1
|
Darrier B, Colas I, Rimbert H, Choulet F, Bazile J, Sortais A, Jenczewski E, Sourdille P. Location and Identification on Chromosome 3B of Bread Wheat of Genes Affecting Chiasma Number. PLANTS (BASEL, SWITZERLAND) 2022; 11:2281. [PMID: 36079661 PMCID: PMC9460588 DOI: 10.3390/plants11172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.
Collapse
Affiliation(s)
- Benoit Darrier
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
- Syngenta, Toulouse Innovation Centre 12 Chemin de l’Hobit, 31790 Saint-Sauveur, France
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hélène Rimbert
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Frédéric Choulet
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Jeanne Bazile
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Aurélien Sortais
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pierre Sourdille
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
3
|
Morgan C, White MA, Franklin FCH, Zickler D, Kleckner N, Bomblies K. Evolution of crossover interference enables stable autopolyploidy by ensuring pairwise partner connections in Arabidopsis arenosa. Curr Biol 2021; 31:4713-4726.e4. [PMID: 34480856 PMCID: PMC8585506 DOI: 10.1016/j.cub.2021.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Polyploidy is a major driver of evolutionary change. Autopolyploids, which arise by within-species whole-genome duplication, carry multiple nearly identical copies of each chromosome. This presents an existential challenge to sexual reproduction. Meiotic chromosome segregation requires formation of DNA crossovers (COs) between two homologous chromosomes. How can this outcome be achieved when more than two essentially equivalent partners are available? We addressed this question by comparing diploid, neo-autotetraploid, and established autotetraploid Arabidopsis arenosa using new approaches for analysis of meiotic CO patterns in polyploids. We discover that crossover interference, the classical process responsible for patterning of COs in diploid meiosis, is defective in the neo-autotetraploid but robust in the established autotetraploid. The presented findings suggest that, initially, diploid-like interference fails to act effectively on multivalent pairing and accompanying pre-CO recombination interactions and that stable autopolyploid meiosis can emerge by evolution of a “supercharged” interference process, which can now act effectively on such configurations. Thus, the basic interference mechanism responsible for simplifying CO patterns along chromosomes in diploid meiosis has evolved the capability to also simplify CO patterns among chromosomes in autopolyploids, thereby promoting bivalent formation. We further show that evolution of stable autotetraploidy preadapts meiosis to higher ploidy, which in turn has interesting mechanistic and evolutionary implications. In a neo-autotetraploid, aberrant crossover interference confers aberrant meiosis In a stable autotetraploid, regular crossover interference confers regular meiosis Crossover and synaptic patterns point to evolution of “supercharged” interference Accordingly, evolution of stable autotetraploidy preadapts to higher ploidies
Collapse
Affiliation(s)
- Chris Morgan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin A White
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Denise Zickler
- University Paris-Saclay, Commissariat à l'Energie Atomique at aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
4
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
5
|
Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, Liu D, Lukaszewski AJ. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1665-1676. [PMID: 33346910 DOI: 10.1111/tpj.15140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.
Collapse
Affiliation(s)
- Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Christian Neri
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenshuai Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
6
|
Serra H, Svačina R, Baumann U, Whitford R, Sutton T, Bartoš J, Sourdille P. Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat Commun 2021; 12:803. [PMID: 33547285 PMCID: PMC7865012 DOI: 10.1038/s41467-021-21127-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat's genetic diversity through alien gene introgression, a major bottleneck facing crop improvement.
Collapse
Affiliation(s)
- Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France. .,Genetics, Reproduction and Development, CNRS, Inserm, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia.,South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Svačina R, Sourdille P, Kopecký D, Bartoš J. Chromosome Pairing in Polyploid Grasses. FRONTIERS IN PLANT SCIENCE 2020; 11:1056. [PMID: 32733528 PMCID: PMC7363976 DOI: 10.3389/fpls.2020.01056] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.
Collapse
Affiliation(s)
- Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Pierre Sourdille
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
8
|
Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. The Resurgence of Introgression Breeding, as Exemplified in Wheat Improvement. FRONTIERS IN PLANT SCIENCE 2020; 11:252. [PMID: 32211007 PMCID: PMC7067975 DOI: 10.3389/fpls.2020.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 05/21/2023]
Abstract
Breeding progress in most crops has relied heavily on the exploitation of variation within the species' primary gene pool, a process which is destined to fail once the supply of novel variants has been exhausted. Accessing a crop's secondary gene pool, as represented by its wild relatives, has the potential to greatly expand the supply of usable genetic variation. The crop in which this approach has been most strongly championed is bread wheat (Triticum aestivum), a species which is particularly tolerant of the introduction of chromosomal segments of exotic origin thanks to the genetic buffering afforded by its polyploid status. While the process of introgression can be in itself cumbersome, a larger problem is that linkage drag and/or imperfect complementation frequently impose a yield and/or quality penalty, which explains the reluctance of breeders to introduce such materials into their breeding populations. Thanks to the development of novel strategies to induce introgression and of genomic tools to facilitate the selection of desirable genotypes, introgression breeding is returning as a mainstream activity, at least in wheat. Accessing variation present in progenitor species has even been able to drive genetic advance in grain yield. The current resurgence of interest in introgression breeding can be expected to result in an increased deployment of exotic genes in commercial wheat cultivars.
