1
|
Velásquez-Zapata V, Smith S, Surana P, Chapman AV, Jaiswal N, Helm M, Wise RP. Diverse epistatic effects in barley-powdery mildew interactions localize to host chromosome hotspots. iScience 2024; 27:111013. [PMID: 39445108 PMCID: PMC11497433 DOI: 10.1016/j.isci.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR) receptors that specify recognition to diverse cereal diseases. We exploited time-course transcriptome dynamics of barley and derived immune mutants infected with the powdery mildew fungus, Blumeria hordei (Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blufensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1 ΔKL308-309 ). Interactions of Mla6 and Bln1 resulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseudomonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468 barley NLRs, 115 were grouped under different gene effect models; genes classified under these models localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into nine co-expressed modules, linking differential expression with pathogen structures, signifying that disease is regulated by an inter-organismal network that diversifies the response.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Schuyler Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Informatics Infrastructure Team, Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Antony V.E. Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- Phytoform Labs, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Namrata Jaiswal
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Matthew Helm
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
2
|
Guo H, Wang J, Yao D, Yu L, Jiang W, Xie L, Lv S, Zhang X, Wang Y, Wang C, Ji W, Zhang H. Identification of nuclear membrane SUN proteins and components associated with wheat fungal stress responses. STRESS BIOLOGY 2024; 4:29. [PMID: 38861095 PMCID: PMC11166608 DOI: 10.1007/s44154-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 06/12/2024]
Abstract
In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3-3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Di Yao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ligang Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenting Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Lincai Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shikai Lv
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Engineering Research Center of Wheat Breeding, Ministry of Education, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Ijaz U, Zhao C, Shabala S, Zhou M. Molecular Basis of Plant-Pathogen Interactions in the Agricultural Context. BIOLOGY 2024; 13:421. [PMID: 38927301 PMCID: PMC11200688 DOI: 10.3390/biology13060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Biotic stressors pose significant threats to crop yield, jeopardizing food security and resulting in losses of over USD 220 billion per year by the agriculture industry. Plants activate innate defense mechanisms upon pathogen perception and invasion. The plant immune response comprises numerous concerted steps, including the recognition of invading pathogens, signal transduction, and activation of defensive pathways. However, pathogens have evolved various structures to evade plant immunity. Given these facts, genetic improvements to plants are required for sustainable disease management to ensure global food security. Advanced genetic technologies have offered new opportunities to revolutionize and boost plant disease resistance against devastating pathogens. Furthermore, targeting susceptibility (S) genes, such as OsERF922 and BnWRKY70, through CRISPR methodologies offers novel avenues for disrupting the molecular compatibility of pathogens and for introducing durable resistance against them in plants. Here, we provide a critical overview of advances in understanding disease resistance mechanisms. The review also critically examines management strategies under challenging environmental conditions and R-gene-based plant genome-engineering systems intending to enhance plant responses against emerging pathogens. This work underscores the transformative potential of modern genetic engineering practices in revolutionizing plant health and crop disease management while emphasizing the importance of responsible application to ensure sustainable and resilient agricultural systems.
Collapse
Affiliation(s)
- Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| |
Collapse
|
4
|
Guo J, Zhao C, Gupta S, Platz G, Snyman L, Zhou M. Genome-wide association mapping for seedling and adult resistance to powdery mildew in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:50. [PMID: 38363421 PMCID: PMC10873221 DOI: 10.1007/s00122-024-04550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
KEY MESSAGE Two new major QTL were identified for powdery mildew resistance. We confirmed that the QTL on 7HS contributed mainly to the adult-plant resistance, while another one on chromosome arm 1HS made a significant contribution to the seedling resistance. Powdery mildew (PM), caused by Blumeria hordei, can occur at all post emergent stages of barley and constantly threatens crop production. To identify more genes for effective resistance to powdery mildew for use in breeding programs, 696 barley accessions collected from different regions of the world were evaluated for PM resistance at seedling and adult growth stages in three different states of Australia. These barley accessions were genotyped using DArTSeq with over 18,000 markers for a genome-wide association study (GWAS). Using the FarmCPU model, 54 markers showed significant associations with PM resistance scored at the seedling and adult-plant stages in different states of Australia. Another 40 markers showed tentative associations (LOD > 4.0) with resistance. These markers are distributed across all seven barley chromosomes. Most of them were grouped into eleven QTL regions, coinciding with the locations of most of the reported resistance genes. Two major MTAs were identified on chromosome arms 3HS and 5HL, with one on 3HS contributing to adult plant resistance and the one on 5HL to both seedling and adult plant resistance. An MTA on 7HS contributed mainly to the adult-plant resistance, while another one on chromosome arm 1HS made a significant contribution to the seedling resistance.
Collapse
Affiliation(s)
- Jie Guo
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia
| | - Sanjiv Gupta
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Lisle Snyman
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Meixue Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China.
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia.
