plantgenetica, Vlaams Interuniversitair voor Biotechnologie (VIB), Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|