Collapse
Affiliation(s)
- Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
9
|
Prieto P, Naranjo T. Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. Methods Mol Biol 2020; 2061:141-168. [PMID: 31583658 DOI: 10.1007/978-1-4939-9818-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Jighly A, Joukhadar R, Sehgal D, Singh S, Ogbonnaya FC, Daetwyler HD. Population-dependent reproducible deviation from natural bread wheat genome in synthetic hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:801-812. [PMID: 31355965 DOI: 10.1111/tpj.14480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 05/15/2023]
Abstract
Sequence elimination is one of the main mechanisms that increases the divergence among homoeologous chromosomes after allopolyploidization to enhance the stability of recently established lineages, but it can cause a loss of some economically important genes. Synthetic hexaploid wheat (SHW) is an important source of genetic variation to the natural hexaploid wheat (NHW) genepool that has low genetic diversity. Here, we investigated the change between SHW and NHW genomes by utilizing a large germplasm set of primary synthetics and synthetic derivatives. Reproducible segment elimination (RSE) was declared if a large chromosomal chunk (>5 cM) produced no aligned reads in more than five SHWs. RSE in five genomic regions was the major source of variation between SHW and NHW. One RSE eliminated almost the complete short arm of chromosome 1B, which contains major genes for flour quality, disease resistance and different enzymes. The occurrence of RSE was highly dependent on the choice of diploid and tetraploid parental lines, their ancestral subpopulation and admixture, e.g. SHWs derived from Triticum dicoccon or from one of two Aegilops tauschii subpopulations were almost free of RSE, while highly admixed parents had higher RSE rates. The rate of RSE in synthetic derivatives was almost double that in primary synthetics. Genome-wide association analysis detected four loci with minor effects on the occurrence of RSE, indicating that both parental lines and genetic factors were affecting the occurrence of RSE. Therefore, pre-pre-breeding strategies should be applied before introducing SHW into pre-breeding programs to ensure genomic stability and avoid undesirable gene loss.
Collapse
Affiliation(s)
- Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Reem Joukhadar
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
11
|
Fan C, Luo J, Zhang S, Liu M, Li Q, Li Y, Huang L, Chen X, Ning S, Yuan Z, Zhang L, Wang J, Zheng Y, Liu D, Hao M. Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2155-2166. [PMID: 31016346 DOI: 10.1007/s00122-019-03344-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Common wheat landrace Kaixian-luohanmai carries a gene(s) that promotes homoeologous chromosome pairing. A major QTL responsible for this effect was mapped to chromosome arm 3AL. Polyhaploid hybrids of a Chinese common wheat landrace Kaixian-luohanmai (KL) and related species show increased levels of chromosome pairing. Over 90% of that pairing is between homoeologous arms of wheat chromosomes, with a very strong preference for pairing between homoeologs from genomes A and D. Wheat-rye pairing was also observed at low frequency. Two mapping populations were created from the hybrids of KL with two wheat genotypes top crossed to rye. Mean chiasmata numbers per plant were used as phenotypic data. Wheat 660 K and 15 K SNP arrays, DArT markers and SSR markers were used for genotyping of the top-cross ABDR hybrids. One major QTL, named QPh.sicau-3A, for increased homoeologous pairing was detected on chromosome arm 3AL, and it was responsible for ca. 16% of the total variation. This QTL was located in the interval 696-725 Mb in the Chinese Spring reference genome. SNP markers closely linked with QPh.sicau-3A were converted to KASP markers and validated for marker-assisted selection.
Collapse
Affiliation(s)
- Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, Sichuan, China
| | - Shujie Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Meng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Yazhou Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Lei Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China.
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
12
|
Svačina R, Karafiátová M, Malurová M, Serra H, Vítek D, Endo TR, Sourdille P, Bartoš J. Development of Deletion Lines for Chromosome 3D of Bread Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1756. [PMID: 32047508 PMCID: PMC6997527 DOI: 10.3389/fpls.2019.01756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
The identification of genes of agronomic interest in bread wheat (Triticum aestivum L.) is hampered by its allopolyploid nature (2n = 6x = 42; AABBDD) and its very large genome, which is largely covered by transposable elements. However, owing to this complex structure, aneuploid stocks can be developed in which fragments or entire chromosomes are missing, sometimes resulting in visible phenotypes that help in the cloning of affected genes. In this study, the 2C gametocidal chromosome from Aegilops cylindrica was used to develop a set of 113 deletion lines for chromosome 3D in the reference cultivar Chinese Spring. Eighty-four markers were used to show that the deletions evenly covered chromosome 3D and ranged from 6.5 to 357 Mb. Cytogenetic analyses confirmed that the physical size of the deletions correlated well with the known molecular size deduced from the reference sequence. This new genetic stock will be useful for positional cloning of genes on chromosome 3D, especially for Ph2 affecting homoeologous pairing in bread wheat.