| |
Collapse
|
5
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Tamborski J, Seong K, Liu F, Staskawicz BJ, Krasileva KV. Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:434-446. [PMID: 36867580 PMCID: PMC10561695 DOI: 10.1094/mpmi-07-22-0154-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many resistance genes deployed against pathogens in crops are intracellular nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs). The ability to rationally engineer the specificity of NLRs will be crucial in the response to newly emerging crop diseases. Successful attempts to modify NLR recognition have been limited to untargeted approaches or depended on previously available structural information or knowledge of pathogen-effector targets. However, this information is not available for most NLR-effector pairs. Here, we demonstrate the precise prediction and subsequent transfer of residues involved in effector recognition between two closely related NLRs without their experimentally determined structure or detailed knowledge about their pathogen effector targets. By combining phylogenetics, allele diversity analysis, and structural modeling, we successfully predicted residues mediating interaction of Sr50 with its cognate effector AvrSr50 and transferred recognition specificity of Sr50 to the closely related NLR Sr33. We created synthetic versions of Sr33 that contain amino acids from Sr50, including Sr33syn, which gained the ability to recognize AvrSr50 with 12 amino-acid substitutions. Furthermore, we discovered that sites in the LRR domain needed to transfer recognition specificity to Sr33 also influence autoactivity in Sr50. Structural modeling suggests these residues interact with a part of the NB-ARC domain, which we named the NB-ARC latch, to possibly maintain the inactive state of the receptor. Our approach demonstrates rational modifications of NLRs, which could be useful to enhance existing elite crop germplasm. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janina Tamborski
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Furong Liu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| |
Collapse
|
7
|
Sun X, Xie F, Chen Y, Guo Z, Dong L, Qin L, Shi Z, Xiong L, Yuan R, Deng W, Jiang Y. Glutamine synthetase gene PpGS1.1 negatively regulates the powdery mildew resistance in Kentucky bluegrass. HORTICULTURE RESEARCH 2022; 9:uhac196. [PMID: 36415534 PMCID: PMC9677456 DOI: 10.1093/hr/uhac196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
Excessive nitrogen (N) application may induce powdery mildew (PM) in perennial grasses, but the resistance mechanisms to PM remain unclear. This study evaluated the physiological and molecular mechanisms of PM resistance affected by N supplies in Kentucky bluegrass (Poa pratensis L.). Cultivar 'Bluemoon' (N tolerant) and 'Balin' (N sensitive) were treated with low N (0.5 mM), normal N (15 mM), and high N (30 mM) for 21 d in a greenhouse. With increasing N levels, the disease growth was more severe in 'Balin' than in 'Bluemoon'. RNA-seq and weighted gene coexpression network analysis revealed that the PpGS1.1 gene encoding glutamine synthetase was a potential hub gene for PM resistance after comparisons across cultivars and N treatments. The N metabolism pathway was connected with the plant-pathogen interaction pathway via PpGS1.1. The expression of PpGS1.1 in rice protoplasts indicated that the protein was located in the nucleus and cytoplasm. Overexpression of PpGS1.1 in wild-type Kentucky bluegrass increased carbon and N contents, and the transgenic plants became more susceptible to PM with a lower wax density. The most differentially expressed genes (DEGs) for N metabolism were upregulated and DEGs for fatty acid metabolism pathway were downregulated in the overexpression lines. The results elucidated mechanisms of PM resistance in relation to N metabolism in Kentucky bluegrass.
Collapse
Affiliation(s)
- Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | | | - Zhixin Guo
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Lili Dong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Ligang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangbing Xiong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Velásquez-Zapata V, Elmore JM, Fuerst G, Wise RP. An interolog-based barley interactome as an integration framework for immune signaling. Genetics 2022; 221:iyac056. [PMID: 35435213 PMCID: PMC9157089 DOI: 10.1093/genetics/iyac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The barley MLA nucleotide-binding leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many fungal diseases, including powdery mildew, stem-, and stripe rust. We used interolog inference to construct a barley protein interactome (Hordeum vulgare predicted interactome, HvInt) comprising 66,133 edges and 7,181 nodes, as a foundation to explore signaling networks associated with MLA. HvInt was compared with the experimentally validated Arabidopsis interactome of 11,253 proteins and 73,960 interactions, verifying that the 2 networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layering of defense-specific "omics" datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration and haustorial development. Next, using HvInt and infection-time-course RNA sequencing of immune signaling mutants, we assembled resistant and susceptible subnetworks. The resulting differentially coexpressed (resistant - susceptible) interactome is essential to barley immunity, facilitates the flow of signaling pathways and is linked to mildew resistance locus a (Mla) through trans eQTL associations. Lastly, we anchored HvInt with new and previously identified interactors of the MLA coiled coli + nucleotide-binding domains and extended these to additional MLA alleles, orthologs, and NLR outgroups to predict receptor localization and conservation of signaling response. These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - James Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Gregory Fuerst
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Roger P Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| |
Collapse
|
9
|
Sulima AS, Zhukov VA. War and Peas: Molecular Bases of Resistance to Powdery Mildew in Pea ( Pisum sativum L.) and Other Legumes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030339. [PMID: 35161319 PMCID: PMC8838241 DOI: 10.3390/plants11030339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Grain legumes, or pulses, have many beneficial properties that make them potentially attractive to agriculture. However, the large-scale cultivation of legumes faces a number of difficulties, in particular the vulnerability of the currently available cultivars to various diseases that significantly impair yields and seed quality. One of the most dangerous legume pathogens is powdery mildew (a common name for parasitic fungi of the order Erisyphales). This review examines the methods of controlling powdery mildew that are used in modern practice, including fungicides and biological agents. Special attention is paid to the plant genetic mechanisms of resistance, which are the most durable, universal and environmentally friendly. The most studied legume plant in this regard is the garden pea (Pisum sativum L.), which possesses naturally occurring resistance conferred by mutations in the gene MLO1 (Er1), for which we list here all the known resistant alleles, including er1-12 discovered by the authors of this review. Recent achievements in the genetics of resistance to powdery mildew in other legumes and prospects for the introduction of this resistance into other agriculturally important legume species are also discussed.
Collapse
|
10
|
Bettgenhaeuser J, Hernández-Pinzón I, Dawson AM, Gardiner M, Green P, Taylor J, Smoker M, Ferguson JN, Emmrich P, Hubbard A, Bayles R, Waugh R, Steffenson BJ, Wulff BBH, Dreiseitl A, Ward ER, Moscou MJ. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat Commun 2021; 12:6915. [PMID: 34824299 PMCID: PMC8617247 DOI: 10.1038/s41467-021-27288-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Crop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.
Collapse
Affiliation(s)
- Jan Bettgenhaeuser
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
- KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany
| | | | - Andrew M Dawson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
| | - Matthew Gardiner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
| | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
| | - John N Ferguson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Peter Emmrich
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amelia Hubbard
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, England, UK
| | - Rosemary Bayles
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, England, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brande B H Wulff
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd, Havlíčkova 2787, CZ-767 01, Kroměříž, Czech Republic
| | - Eric R Ward
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK
- AgBiome, Research Triangle Park, NC, 27709, USA
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, England, UK.