Collapse
Affiliation(s)
- Radim Svačina
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Magdaléna Malurová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Heïdi Serra
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Dominik Vítek
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | | | - Pierre Sourdille
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Jan Bartoš
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Jan Bartoš,
| |
Collapse
|
13
|
Pelé A, Rousseau-Gueutin M, Chèvre AM. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:907. [PMID: 30002669 PMCID: PMC6031745 DOI: 10.3389/fpls.2018.00907] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Polyploidization is a widespread phenomenon, especially in flowering plants that have all undergone at least one event of whole genome duplication during their evolutionary history. Consequently, a large range of plants, including many of the world's crops, combines more than two sets of chromosomes originating from the same (autopolyploids) or related species (allopolyploids). Depending on the polyploid formation pathway, different patterns of recombination will be promoted, conditioning the level of heterozygosity. A polyploid population harboring a high level of heterozygosity will produce more genetically diverse progenies. Some of these individuals may show a better adaptability to different ecological niches, increasing their chance for successful establishment through natural selection. Another condition for young polyploids to survive corresponds to the formation of well-balanced gametes, assuring a sufficient level of fertility. In this review, we discuss the consequences of polyploid formation pathways, meiotic behavior and recombination regulation on the speciation success and maintenance of polyploid species.
Collapse
Affiliation(s)
- Alexandre Pelé
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Anne-Marie Chèvre
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
14
|
Koo DH, Liu W, Friebe B, Gill BS. Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 2016; 126:531-540. [PMID: 27909815 DOI: 10.1007/s00412-016-0622-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
A crossover (CO) and its cytological signature, the chiasma, are major features of eukaryotic meiosis. The formation of at least one CO/chiasma between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division and genetic recombination. Polyploid organisms with multiple sets of homoeologous chromosomes have evolved additional mechanisms for the regulation of CO/chiasma. In hexaploid wheat (2n = 6× = 42), this is accomplished by pairing homoeologous (Ph) genes, with Ph1 having the strongest effect on suppressing homoeologous recombination and homoeologous COs. In this study, we observed homoeologous COs between chromosome 5Mg of Aegilops geniculata and 5D of wheat in plants where Ph1 was fully active, indicating that chromosome 5Mg harbors a homoeologous recombination promoter factor(s). Further cytogenetic analysis, with different 5Mg/5D recombinants, showed that the homoeologous recombination promoting factor(s) may be located in proximal regions of 5Mg. In addition, we observed a higher frequency of homoeologous COs in the pericentromeric region between chromosome combination of rec5Mg#2S·5Mg#2L and 5D compared to 5Mg#1/5D, which may be caused by a small terminal region of 5DL homology present in chromosome rec5Mg#2. The genetic stocks reported here will be useful for analyzing the mechanism of Ph1 action and the nature of homoeologous COs.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Wenxuan Liu
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.,Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
15
|
Abstract
Genomic evidence of ancestral whole genome duplication (WGD) and polyploidy is widespread among eukaryotic species, and especially among plants. WGD is thought to provide the raw material for adaptation in the form of duplicated genes, and polyploids are thought to benefit from both physiological and genetic buffering. Comparatively little attention has focused on the genomic challenge of polyploidy, however, although much evidence exists that polyploidy severely perturbs important cellular functions. Here, I review recent progress in the study of the re-establishment of stable meiosis in recently evolved polyploids, focusing on four plant species. This work has yielded an insight into the mechanisms underlying stabilization of genome transmission in polyploids, and is revealing remarkable parallels among diverse taxa. Importantly, these studies also provide a road map for investigating how polyploids respond to the challenge of WGD.
Collapse
|
16
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
17
|
Abstract
Two meiotic processes have a major influence on the plant breeding, namely, the independent assortment of chromosomes, and recombination. The major chromosome pairing locus in hexaploid and tetraploid wheat, Ph1, has a significant effect on both these processes. This chapter reviews our current understanding of this locus and how mutants of it can be exploited for breeding purposes.
Collapse
Affiliation(s)
- Graham Moore
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK,
| |
Collapse
|
18
|
Grandont L, Jenczewski E, Lloyd A. Meiosis and its deviations in polyploid plants. Cytogenet Genome Res 2013; 140:171-84. [PMID: 23817089 DOI: 10.1159/000351730] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiosis is a fundamental process in all sexual organisms that ensures fertility and genome stability and creates genetic diversity. For each of these outcomes, the exclusive formation of crossovers between homologous chromosomes is needed. This is more difficult to achieve in polyploid species which have more than 2 sets of chromosomes able to recombine. In this review, we describe how meiosis and meiotic recombination 'deviate' in polyploid plants compared to diploids, and give an overview of current knowledge on how they are regulated. See also the sister article focusing on animals by Stenberg and Saura in this themed issue.