| |
Collapse
|
11
|
Chapman AVE, Hunt M, Surana P, Velásquez-Zapata V, Xu W, Fuerst G, Wise RP. Disruption of barley immunity to powdery mildew by an in-frame Lys-Leu deletion in the essential protein SGT1. Genetics 2021; 217:6043926. [PMID: 33724411 DOI: 10.1093/genetics/iyaa026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308-309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Matthew Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Weihui Xu
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Greg Fuerst
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| |
Collapse
|
12
|
Li Q, Jiang XM, Shao ZQ. Genome-Wide Analysis of NLR Disease Resistance Genes in an Updated Reference Genome of Barley. Front Genet 2021; 12:694682. [PMID: 34108996 PMCID: PMC8181414 DOI: 10.3389/fgene.2021.694682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Barley is one of the top 10 crop plants in the world. During its whole lifespan, barley is frequently infected by various pathogens. In this study, we performed genome-wide analysis of the largest group of plant disease resistance (R) genes, the nucleotide binding site-leucine-rich repeat receptor (NLR) gene, in an updated barley genome. A total of 468 NLR genes were identified from the improved barley genome, including one RNL subclass and 467 CNL subclass genes. Proteins of 43 barley CNL genes were shown to contain 25 different integrated domains, including WRKY and BED. The NLR gene number identified in this study is much larger than previously reported results in earlier versions of barley genomes, and only slightly fewer than that in the diploid wheat Triticum urartu. Barley Chromosome 7 contains the largest number of 112 NLR genes, which equals to seven times of the number of NLR genes on Chromosome 4. The majority of NLR genes (68%) are located in multigene clusters. Phylogenetic analysis revealed that at least 18 ancestral CNL lineages were presented in the common ancestor of barley, T. urartu and Arabidopsis thaliana. Among them fifteen lineages expanded to 533 sub-lineages prior to the divergence of barley and T. urartu. The barley genome inherited 356 of these sub-lineages and duplicated to the 467 CNL genes detected in this study. Overall, our study provides an updated profile of barley NLR genes, which should serve as a fundamental resource for functional gene mining and molecular breeding of barley.
Collapse
Affiliation(s)
| | | | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Velásquez-Zapata V, Elmore JM, Banerjee S, Dorman KS, Wise RP. Next-generation yeast-two-hybrid analysis with Y2H-SCORES identifies novel interactors of the MLA immune receptor. PLoS Comput Biol 2021; 17:e1008890. [PMID: 33798202 PMCID: PMC8046355 DOI: 10.1371/journal.pcbi.1008890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/14/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Protein-protein interaction networks are one of the most effective representations of cellular behavior. In order to build these models, high-throughput techniques are required. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate interactome networks in any organism. However, challenges remain to mining reliable information from these screens and thus, limit its broader implementation. Here, we present a computational framework, designated Y2H-SCORES, for analyzing high-throughput Y2H screens. Y2H-SCORES considers key aspects of NGIS experimental design and important characteristics of the resulting data that distinguish it from RNA-seq expression datasets. Three quantitative ranking scores were implemented to identify interacting partners, comprising: 1) significant enrichment under selection for positive interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative assessment to predict interacting partners under a wide range of experimental scenarios, facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS enabled us to identify conditions that maximize detection of true interactors, which can be achieved with protocols such as prey library normalization, maintenance of larger culture volumes and replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-based interaction screenings, with an equivalent or superior performance than existing methods. Proof-of-concept was demonstrated by discovery and validation of novel interactions between the barley nucleotide-binding leucine-rich repeat (NLR) immune receptor MLA6, and fourteen proteins, including those that function in signaling, transcriptional regulation, and intracellular trafficking.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - J. Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Sagnik Banerjee
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Karin S. Dorman
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
14
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
15
|
Bauer S, Yu D, Lawson AW, Saur IML, Frantzeskakis L, Kracher B, Logemann E, Chai J, Maekawa T, Schulze-Lefert P. The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. PLoS Pathog 2021; 17:e1009223. [PMID: 33534797 PMCID: PMC7857584 DOI: 10.1371/journal.ppat.1009223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) in plants can detect avirulence (AVR) effectors of pathogenic microbes. The Mildew locus a (Mla) NLR gene has been shown to confer resistance against diverse fungal pathogens in cereal crops. In barley, Mla has undergone allelic diversification in the host population and confers isolate-specific immunity against the powdery mildew-causing fungal pathogen Blumeria graminis forma specialis hordei (Bgh). We previously isolated the Bgh effectors AVRA1, AVRA7, AVRA9, AVRA13, and allelic AVRA10/AVRA22, which are recognized by matching MLA1, MLA7, MLA9, MLA13, MLA10 and MLA22, respectively. Here, we extend our knowledge of the Bgh effector repertoire by isolating the AVRA6 effector, which belongs to the family of catalytically inactive RNase-Like Proteins expressed in Haustoria (RALPHs). Using structural prediction, we also identified RNase-like folds in AVRA1, AVRA7, AVRA10/AVRA22, and AVRA13, suggesting that allelic MLA recognition specificities could detect structurally related avirulence effectors. To better understand the mechanism underlying the recognition of effectors by MLAs, we deployed chimeric MLA1 and MLA6, as well as chimeric MLA10 and MLA22 receptors in plant co-expression assays, which showed that the recognition specificity for AVRA1 and AVRA6 as well as allelic AVRA10 and AVRA22 is largely determined by the receptors' C-terminal leucine-rich repeats (LRRs). The design of avirulence effector hybrids allowed us to identify four specific AVRA10 and five specific AVRA22 aa residues that are necessary to confer MLA10- and MLA22-specific recognition, respectively. This suggests that the MLA LRR mediates isolate-specific recognition of structurally related AVRA effectors. Thus, functional diversification of multi-allelic MLA receptors may be driven by a common structural effector scaffold, which could be facilitated by proliferation of the RALPH effector family in the pathogen genome.
Collapse
Affiliation(s)
- Saskia Bauer
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dongli Yu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biochemistry, University of Cologne at Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W. Lawson
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Isabel M. L. Saur
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Elke Logemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne at Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|
16
|
Saur IML, Hückelhoven R. Recognition and defence of plant-infecting fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153324. [PMID: 33249386 DOI: 10.1016/j.jplph.2020.153324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Attempted infections of plants with fungi result in diverse outcomes ranging from symptom-less resistance to severe disease and even death of infected plants. The deleterious effect on crop yield have led to intense focus on the cellular and molecular mechanisms that explain the difference between resistance and susceptibility. This research has uncovered plant resistance or susceptibility genes that explain either dominant or recessive inheritance of plant resistance with many of them coding for receptors that recognize pathogen invasion. Approaches based on cell biology and phytochemistry have contributed to identifying factors that halt an invading fungal pathogen from further invasion into or between plant cells. Plant chemical defence compounds, antifungal proteins and structural reinforcement of cell walls appear to slow down fungal growth or even prevent fungal penetration in resistant plants. Additionally, the hypersensitive response, in which a few cells undergo a strong local immune reaction, including programmed cell death at the site of infection, stops in particular biotrophic fungi from spreading into surrounding tissue. In this review, we give a general overview of plant recognition and defence of fungal parasites tracing back to the early 20th century with a special focus on Triticeae and on the progress that was made in the last 30 years.