Collapse
Affiliation(s)
- L Grandont
- INRA - Institut Jean Pierre Bourgin, Station de Génétique et Amélioration des Plantes, Versailles, France
| | | | | |
Collapse
|
19
|
Khoo KHP, Able AJ, Chataway TK, Able JA. Preliminary characterisation of two early meiotic wheat proteins after identification through 2D gel electrophoresis proteomics. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:222-235. [PMID: 32480776 DOI: 10.1071/fp11253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/24/2011] [Indexed: 06/11/2023]
Abstract
Various genetic-based approaches including mutant population screens, microarray analyses, cloning and transgenesis have broadened our knowledge of gene function during meiosis in plants. Nonetheless, these genetic tools are not without inherent limitations. One alternative approach to studying plant meiosis, especially in polyploids such as Triticum aestivum L. (bread wheat), is proteomics. However, protein-based approaches using proteomics have seldom been described, with only two attempts at studying early plant meiosis reported. Here, we report the investigation of early bread wheat meiosis using proteomics. Five differentially expressed protein spots were identified using 2D gel electrophoresis (2DGE) on protein extracts from four pooled stages of meiosis and three genotypes (Chinese Spring wild-type, ph1b and ph2a wheat mutant lines). Tandem mass spectrometry (MS/MS) identification of peptides from these protein spots led to the isolation and characterisation of the full-length clones of a wheat Speckle-type POZ protein, an SF21-like protein and HSP70, and a partial coding sequence of a hexose transporter. Significantly, the putative functions of the Speckle-type POZ protein and HSP70 were confirmed using in vitro DNA binding assays. Through the use of a 2DGE proteomics approach, we show that proteomics is a viable alternative to genetic-based approaches when studying meiosis in wheat. More significantly, we report a potential role for a Speckle-type POZ protein and a HSP70 in chromosome pairing during the early stages of meiosis in bread wheat.
Collapse
Affiliation(s)
- Kelvin H P Khoo
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Timothy K Chataway
- Proteomics Laboratory, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
20
|
Hao M, Luo J, Yang M, Zhang L, Yan Z, Yuan Z, Zheng Y, Zhang H, Liu D. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 2011; 54:959-64. [PMID: 22070394 DOI: 10.1139/g11-062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:745-56. [PMID: 21251102 DOI: 10.1111/j.1365-313x.2010.04461.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA/Université Blaise Pascal UMR 1095 GDEC, Domaine de Crouelle, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 2010; 11:71-83. [PMID: 20697765 DOI: 10.1007/s10142-010-0183-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/30/2022]
Abstract
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA-University Blaise Pascal, UMR1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fleury D, Luo MC, Dvorak J, Ramsay L, Gill BS, Anderson OD, You FM, Shoaei Z, Deal KR, Langridge P. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. BMC Genomics 2010; 11:382. [PMID: 20553621 PMCID: PMC2900270 DOI: 10.1186/1471-2164-11-382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022] Open
Abstract
Background Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.
Collapse
Affiliation(s)
- Delphine Fleury
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond SA 5064, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E. Genetic regulation of meiosis in polyploid species: new insights into an old question. THE NEW PHYTOLOGIST 2010; 186:29-36. [PMID: 19912546 DOI: 10.1111/j.1469-8137.2009.03084.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precise chromosome segregation is vital for polyploid speciation. Here, we highlight recent findings that revitalize the old question of the genetic control of diploid-like meiosis behaviour in polyploid species. We first review new information on the genetic control of autopolyploid and allopolyploid cytological diploidization, notably in wheat and Brassica. These major advances provide new opportunities for speculating about the adaptation of meiosis during polyploid evolution. Some of these advances are discussed, and it is suggested that research on polyploidy and on meiosis should no longer be unlinked.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean Pierre Bourgin, Station de Génétique et Amélioration des Plantes, 78026 Versailles Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Cifuentes M, Benavente E. Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:805-813. [PMID: 19557382 DOI: 10.1007/s00122-009-1090-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/08/2009] [Indexed: 05/26/2023]
Abstract
Homoeologous metaphase I (MI) pairing of Triticum aestivum x Aegilops geniculata hybrids (2n = 5x = 35, ABDU(g)M(g)) has been examined by an in situ hybridization procedure permitting simultaneous discrimination of A, B, D and wild genomes. The seven D genome chromosomes (and their arms, except for 6D and 7D) plus some additional wheat chromosomes were also identified. Wheat-wild MI associations represented more than 60% of total, with an average ratio of 5:1:12 for those involving the A, B and D genomes, respectively. A remarkable between-chromosome variation for the level of wheat-wild genetic exchange is expected within each wheat genome. However, it can be concluded that 3DL and 5DL are the crop genome locations with the highest probability of being transferred to Ae. geniculata. Hybrids derived from the ph2b wheat mutant line showed increased MI pairing but identical pattern of homoeologous associations than those with active Ph2.
Collapse
Affiliation(s)
- Marta Cifuentes
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
26
|
Able JA, Crismani W, Boden SA. Understanding meiosis and the implications for crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:575-588. [PMID: 32688671 DOI: 10.1071/fp09068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/01/2009] [Indexed: 06/11/2023]
Abstract
Over the past 50 years, the understanding of meiosis has aged like a fine bottle of wine: the complexity is developing but the wine itself is still young. While emphasis in the plant kingdom has been placed on the model diploids Arabidopsis (Arabidopsis thaliana L.) and rice (Orzya sativa L.), our research has mainly focussed on the polyploid, bread wheat (Triticum aestivum L.). Bread wheat is an important food source for nearly two-thirds of the world's population. While creating new varieties can be achieved using existing or advanced breeding lines, we would also like to introduce beneficial traits from wild related species. However, expanding the use of non-adapted and wild germplasm in cereal breeding programs will depend on the ability to manipulate the cellular process of meiosis. Three important and tightly-regulated events that occur during early meiosis are chromosome pairing, synapsis and recombination. Which key genes control these events in meiosis (and how they do so) remains to be completely answered, particularly in crops such as wheat. Although the majority of published findings are from model organisms including yeast (Saccharomyces cerevisiae) and the nematode Caenorhabditis elegans, information from the plant kingdom has continued to grow in the past decade at a steady rate. It is with this new knowledge that we ask how meiosis will contribute to the future of cereal breeding. Indeed, how has it already shaped cereal breeding as we know it today?
Collapse
Affiliation(s)
- Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Wayne Crismani
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
27
|
Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E. Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. THE PLANT CELL 2009; 21:373-85. [PMID: 19190241 PMCID: PMC2660629 DOI: 10.1105/tpc.108.062273] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/18/2008] [Accepted: 01/09/2009] [Indexed: 05/18/2023]
Abstract
Although the genetic regulation of recombination in allopolyploid species plays a pivotal role in evolution and plant breeding, it has received little recent attention, except in wheat (Triticum aestivum). PrBn is the main locus that determines the number of nonhomologous associations during meiosis of microspore cultured Brassica napus haploids (AC; 19 chromosomes). In this study, we examined the role played by PrBn in recombination. We generated two haploid x euploid populations using two B. napus haploids with differing PrBn (and interacting genes) activity. We analyzed molecular marker transmission in these two populations to compare genetic changes, which have arisen during meiosis. We found that cross-over number in these two genotypes was significantly different but that cross-overs between nonhomologous chromosomes showed roughly the same distribution pattern. We then examined genetic recombination along a pair of A chromosomes during meiosis of B. rapa x B. napus AAC and AACC hybrids that were produced with the same two B. napus genotypes. We observed significant genotypic variation in cross-over rates between the two AAC hybrids but no difference between the two AACC hybrids. Overall, our results show that PrBn changes the rate of recombination between nonhomologous chromosomes during meiosis of B. napus haploids and also affects homologous recombination with an effect that depends on plant karyotype.
Collapse
Affiliation(s)
- Stéphane D Nicolas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Khoo KHP, Jolly HR, Able JA. The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1267-1277. [PMID: 32688873 DOI: 10.1071/fp08203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 06/11/2023]
Abstract
The RADiation sensitive protein 51 (RAD51) recombinase is a eukaryotic homologue of the bacterial Recombinase A (RecA). It is required for homologous recombination of DNA during meiosis where it plays a role in processes such as homology searching and strand invasion. RAD51 is well conserved in eukaryotes with as many as four paralogues identified in vertebrates and some higher plants. Here we report the isolation and preliminary characterisation of four RAD51 gene family members in hexaploid (bread) wheat (Triticum aestivum L.). RAD51A1, RAD51A2 and RAD51D were located on chromosome group 7, and RAD51C was on chromosome group 2. Q-PCR gene expression profiling revealed that RAD51A1 was upregulated during meiosis with lower expression levels seen in mitotic tissue, and bioinformatics analysis demonstrated the evolutionary linkages of this gene family to other eukaryotic RAD51 sequences. Western blot analysis of heterologously expressed RAD51 from bread wheat has shown that it is detectable using anti-human RAD51 antibodies and that molecular modelling of the same protein revealed structural conservation when compared with yeast, human, Arabidopsis and maize RAD51A orthologues. This report has widened the knowledge base of this important protein family in plants, and highlighted the high level of structural conservation among RAD51 proteins from various species.
Collapse
Affiliation(s)
- Kelvin H P Khoo
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Hayley R Jolly
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
29
|
Dwivedi S, Perotti E, Ortiz R. Towards molecular breeding of reproductive traits in cereal crops. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:529-559. [PMID: 18507792 DOI: 10.1111/j.1467-7652.2008.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transition from vegetative to reproductive phase, flowering per se, floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.
Collapse
Affiliation(s)
- Sangam Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | | | | |
Collapse
|
30
|
March TJ, Able JA, Willsmore K, Schultz CJ, Able AJ. Comparative mapping of a QTL controlling black point formation in barley. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:427-437. [PMID: 32688799 DOI: 10.1071/fp08089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/22/2008] [Indexed: 06/11/2023]
Abstract
The dark discoloration of the embryo end of barley grain (known as black point) is a physiological disorder and the discovery of a quantitative trait locus (QTL) on 2H confirms this trait is controlled genetically. The mechanisms underlying black point tolerance can now be dissected through identification of candidate genes. Comparisons between the QTL identified on chromosomes 2H of barley and 2B of wheat suggest that they are in similar positions near the centromere. In silico analysis, using rice, identified genes residing on two comparative chromosomes (4 and 7) of the rice genome. Analysis of the 12.6 Mb region revealed 1928 unique annotations classified into 11 functional categories. Expressed sequence tags (ESTs) with high sequence similarity to enzymes proposed to be involved in black point formation were used to develop restriction fragment length polymorphisms (RFLPs). To ensure an even coverage of markers across the QTL, RFLP markers were also developed from other ESTs. Mapping of these markers has reduced the QTL region from 28 to 18 cM. This study has identified candidate genes for the control of black point formation and paves the way for future research to develop black point resistant barley cultivars.
Collapse
Affiliation(s)
- Timothy J March
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Kerrie Willsmore
- South Australian Research and Development Institute, PO Box 397, Urrbrae, SA 5064, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
31
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
32
|
Martinez-Perez E, Moore G. To check or not to check? The application of meiotic studies to plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:222-7. [PMID: 18294901 DOI: 10.1016/j.pbi.2008.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 05/08/2023]
Abstract
Understanding the barriers that prevent pairing and recombination of the chromosomes from two parental species is important for crop improvement strategies. It had been generally thought that plants do not possess checkpoint mechanisms during meiosis. However, recent data may question this assumption and suggest that exploitation of such mechanisms could be crucial to breeding.