Collapse
Affiliation(s)
- Isabel M L Saur
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
17
|
Novakazi F, Krusell L, Jensen JD, Orabi J, Jahoor A, Bengtsson T. You Had Me at "MAGIC"!: Four Barley MAGIC Populations Reveal Novel Resistance QTL for Powdery Mildew. Genes (Basel) 2020; 11:genes11121512. [PMID: 33352820 PMCID: PMC7766815 DOI: 10.3390/genes11121512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Blumeria graminis f. sp. hordei (Bgh), the causal agent of barley powdery mildew (PM), is one of the most important barley leaf diseases and is prevalent in most barley growing regions. Infection decreases grain quality and yields on average by 30%. Multi-parent advanced generation inter-cross (MAGIC) populations combine the advantages of bi-parental and association panels and offer the opportunity to incorporate exotic alleles into adapted material. Here, four barley MAGIC populations consisting of six to eight founders were tested for PM resistance in field trials in Denmark. Principle component and STRUCTURE analysis showed the populations were unstructured and genome-wide linkage disequilibrium (LD) decay varied between 14 and 38 Mbp. Genome-wide association studies (GWAS) identified 11 regions associated with PM resistance located on chromosomes 1H, 2H, 3H, 4H, 5H and 7H, of which three regions are putatively novel resistance quantitative trait locus/loci (QTL). For all regions high-confidence candidate genes were identified that are predicted to be involved in pathogen defense. Haplotype analysis of the significant SNPs revealed new allele combinations not present in the founders and associated with high resistance levels.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
| | - Lene Krusell
- Sejet Plant Breeding, Nørremarksvej 67, 8700 Horsens, Denmark;
| | - Jens Due Jensen
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Jihad Orabi
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Ahmed Jahoor
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
- Correspondence:
| |
Collapse
|
18
|
Bhattarai K, Conesa A, Xiao S, Peres NA, Clark DG, Parajuli S, Deng Z. Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:539. [PMID: 33256589 PMCID: PMC7706040 DOI: 10.1186/s12870-020-02742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND RNA sequencing has been widely used to profile genome-wide gene expression and identify candidate genes controlling disease resistance and other important traits in plants. Gerbera daisy is one of the most important flowers in the global floricultural trade, and powdery mildew (PM) is the most important disease of gerbera. Genetic improvement of gerbera PM resistance has become a crucial goal in gerbera breeding. A better understanding of the genetic control of gerbera resistance to PM can expedite the development of PM-resistant cultivars. RESULTS The objectives of this study were to identify gerbera genotypes with contrasting phenotypes in PM resistance and sequence and analyze their leaf transcriptomes to identify disease resistance and susceptibility genes differentially expressed and associated with PM resistance. An additional objective was to identify SNPs and SSRs for use in future genetic studies. We identified two gerbera genotypes, UFGE 4033 and 06-245-03, that were resistant and susceptible to PM, respectively. De novo assembly of their leaf transcriptomes using four complementary pipelines resulted in 145,348 transcripts with a N50 of 1124 bp, of which 67,312 transcripts contained open reading frames and 48,268 were expressed in both genotypes. A total of 494 transcripts were likely involved in disease resistance, and 17 and 24 transcripts were up- and down-regulated, respectively, in UFGE 4033 compared to 06-245-03. These gerbera disease resistance transcripts were most similar to the NBS-LRR class of plant resistance genes conferring resistance to various pathogens in plants. Four disease susceptibility transcripts (MLO-like) were expressed only or highly expressed in 06-245-03, offering excellent candidate targets for gene editing for PM resistance in gerbera. A total of 449,897 SNPs and 19,393 SSRs were revealed in the gerbera transcriptomes, which can be a valuable resource for developing new molecular markers. CONCLUSION This study represents the first transcriptomic analysis of gerbera PM resistance, a highly important yet complex trait in a globally important floral crop. The differentially expressed disease resistance and susceptibility transcripts identified provide excellent targets for development of molecular markers and genetic maps, cloning of disease resistance genes, or targeted mutagenesis of disease susceptibility genes for PM resistance in gerbera.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL, 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL, 32611, USA
| | - Shunyuan Xiao
- University of Maryland, College of Agriculture and Natural Resources, 4291 Fieldhouse Drive, Rockville, MD, 20850, USA
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, IFAS, Gainesville, FL, 32611, USA
| | - Saroj Parajuli
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA.
| |
Collapse
|
19
|
Fazlikhani L, Keilwagen J, Kopahnke D, Deising H, Ordon F, Perovic D. High Resolution Mapping of Rph MBR1012 Conferring Resistance to Puccinia hordei in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2019; 10:640. [PMID: 31191570 PMCID: PMC6541035 DOI: 10.3389/fpls.2019.00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 06/01/2023]
Abstract
Isolation of disease resistance genes in barley was hampered by the large genome size, but has become easy due to the availability of the reference genome sequence. During the last years, many genomic resources, e.g., the Illumina 9K iSelect, the 50K Infinium arrays, the Barley Genome Zipper, POPSEQ, and genotyping by sequencing (GBS), were developed that enable enhanced gene isolation in combination with the barley genome sequence. In the present study, we developed a fine map of the barley leaf rust resistance gene Rph MBR1012. 537 segmental homozygous recombinant inbred lines (RILs) derived from 4775 F2-plants were used to construct a high-resolution mapping population (HRMP). The Barley Genome Zipper, the 9K iSelect chip, the 50K Infinium chip and GBS were used to develop 56 molecular markers located in the target interval of 8 cM. This interval was narrowed down to about 0.07 cM corresponding to 0.44 Mb of the barley reference genome. Eleven low-confidence and 18 high-confidence genes were identified in this interval. Five of these are putative disease resistance genes and were subjected to allele-specific sequencing. In addition, comparison of the genetic map and the reference genome revealed an inversion of 1.34 Mb located distally to the resistance locus. In conclusion, the barley reference sequence and the respective gene annotation delivered detailed information about the physical size of the target interval, the genes located in the target interval and facilitated the efficient development of molecular markers for marker-assisted selection for RphMBR1012.