Collapse
Affiliation(s)
- Enrique Martinez-Perez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
33
|
Lloyd AH, Milligan AS, Langridge P, Able JA. TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2007; 7:67. [PMID: 18096080 PMCID: PMC2234410 DOI: 10.1186/1471-2229-7-67] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/20/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. RESULTS Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.). Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. CONCLUSION Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.
Collapse
Affiliation(s)
- Andrew H Lloyd
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia, 5064, Australia
- School of Molecular & Biomedical Science, The University of Adelaide, South Australia, 5005, Australia
| | - Andrew S Milligan
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
34
|
Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Mol Biol 2007; 8:65. [PMID: 17683575 PMCID: PMC1971066 DOI: 10.1186/1471-2199-8-65] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 08/04/2007] [Indexed: 11/16/2022] Open
Abstract
Background Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. Results The full length wheat cDNA and genomic clone, TaASY1, has been isolated, sequenced and characterised. TaASY1 is located on chromosome Group 5 and the open reading frame displays significant nucleotide sequence identity to OsPAIR2 (84%) and AtASY1 (63%). Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occur. Immunolocalisation using transmission electron microscopy showed TaASY1 interacts with chromatin that is associated with both axial elements before SC formation as well as lateral elements of formed SCs. Conclusion TaASY1 is a homologue of ScHOP1, AtASY1 and OsPAIR2 and is the first gene to be isolated from bread wheat that is involved in pairing and synapsis of homologous chromosomes.
Collapse
|
35
|
Able JA, Langridge P, Milligan AS. Capturing diversity in the cereals: many options but little promiscuity. TRENDS IN PLANT SCIENCE 2007; 12:71-9. [PMID: 17224300 DOI: 10.1016/j.tplants.2006.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulated given that it plays a pivotal role in generating diversity. With the advent of a wider range of genomics technologies, our understanding of meiotic processes should increase rapidly. Although comparative genetics has been useful, particularly in the broader grass family, the development of physical maps, long-range sequencing and transcript profiles promises to unravel the complexities of genomes as large or larger than wheat. Highlighting the most significant findings to date, this review pools the knowledge on these tools and reproductive processes.
Collapse
Affiliation(s)
- Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
36
|
Varshney RK, Hoisington DA, Tyagi AK. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 2006; 24:490-9. [PMID: 16956681 DOI: 10.1016/j.tibtech.2006.08.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 08/01/2006] [Accepted: 08/24/2006] [Indexed: 11/16/2022]
Abstract
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.
Collapse
Affiliation(s)
- Rajeev K Varshney
- Applied Genomics Laboratory, Global Theme on Biotechnology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, A.P., India.
| | | | | |
Collapse
|
37
|
Able JA, Langridge P. Wild sex in the grasses. TRENDS IN PLANT SCIENCE 2006; 11:261-3. [PMID: 16697246 DOI: 10.1016/j.tplants.2006.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 02/27/2006] [Accepted: 04/26/2006] [Indexed: 05/07/2023]
Abstract
To date, alien introgression of agronomically important traits into bread wheat (Triticum aestivum) from wild relatives has not been readily achievable through traditional breeding practices. However, this door might now be unlocked. The insightful research published recently by Graham Moore and his team delivers a likely candidate in the form of a cdc2-kinase-related gene family for the Ph1 locus--a chromatin region located on chromosome 5B that is responsible for homologous chromosome pairing integrity in bread wheat.
Collapse
Affiliation(s)
- Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
38
|
Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C. Candidate genes for barley mutants involved in plant architecture: an in silico approach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1073-85. [PMID: 16501940 DOI: 10.1007/s00122-006-0209-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 12/28/2005] [Indexed: 05/06/2023]
Abstract
To individuate candidate genes (CGs) for a set of barley developmental mutants, a synteny approach comparing the genomes of barley and rice has been introduced. Based on map positions of mutants, sequenced RFLP markers linked to the target loci were selected. The markers were mapped in silico by BLAST searches against the rice genome sequence and chromosomal regions syntenous to barley target intervals were identified. Rice syntenous regions were defined for 15 barley chromosomal intervals hosting 23 mutant loci affecting plant height (brh1; brh2; sld4), shoot and inflorescence branching (als; brc1; cul-2, -3, -5, -15, -16; dub1; mnd6; vrs1), development of leaves (lig) and leaf-like organs (cal-b19, -C15, -d4; lks5; suKD-25; suKE-74; suKF-76; trd; trp). Annotation of 110 Mb of rice genomic sequence made it possible to screen for putative CGs which are listed together with the reasons supporting mutant-gene associations. For two loci, CGs were identified with a clear probability to represent the locus considered. These include FRIZZY PANICLE, a candidate for the brc1 barley mutant, and the rice ortholog of maize Liguleless1 (Lg1), a candidate for the barley lig locus on chromosome 2H. For this locus, the validity of the approach was supported by the PCR-amplification of a genomic fragment of the orthologous barley sequence. SNP mapping located this fragment on chromosome 2H in the region hosting the lig genetic locus.
Collapse
Affiliation(s)
- Laura Rossini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Whitford R, Baumann U, Sutton T, Gumaelius L, Wolters P, Tingey S, Able JA, Langridge P. Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Funct Integr Genomics 2006; 7:37-52. [PMID: 16534632 DOI: 10.1007/s10142-006-0026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 11/30/2022]
Abstract
A multigene family expressed during early floral development was identified on the short arm of wheat chromosome 3D in the region of the Ph2 locus, a locus controlling homoeologous chromosome pairing in allohexaploid wheat. Physical, genetic and molecular characterisation of the Wheat Meiosis 1 (WM1) gene family identified seven members that localised within a region of 173-kb. WM1 gene family members were sequenced and they encode mainly type Ia plasma membrane-anchored leucine rich repeat-like receptor proteins. In situ expression profiling suggests the gene family is predominantly expressed in floral tissue. In addition to the WM1 gene family, a number of other genes, gene fragments and pseudogenes were identified. It has been predicted that there is approximately one gene every 19-kb and that this region of the wheat genome contains 23 repetitive elements including BARE-1 and Wis2-1 like sequences. Nearly 50% of the repetitive elements identified were similar to known transposons from the CACTA superfamily. Ty1-copia, Ty3-gypsy and Athila LTR retroelements were also prevalent within the region. The WM1 gene cluster is present on 3DS and on barley 3HS but missing from the A and B genomes of hexaploid wheat. This suggests either recent generation of the cluster or specific deletion of the cluster during wheat polyploidisation. The evolutionary significance of the cluster, its possible roles in disease response or floral and early meiotic development and its location at or near the Ph2 locus are discussed.
Collapse
Affiliation(s)
- Ryan Whitford
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, 5064, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gupta PK, Kulwal PL, Rustgi S. Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 2005; 109:315-27. [PMID: 15753592 DOI: 10.1159/000082415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/11/2004] [Indexed: 01/26/2023] Open
Abstract
Hexaploid wheat is a species that has been subjected to most extensive cytogenetic studies. This has contributed to understanding the mechanism of the evolution of polyploids involving diploidization through genetic restriction of chromosome pairing to only homologous chromosomes. The availability of a variety of aneuploids and the ph mutants (Ph1 and Ph2) in bread wheat also allowed chromosome manipulations leading to the development of alien addition/substitution lines and the introgression of alien chromosome segments into the wheat genome. More recently in the genomics era, molecular tools have been used extensively not only for the construction of molecular maps, but also for identification/isolation of genes/QTLs (including epistatic QTLs, eQTLs and PQLs) for several agronomic traits. It has also been possible to identify gene-rich regions and recombination hot spots in the wheat genome, which are now being subjected to sequencing at the genome level, through development of BAC libraries. In the EST database also, among all plants wheat ESTs are the highest in number, and are only next to those for human, mouse, Ciona intestinalis (a chordate), rat and zebrafish genomes. These ESTs and sequences of several genomic regions have been subjected to a variety of applications including development of perfect markers and establishment of microcollinearity. The technique of in situ hybridization (including FISH, GISH and McFISH) and the development of deletion stocks also facilitated the preparation of physical maps. Molecular markers are also used for marker-assisted selection in wheat breeding programs in several countries. Construction of a wheat DNA chip, which will also become available soon, may further facilitate wheat genomics research. These enormous resources, knowledge base and the fast development of additional molecular tools and high throughput approaches for genotyping will prove extremely useful in future wheat research and will lead to development of improved wheat cultivars.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics & Plant Breeding, Ch. Charan Singh University, Meerut, India.
| | | | | |
Collapse
|
41
|
Armstead IP, Skøt L, Turner LB, Skøt K, Donnison IS, Humphreys MO, King IP. Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. THE NEW PHYTOLOGIST 2005; 167:239-47. [PMID: 15948846 DOI: 10.1111/j.1469-8137.2005.01392.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microsynteny with rice and comparative genetic mapping were used to identify candidate orthologous sequences to the rice Hd1(Se1) gene in Lolium perenne and Festuca pratensis. A F. pratensis bacterial artificial chromosome (BAC) library was screened with a marker (S2539) physically close to Hd1 in rice to identify the equivalent genomic region in F. pratensis. The BAC sequence was used to identify and map the same region in L. perenne. Predicted protein sequences for L. perenne and F. pratensis Hd1 candidates (LpHd1 and FpHd1) indicated they were CONSTANS-like zinc finger proteins with 61-62% sequence identity with rice Hd1 and 72% identity with barley HvCO1. LpHd1 and FpHd1 were physically linked in their respective genomes (< 4 kb) to marker S2539, which was mapped to L. perenne chromosome 7. The identified candidate orthologues of rice Hd1 and barley HvCO1 in L. perenne and F. pratensis map to chromosome 7, a region of the L. perenne genome which has a degree of conserved genetic synteny both with rice chromosome 6, which contains Hd1, and barley chromosome 7H, which contains HvCO1.