Collapse
Affiliation(s)
- Leila Fazlikhani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Holger Deising
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
20
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
21
|
Kim N, Kang WH, Lee J, Yeom SI. Development of Clustered Resistance Gene Analogs-Based Markers of Resistance to Phytophthora capsici in Chili Pepper. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1093186. [PMID: 30719438 PMCID: PMC6335758 DOI: 10.1155/2019/1093186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome 5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including 14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11 novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
23
|
Wu Y, Ma X, Pan Z, Kale SD, Song Y, King H, Zhang Q, Presley C, Deng X, Wei CI, Xiao S. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 2018; 19:705. [PMID: 30253736 PMCID: PMC6156980 DOI: 10.1186/s12864-018-5069-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128 China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiv D. Kale
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yi Song
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Harlan King
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Christian Presley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cheng-I Wei
- College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742 USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
24
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
25
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
26
|
Lai Y, Eulgem T. Transcript-level expression control of plant NLR genes. MOLECULAR PLANT PATHOLOGY 2018; 19:1267-1281. [PMID: 28834153 PMCID: PMC6638128 DOI: 10.1111/mpp.12607] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector-triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript-level expression control. Multiple mechanistic steps, including transcription as well as co-/post-transcriptional processing and transcript turn-over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
- College of Life SciencesFujian Agricultural and Forestry UniversityFuzhouFujian 350002China
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
| |
Collapse
|
27
|
Chakraborty J, Jain A, Mukherjee D, Ghosh S, Das S. Functional diversification of structurally alike NLR proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:85-93. [PMID: 29606220 DOI: 10.1016/j.plantsci.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Akansha Jain
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Dibya Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Suchismita Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| |
Collapse
|
28
|
Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Al-Abdallat AM, Kehel Z, Verma RPS. Genome Wide Association Mapping of Seedling and Adult Plant Resistance to Barley Stripe Rust ( Puccinia striiformis f. sp. hordei) in India. FRONTIERS IN PLANT SCIENCE 2018; 9:520. [PMID: 29740461 PMCID: PMC5928535 DOI: 10.3389/fpls.2018.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 05/08/2023]
Abstract
Barley stripe rust is caused by Puccinia striiformis f.sp. hordei, (Psh), occurs worldwide, and is a major disease in South Asia. The aim of this work was to identify and estimate effects of loci underlying quantitative resistance to rust at seedling and adult plant stages. HI-AM panel of 261 barley genotypes consisting of released cultivars from North and South America, Europe, Australia, advanced breeding lines, and local landraces from ICARDA barley program were screened at seedling and adult plant stages for resistance to Psh. Seedling resistance was evaluated with the five prevalent Psh races in India. Screening for the adult plant stage resistance was also performed in two different locations by inoculating with a mixture of the five races used for seedling screeing. The panel was genotyped using DaRT-Seq high-throughput genotyping platform. The genome-wide association mapping (GWAM) showed a total of 45 QTL located across the seven barley chromosomes for seedling resistance to the five races and 18 QTL for adult plant stage resistance. Common QTL for different races at seedling stage were found on all chromosomes except on chromosome 1H. Four common QTL associated with seedling and adult plant stage resistance were found on chromosomes 2, 5, and 6H. Moreover, one of the QTL located on the long arm of chromosome 5H showed stable effects across environments for adult plant stage resistance. Several QTL identified in this study were also reported before in bi-parental and association mapping populations studies validating current GWAM. However 15 new QTL were found at adult plant stage on all chromosomes except the 4H, explaining up to 36.79% of the variance. The promising QTL detected at both stages, once validated, can be used for MAS in Psh resistance breeding program globally.
Collapse
Affiliation(s)
- Andrea Visioni
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- *Correspondence: Andrea Visioni
| | - Sanjaya Gyawali
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Rajan Selvakumar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Om P. Gangwar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | | | - Subhash C. Bhardwaj
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Ayed M. Al-Abdallat
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Zakaria Kehel
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ramesh P. S. Verma
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
29
|
Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. THE NEW PHYTOLOGIST 2017; 213:886-899. [PMID: 27612097 DOI: 10.1111/nph.14177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/11/2023]
Abstract
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hoang Ngoc Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jeong-Tak An
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hyun Jung Kim
- Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, 331-709, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
30
|
Jo J, Venkatesh J, Han K, Lee HY, Choi GJ, Lee HJ, Choi D, Kang BC. Molecular Mapping of PMR1, a Novel Locus Conferring Resistance to Powdery Mildew in Pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2017; 8:2090. [PMID: 29276524 PMCID: PMC5727091 DOI: 10.3389/fpls.2017.02090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 05/09/2023]
Abstract
Powdery mildew, caused by Leveillula taurica, is a major fungal disease affecting greenhouse-grown pepper (Capsicum annuum). Powdery mildew resistance has a complex mode of inheritance. In the present study, we investigated a novel powdery mildew resistance locus, PMR1, using two mapping populations: 102 'VK515' F2:3 families (derived from a cross between resistant parental line 'VK515R' and susceptible parental line 'VK515S') and 80 'PM Singang' F2 plants (derived from the F1 'PM Singang' commercial hybrid). Genetic analysis of the F2:3 'VK515' and F2 'PM Singang' populations revealed a single dominant locus for inheritance of the powdery mildew resistance trait. Genetic mapping showed that the PMR1 locus is located on syntenic regions of pepper chromosome 4 in a 4-Mb region between markers CZ2_11628 and HRM4.1.6 in 'VK515R'. Six molecular markers including one SCAR marker and five SNP markers were localized to a region 0 cM from the PMR1 locus. Two putative nucleotide-binding site leucine-rich repeat (NBS-LRR)-type disease resistance genes were identified in this PMR1 region. Genotyping-by-sequencing (GBS) and genetic mapping analysis revealed suppressed recombination in the PMR1 region, perhaps due to alien introgression. In addition, a comparison of species-specific InDel markers as well as GBS-derived SNP markers indicated that C. baccatum represents a possible source of such alien introgression of powdery mildew resistance into 'VK515R'. The molecular markers developed in this study will be especially helpful for marker-assisted selection in pepper breeding programs for powdery mildew resistance.
Collapse
Affiliation(s)
- Jinkwan Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hee Jae Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang
| |
Collapse
|
31
|
Habachi-Houimli Y, Khalfallah Y, Makni H, Makni M, Bouktila D. Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. C R Biol 2016; 339:347-56. [PMID: 27349470 DOI: 10.1016/j.crvi.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
Abstract
In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs.