Collapse
Affiliation(s)
- I P Armstead
- Plant Genetics and Breeding Department, Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion SY23 3EB, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dong C, Thomas S, Becker D, Lörz H, Whitford R, Sutton T, Able JA, Langridge P. WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:249-258. [PMID: 32689128 DOI: 10.1071/fp04198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 02/10/2005] [Indexed: 06/11/2023]
Abstract
Wheat Meiosis 5 (WM5), isolated from an early meiosis anther cDNA library of wheat by cDNA subtraction encodes a novel glycine-serine-proline-alanine-rich protein. The corresponding homologous genes are located on the short arms of chromosomes 3A, 3B and 3D of allohexaploid wheat (Triticum aestivum L.). The copy on 3DS is located within the region deleted in the wheat mutant ph2a that displays increased homoeologous chromosome pairing in crosses with alien species. While WM5 is expressed primarily in young flower buds during early meiosis it is also expressed in shoot meristems, thus indicating functional roles in both meiosis and meristem development. Overall, the WM5 amino acid sequence shares no significant similarity with other known proteins in the NCBI database. However, the carboxyl-terminal region does have similarity with the Arabidopsis PDF1 (Protodermal Factor 1) protein. Comparing WM5 and PDF1 reveals that the two proteins share 33% identity and have similar hydropathy plots and predicted secondary structures. In situ immuno-staining locates the protein to the nuclei of pollen mother cells undergoing meiosis and the epidermal layer of the shoot and flower meristem, including the cell wall and cuticle. We propose that the WM5 protein has a role in shoot and flower development within this economically important cereal crop.
Collapse
Affiliation(s)
- Chongmei Dong
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Stephen Thomas
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Dirk Becker
- Applied Plant Molecular Biology II, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Horst Lörz
- Applied Plant Molecular Biology II, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Ryan Whitford
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Tim Sutton
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
43
|
Abstract
Genome-level studies are contributing to a major renaissance in crop science. In wheat, there are now more than 500,000 expressed sequence tags, and these are being used in conjunction with specially designed deletion stocks to unravel patterns of genome evolution, recombination and polyploid genome behavior.
Collapse
Affiliation(s)
- Wayne Powell
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | |
Collapse
|
44
|
Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R. Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 2004; 4:118-30. [PMID: 15105995 DOI: 10.1007/s10142-004-0110-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 02/09/2004] [Accepted: 02/21/2004] [Indexed: 11/25/2022]
Abstract
EST and genomic DNA sequencing efforts for rice and wheat have provided the basis for interpreting genome organization and evolution. In this study we have used EST and genomic sequencing information and a bioinformatic approach in a two-step strategy to align portions of the wheat and rice genomes. In the first step, wheat ESTs were used to identify rice orthologs and it was shown that wheat 3S and rice 1 contain syntenic units with intrachromosomal rearrangements. Further analysis using anchored rice contiguous sequences and TBLASTX alignments in a second alignment step showed interruptions by orthologous genes that map elsewhere in the wheat genome. This indicates that gene content and order is not as conserved as large chromosomal blocks as previously predicted. Similarly, chromosome 7L contains syntenic units with rice 6 and 8 but is interrupted by combinations of intrachromosomal and interchromosomal rearrangements involving syntenic units and single gene orthologs from other rice chromosome groups. We have used the rice sequence annotations to identify genes that can be used to develop markers linked to biosynthetic pathways on 3BS controlling xanthophyll production in wheat and thus involved in determining flour colour.
Collapse
|
45
|
Gupta PK, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 2004; 4:139-62. [PMID: 15095058 DOI: 10.1007/s10142-004-0107-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
In recent years, molecular marker technology in higher plants has witnessed a shift from the so-called random DNA markers (RDMs), developed in the past arbitrarily from genomic DNA and cDNA, to the molecular markers representing the transcriptome and the other coding sequences. These markers have been described as gene targeted markers (GTMs). Another specific class of markers includes the so-called functional markers (FMs), which are supposed to have a cause and effect relationship with the traits of interest. In this review, we first describe the development of these markers representing the transcriptome or genes per se; we then discuss the uses of these markers in some detail and finally add a note on the future directions of research and the implications of the wider application of these markers in crop improvement programmes. Using suitable examples, we describe markers of different classes derived from cDNA clones, expressed sequence tags (ESTs), gene sequences and the unique (coding) sequences obtained through methyl filtration or genome normalization (high C(0) t fraction) from gDNA libraries. While we briefly describe RFLPs, SSRs, AFLPs and SNPs developed from the transcriptome (cDNA clones and EST databases), we have discussed in more detail some of the novel markers developed from the transcriptome and specific genes. These novel markers include expressed sequence tag polymorphisms (ESTPs), conserved orthologue set (COS) markers, amplified consensus genetic markers (ACGMs), gene specific tags (GSTs), resistance gene analogues (RGAs) and exon-retrotransposon amplification polymorphism (ERAP). Uses of these markers have been discussed in some detail under the following headings: development of transcript and functional maps, estimations of genetic diversity, marker-assisted selection (MAS), candidate-gene (CG) approach and map-based cloning, genetical genomics and identification of eQTLs, study of genome organization and taxonomic and phylogenetic studies. At the end, we also append a list of websites relevant to further studies on the transcriptome. For want of space, considerable information including voluminous data in the form of 12 tables, and a long list of references cited in these tables, has been placed on the Internet as electronic supplementary material (ESM), which the readers may find useful.
Collapse
Affiliation(s)
- P K Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004, Meerut, India.
| | | |
Collapse
|