Collapse
Affiliation(s)
- Yosra Habachi-Houimli
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Yosra Khalfallah
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Hanem Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de l'animation pour la jeunesse et la culture (ISAJC), université de Tunis, 2055 Bir El Bey, Tunisia
| | - Mohamed Makni
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia
| | - Dhia Bouktila
- Unité de recherche UR11ES10, Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), faculté des sciences de Tunis, université de Tunis El Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja (ISBB), université de Jendouba, 9000 Béja, Tunisia.
| |
Collapse
|
32
|
Garner CM, Kim SH, Spears BJ, Gassmann W. Express yourself: Transcriptional regulation of plant innate immunity. Semin Cell Dev Biol 2016; 56:150-162. [PMID: 27174437 DOI: 10.1016/j.semcdb.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The plant immune system is a complex network of components that function together to sense the presence and activity of potential biotic threats, and integrate these signals into an appropriate output, namely the transcription of genes that activate an immune response that is commensurate with the perceived threat. Given the variety of biotic threats a plant must face the immune response must be plastic, but because an immune response is costly to the plant in terms of energy expenditure and development it must also be under tight control. To meet these needs transcriptional control is exercised at multiple levels. In this article we will review some of the latest developments in understanding how the plant immune response is regulated at the level of transcription. New roles are being discovered for the long-studied WRKY and TGA transcription factor families, while additional critical defense functions are being attributed to TCPs and other transcription factors. Dynamically controlling access to DNA through post-translational modification of histones is emerging as an essential component of priming, maintaining, attenuating, and repressing transcription in response to biotic stress. Unsurprisingly, the plant's transcriptional response is targeted by pathogen effectors, and in turn resistance proteins stand guard over and participate in transcriptional regulation. Together, these multiple layers lead to the observed complexity of the plant transcriptional immune response, with different transcription factors or chromatin components playing a prominent role depending on the plant-pathogen interaction being studied.
Collapse
Affiliation(s)
- Christopher M Garner
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sang Hee Kim
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Benjamin J Spears
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease Resistance Gene Analogs (RGAs) in Plants. Int J Mol Sci 2015; 16:19248-90. [PMID: 26287177 PMCID: PMC4581296 DOI: 10.3390/ijms160819248] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.
Collapse
Affiliation(s)
- Manoj Kumar Sekhwal
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Irene Lam
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sylvie Cloutier
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Plant Science Department, University of Manitoba, Winnipeg, MB R3T 2N6, Canada.
| |
Collapse
|
34
|
Zhang Q, Berkey R, Pan Z, Wang W, Zhang Y, Ma X, King H, Xiao S. Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e989766. [PMID: 25830634 PMCID: PMC4623256 DOI: 10.4161/15592324.2014.989766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Powdery mildew fungi form feeding structures called haustoria inside epidermal cells of host plants to extract photosynthates for their epiphytic growth and reproduction. The haustorium is encased by an interfacial membrane termed the extrahaustorial membrane (EHM). The atypical resistance protein RPW8.2 from Arabidopsis is specifically targeted to the EHM where RPW8.2 activates haustorium-targeted (thus broad-spectrum) resistance against powdery mildew fungi. EHM-specific localization of RPW8.2 suggests the existence of an EHM-oriented protein/membrane trafficking pathway during EHM biogenesis. However, the importance of this specific trafficking pathway for host defense has not been evaluated via a genetic approach without affecting other trafficking pathways. Here, we report that expression of EHM-oriented, nonfunctional RPW8.2 chimeric proteins exerts dominant negative effect over functional RPW8.2 and potentially over other EHM-localized defense proteins, thereby compromising both RPW8.2-mediated and basal resistance to powdery mildew. Thus, our results highlight the importance of the EHM-oriented protein/membrane trafficking pathway for host resistance against haustorium-forming pathogens such as powdery mildew fungi.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
| | - Robert Berkey
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
| | - Zhiyong Pan
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
- Key Laboratory of Horticultural Plant Biology; College of Horticulture and Forestry Sciences; Huazhong Agricultural University; Wuhan, China
| | - Wenming Wang
- Rice Research Institute; Sichuan Agricultural University; Chengdu, China
| | - Yi Zhang
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
- Rice Research Institute; Sichuan Agricultural University; Chengdu, China
| | - Harlan King
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research; University of Maryland; Rockville, MD USA
- Department of Plant Sciences and Landscape Architecture; University of Maryland; College Park, MD USA
- Correspondence to: Shunyuan Xiao;
| |
Collapse
|
35
|
Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 2014; 10:e1004755. [PMID: 25502438 PMCID: PMC4263374 DOI: 10.1371/journal.pgen.1004755] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. Plants rely on cell-surface and intracellular immune receptors to sense pathogen invasion and to mediate defense responses. However, uncontrolled activation of immune responses is harmful to plant growth and development. Small RNAs have recently been shown to fine-tune the expression of intracellular immune receptors and contribute to the regulation of defense signaling in dicot plants, while similar processes have not been well documented in monocot grain crops, such as barley and wheat. Here, we show that, in barley, some members of the miR9863 family target a subset of Mla alleles that confer race-specific disease resistance to the powdery mildew fungus. These miRNAs act on Mla transcripts by cleavage and translational repression. Production of a type of trans-acting small RNAs, designated as phasiRNAs, enhances the effects of miRNA regulation on Mla targets. We propose that Mla-mediated immune signaling is fine-tuned by the miRNAs at later stage of MLA activation to avoid overloading of immune responses in barley cells.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiliu Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Da Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihui Xu
- Department of Plant Pathology & Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
| | - Roger Wise
- Department of Plant Pathology & Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, United States of America
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Gu L, Si W, Zhao L, Yang S, Zhang X. Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Mol Genet Genomics 2014. [PMID: 25475390 DOI: 10.1007/s00438‐014‐0948‐8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Extensive studies have focused on the largest class of disease resistance genes (nucleotide binding site-leucine-rich repeat, NBS-LRR) in various plants. However, no research on the dynamic evolution of these genes in domesticated species and their progenitors has been reported. Recently published genome sequences of bread wheat and its two ancestors provide a good opportunity for comparing NBS-encoding genes between ancestors and their progeny. Over 2000 NBS-encoding genes have been identified in bread wheat, which is the largest number having been reported so far. Compared with other grass species, its two progenitors also contained more NBS-encoding genes, indicating that there was an expansion of these genes in their common ancestor. Interestingly, the inherited relationships of NBS-LRR genes among the bread wheat and its two progenitors were ambiguous and only 3 % single-copy orthologues retained gene order in three-way genome comparisons of the three genomes. Lots of NBS-encoding genes present in the either ancestor could not be found in the bread wheat. These results indicated that NBS-LRR genes in bread wheat might have evolved rapidly through a rapid loss of ancestor genes.
Collapse
Affiliation(s)
- Longjiang Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | | | | | | | | |
Collapse
|
37
|
Gu L, Si W, Zhao L, Yang S, Zhang X. Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Mol Genet Genomics 2014; 290:727-38. [PMID: 25475390 DOI: 10.1007/s00438-014-0948-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/30/2014] [Indexed: 12/25/2022]
Abstract
Extensive studies have focused on the largest class of disease resistance genes (nucleotide binding site-leucine-rich repeat, NBS-LRR) in various plants. However, no research on the dynamic evolution of these genes in domesticated species and their progenitors has been reported. Recently published genome sequences of bread wheat and its two ancestors provide a good opportunity for comparing NBS-encoding genes between ancestors and their progeny. Over 2000 NBS-encoding genes have been identified in bread wheat, which is the largest number having been reported so far. Compared with other grass species, its two progenitors also contained more NBS-encoding genes, indicating that there was an expansion of these genes in their common ancestor. Interestingly, the inherited relationships of NBS-LRR genes among the bread wheat and its two progenitors were ambiguous and only 3 % single-copy orthologues retained gene order in three-way genome comparisons of the three genomes. Lots of NBS-encoding genes present in the either ancestor could not be found in the bread wheat. These results indicated that NBS-LRR genes in bread wheat might have evolved rapidly through a rapid loss of ancestor genes.
Collapse
Affiliation(s)
- Longjiang Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | | | | | | | | |
Collapse
|
38
|
Zhang Z, Liu Y, Ding P, Li Y, Kong Q, Zhang Y. Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity. MOLECULAR PLANT 2014; 7:1766-75. [PMID: 25267732 PMCID: PMC4261838 DOI: 10.1093/mp/ssu103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recognition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D contains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of SNC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3000hrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1.
Collapse
Affiliation(s)
- Zhibin Zhang
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Yanan Liu
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Pingtao Ding
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Yan Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, People's Republic of China, 102206
| | - Qing Kong
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
39
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
40
|
Xu W, Meng Y, Wise RP. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. THE NEW PHYTOLOGIST 2014; 201:1396-1412. [PMID: 24246006 DOI: 10.1111/nph.12598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 05/07/2023]
Abstract
• Barley (Hordeum vulgare L.) Mildew resistance locus a (Mla) confers allele-specific interactions with natural variants of the ascomycete fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew disease. Significant reprogramming of Mla-mediated gene expression occurs upon infection by this obligate biotrophic pathogen. • We utilized a proteomics-based approach, combined with barley mla, required for Mla12 resistance1 (rar1), and restoration of Mla resistance1 (rom1) mutants, to identify components of Mla-directed signaling. • Loss-of-function mutations in Mla and Rar1 both resulted in the reduced accumulation of chloroplast copper/zinc superoxide dismutase 1 (HvSOD1), whereas loss of function in Rom1 re-established HvSOD1 levels. In addition, both Mla and Rom1 negatively regulated hvu-microRNA398 (hvu-miR398), and up-regulation of miR398 was coupled to reduced HvSOD1 expression. Barley stripe mosaic virus (BSMV)-mediated over-expression of both barley and Arabidopsis miR398 repressed accumulation of HvSOD1, and BSMV-induced gene silencing of HvSod1 impeded Mla-triggered H₂O₂ and hypersensitive reaction (HR) at barley-Bgh interaction sites. • These data indicate that Mla- and Rom1-regulated hvu-miR398 represses HvSOD1 accumulation, influencing effector-induced HR in response to the powdery mildew fungus.
Collapse
Affiliation(s)
- Weihui Xu
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Yan Meng
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Roger P Wise
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Iowa State University, Ames, IA, 50011-1020, USA
| |
Collapse
|
41
|
Risk JM, Selter LL, Chauhan H, Krattinger SG, Kumlehn J, Hensel G, Viccars LA, Richardson TM, Buesing G, Troller A, Lagudah ES, Keller B. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:847-54. [PMID: 23711079 DOI: 10.1111/pbi.12077] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 05/18/2023]
Abstract
The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad-spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad-spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34-conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability.
Collapse
|
42
|
Slootweg EJ, Spiridon LN, Roosien J, Butterbach P, Pomp R, Westerhof L, Wilbers R, Bakker E, Bakker J, Petrescu AJ, Smant G, Goverse A. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2. PLANT PHYSIOLOGY 2013; 162:1510-28. [PMID: 23660837 PMCID: PMC3707565 DOI: 10.1104/pp.113.218842] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 05/19/2023]
Abstract
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.
Collapse
Affiliation(s)
- Erik J Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang WM, Ma XF, Zhang Y, Luo MC, Wang GL, Bellizzi M, Xiong XY, Xiao SY. PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. MOLECULAR PLANT 2012; 5:1125-37. [PMID: 22334594 DOI: 10.1093/mp/sss008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many fungal and oomycete pathogens differentiate a feeding structure named the haustorium to extract nutrition from the plant epidermal cell. The atypical resistance (R) protein RPW8.2 activates salicylic acid (SA)-dependent, haustorium-targeted defenses against Golovinomyces spp., the causal agents of powdery mildew diseases on multiple plant species. How RPW8.2 activates defense remains uncharacterized. Here, we report that RPW8.2 interacts with the phytochrome-associated protein phosphatase type 2C (PAPP2C) in yeast and in planta as evidenced by co-immunoprecipitation and bimolecular fluorescence complementation assays. Down-regulation of PAPP2C by RNA interference (RNAi) in Col-0 plants lacking RPW8.2 leads to leaf spontaneous cell death and enhanced disease resistance to powdery mildew via the SA-dependent signaling pathway. Moreover, down-regulation of PAPP2C by RNAi in the RPW8.2 background results in strong HR-like cell death, which correlates with elevated RPW8.2 expression. We further demonstrate that hemagglutinin (HA)-tagged PAPP2C prepared from tobacco leaf cells transiently transformed with HA-PAPP2C possesses phosphatase activity. In addition, silencing a rice gene (Os04g0452000) homologous to PAPP2C also results in spontaneous cell death in rice. Combined, our results suggest that RPW8.2 is functionally connected with PAPP2C and that PAPP2C negatively regulates SA-dependent basal defense against powdery mildew in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Spanu PD, Panstruga R. Powdery mildew genomes in the crosshairs. 2nd International Powdery Mildew Workshop and 3rd New Phytologist Workshop, in Zürich, Switzerland, February 2012. THE NEW PHYTOLOGIST 2012; 195:20-22. [PMID: 22626263 DOI: 10.1111/j.1469-8137.2012.04173.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, UK
| | | |
Collapse
|
45
|
Huang XQ, Röder MS. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica 2011; 139:1179-87. [PMID: 22143458 DOI: 10.1007/s10709-011-9620-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F(2) and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the '1S0.8 gene-rich region', a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.
Collapse
Affiliation(s)
- Xiu-Qiang Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
46
|
Guo L, Li M, Wang W, Wang L, Hao G, Guo C, Chen L. Over-expression in the nucleotide-binding site-leucine rich repeat gene DEPG1 increases susceptibility to bacterial leaf streak disease in transgenic rice plants. Mol Biol Rep 2011; 39:3491-504. [PMID: 21717056 DOI: 10.1007/s11033-011-1122-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/20/2011] [Indexed: 11/28/2022]
Abstract
Bacterial leaf streak of rice (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a widely-spread disease in the main rice-producing areas of the world. Investigating the genes that play roles in rice-Xoc interactions helps us to understand the defense signaling pathway in rice. Here we report a differentially expressed protein gene (DEPG1), which regulates susceptibility to BLS. DEPG1 is a nucleotide-binding site (NBS)-leucine rich repeat (LRR) gene, and the deduced protein sequence of DEPG1 has approximately 64% identity with that of the disease resistance gene Pi37. Phylogenetic analysis of DEPG1 and the 18 characterized NBS-LRR genes revealed that DEPG1 is more closely related to Pi37. DEPG1 protein is located to the cytoplasm, which was confirmed by transient expression of DEPG1-GFP (green fluorescent protein) fusion construct in onion epidermal cells. Semi-quantitative PCR assays showed that DEPG1 is widely expressed in rice, and is preferentially expressed in internodes, leaf blades, leaf sheaths and flag leaves. Observation of cross sections of leaves from the transgenic plants with a DEPG1-promoter::glucuronidase (GUS) fusion gene revealed that DEPG1 is also highly expressed in mesophyll tissues where Xoc mainly colonizes. Additionally, Xoc negatively regulates expression of DEPG1 at the early stage of the pathogen infection, and so do the three defense-signal compounds including salicylic acid (SA), methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylic-acid (ACC). Transgenic rice plants overexpressing DEPG1 exhibit enhanced susceptibility to Xoc compared to the wild-type controls. Moreover, enhanced susceptibility to Xoc may be mediated by inhibition of the expression of some SA biosynthesis-related genes and pathogenesis-related genes that may contribute to the disease resistance. Taken together, DEPG1 plays roles in the interactions between rice and BLS pathogen Xoc.
Collapse
Affiliation(s)
- Lijia Guo
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361005, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Xu S, Zhang Z, Jing B, Gannon P, Ding J, Xu F, Li X, Zhang Y. Transportin-SR is required for proper splicing of resistance genes and plant immunity. PLoS Genet 2011; 7:e1002159. [PMID: 21738492 PMCID: PMC3128105 DOI: 10.1371/journal.pgen.1002159] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/14/2011] [Indexed: 01/18/2023] Open
Abstract
Transportin-SR (TRN-SR) is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR) proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14), a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R) protein snc1 (suppressor of npr1-1, constitutive 1). MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity. Plant immune receptors encoded by Resistance (R) genes play essential roles in defense against pathogens. Multiple R genes are alternatively spliced. How plants regulate the splicing of these R genes is unclear. In this study, we identified MOS14 as an important regulator of two R genes, SNC1 and RPS4. Further analysis showed that MOS14 functions as the nuclear import receptor for serine-arginine rich (SR) proteins, which play diverse roles in RNA metabolism. Loss of the function of MOS14 results in altered splicing patterns of SNC1 and RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.
Collapse
Affiliation(s)
- Shaohua Xu
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Zhibin Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Beibei Jing
- National Institute of Biological Sciences, Beijing, China
| | - Patrick Gannon
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Jinmei Ding
- National Institute of Biological Sciences, Beijing, China
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Wen Y, Wang W, Feng J, Luo MC, Tsuda K, Katagiri F, Bauchan G, Xiao S. Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2117-29. [PMID: 21193574 PMCID: PMC3060691 DOI: 10.1093/jxb/erq406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 05/19/2023]
Abstract
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.
Collapse
Affiliation(s)
- Yingqiang Wen
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Wenming Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Jiayue Feng
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Kenichi Tsuda
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Gary Bauchan
- Electron and Confocal Microscopy Unit, USDA-ARS, Beltsville, Maryland, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
49
|
Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:610-21. [PMID: 21208308 DOI: 10.1111/j.1365-313x.2010.04445.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The race-specific barley powdery mildew (Blumeria graminis f. sp. hordei) resistance gene Mla occurs as an allelic series and encodes CC-NB-LRR type resistance proteins. Inter-generic allele mining resulted in the isolation and characterisation of an Mla homologue from diploid wheat, designated TmMla1, which shares 78% identity with barley HvMLA1 at the protein level. TmMla1 was found to be a functional resistance gene against Blumeria graminis f. sp. tritici in wheat, hereby providing an example of R gene orthologs controlling the same disease in two different species. TmMLA1 exhibits race-specific resistance activity and its N-terminal coiled-coil domain interacts with the barley transcription factor HvWRKY1. Interestingly, TmMLA1 was not functional in barley transient assays. Replacement of the TmMLA1 LRR domain with that of HvMLA1 revealed that this fusion protein conferred resistance against B. graminis f. sp. hordei isolate K1 in barley. Thus, TmMLA1 not only confers resistance in wheat but possibly also in barley against an as yet unknown barley powdery mildew race. The conservation of functional R gene orthologs over at least 12 million years is surprising given the observed rapid breakdown of Mla-based resistance against barley mildew in agricultural ecosystems. This suggests a high stability of Mla resistance in the natural environment before domestication.
Collapse
Affiliation(s)
- Tina Jordan
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Wang J, Qi P, Wei Y, Liu D, Fedak G, Zheng Y. Molecular characterization and functional analysis of elite genes in wheat and its related species. J Genet 2011; 89:539-54. [PMID: 21273706 DOI: 10.1007/s12041-010-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant progress on molecular characterization and functional analysis of elite genes in wheat and its related species have been achieved. In this paper, we review the cloned functional genes correlated with grain quality, biotic and abiotic stress resistance, photosystem and nutrition utilization in wheat and its related species.
Collapse
Affiliation(s)
- Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Yaan 625014, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|