1
|
Alsadi N, Mallet JF, Matar C. miRNA-200b Signature in the Prevention of Skin Cancer Stem Cells by Polyphenol-enriched Blueberry Preparation. J Cancer Prev 2021; 26:162-173. [PMID: 34703819 PMCID: PMC8511576 DOI: 10.15430/jcp.2021.26.3.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure of the skin to solar UV radiation leads to inflammation, DNA damage, and dysregulation of cellular signaling pathways, which may cause skin cancer. Photochemoprevention with natural products is an effective strategy for the control of cutaneous neoplasia. Polyphenols have been proven to help prevent skin cancer and to inhibit the growth of cancer stem cells (CSCs) through epigenetic mechanisms, including modulation of microRNAs expression. Thus, the current study aimed to assess the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on expression of miRNAs and target proteins associated with different clinicopathological characteristics of skin cancer such as stemness, motility, and invasiveness. We observed that PEBP significantly inhibited the proliferation of skin CSCs derived from different melanoma cell lines, HS 294T and B16F10. Moreover, PEBP was able to reduce the formation of melanophores. We also showed that the expression of the CD133+ stem cell marker in B16F10 and HS294T cell lines was significantly decreased after treating the cells with PEBP in comparison to the NBJ and control groups. Importantly, tumor suppressors' miR-200s, involved in the regulation of the epithelial-to-mesenchymal transition and metastasis, were strikingly upregulated. In addition, we have shown that a protein target of the tumor suppressor miR200b, ZEB1, was also significantly modulated. Thus, the results demonstrates that PEBP possesses potent anticancer and anti-metastatic potentials and may represent a novel chemopreventative agent against skin cancer.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Sharma VP, Beaty BT, Patsialou A, Liu H, Clarke M, Cox D, Condeelis JS, Eddy RJ. Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. INTRAVITAL 2014; 1:77-85. [PMID: 24634804 DOI: 10.4161/intv.22054] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 01/17/2023]
Abstract
In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF) / colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as "streams." Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging.
Collapse
|
3
|
The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124321. [PMID: 25140302 PMCID: PMC4129668 DOI: 10.1155/2014/124321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022]
Abstract
The consecutive stages of cancer growth and dissemination are obligatorily perpetrated through specific interactions of the tumor cells with their microenvironment. Importantly, cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycan (PG) content and distribution are markedly altered during tumor pathogenesis and progression. GAGs and PGs perform multiple functions in specific stages of the metastatic cascade due to their defined structure and ability to interact with both ligands and receptors regulating cancer pathogenesis. Thus, GAGs/PGs may modulate downstream signaling of key cellular mediators including insulin growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), estrogen receptors (ERs), or Wnt members. In the present review we will focus on breast cancer motility in correlation with their GAG/PG content and critically discuss mechanisms involved. Furthermore, new approaches involving GAGs/PGs as potential prognostic/diagnostic markers or as therapeutic agents for cancer-related pathologies are being proposed.
Collapse
|
4
|
Kotobuki Y, Yang L, Serada S, Tanemura A, Yang F, Nomura S, Kudo A, Izuhara K, Murota H, Fujimoto M, Katayama I, Naka T. Periostin accelerates human malignant melanoma progression by modifying the melanoma microenvironment. Pigment Cell Melanoma Res 2014; 27:630-9. [PMID: 24674392 DOI: 10.1111/pcmr.12245] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
Abstract
Given no reliable therapy for advanced malignant melanoma, it is important to elucidate the molecular mechanisms underlying the disease progression. Using a quantitative proteomics approach, the 'isobaric tags for relative and absolute quantitation (iTRAQ)' method, we identified that the extracellular matrix protein, periostin (POSTN), was highly expressed in invasive melanoma compared with normal skin. An immunohistochemical analysis showed that POSTN was expressed in all invasive melanoma (n = 20) and metastatic lymph node (n = 5) tissue samples, notably restricted in their stroma. In terms of the intercellular regulation of POSTN, we found that there was upregulation of POSTN when melanoma cells and normal human dermal fibroblasts (NHDFs) were cocultured, with restricted expression of TGF-β1 and TGF-β3. In a functional analyses, recombinant and NHDF-derived POSTN significantly accelerated melanoma cell proliferation via the integrin/mitogen-activated protein kinase (MAPK) signaling pathway in vitro. The size of implanted melanoma tumors was significantly suppressed in POSTN/Rag2 double knockout mice compared with Rag2 knock-out mice. These results indicate that NHDF-derived POSTN accelerates melanoma progression and might be a promising therapeutic target for malignant melanoma.
Collapse
Affiliation(s)
- Yorihisa Kotobuki
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory for Immune Signal, National Institute of Biomedical Innovation, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma. Amino Acids 2013; 46:841-52. [DOI: 10.1007/s00726-013-1644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
|
6
|
Detchokul S, Newell B, Williams ED, Frauman AG. CD151 is associated with prostate cancer cell invasion and lymphangiogenesis in vivo. Oncol Rep 2013; 31:241-7. [PMID: 24174171 DOI: 10.3892/or.2013.2823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/18/2013] [Indexed: 11/06/2022] Open
Abstract
CD151, a member of the tetraspanin family, is associated with regulation of migration of normal and tumour cells via cell surface microdomain formation. CD151 was found in our laboratory to have a prognostic value in prostate cancer and is a promoter of prostate cancer migration and invasion. These roles involve association with integrins on both cell-cell and cell-stroma levels. Furthermore, CD151 plays a role in endothelial cell motility. CD151 expression was examined in three commonly used prostate cancer cell lines. We investigated CD151 expression, angiogenesis (microvessel density; MVD) and lymphangiogenesis (lymphatic vessel density; LVD) in an orthotopic xenograft model of prostate cancer in matched tumours from primary and secondary sites. CD151 was found to be heterogeneously expressed across different prostate cancer cell lines and the levels of CD151 expression were significantly higher in the highly tumorigenic, androgen-insensitive cells PC-3 and DU-145 compared to the androgen-sensitive cell line LNCaP (P<0.05). The majority of in vivo xenografts developed pelvic lymph node metastases. Importantly, primary tumours that developed metastasis had significantly higher CD151 expression and MVD compared to those which did not develop metastasis (P<0.05). We identified, for the first time, that CD151 expression is associated with LVD in prostate cancer. These findings underscore the potential role of CD151 and angiogenesis in the metastatic potential of prostate cancer. CD151 has a prognostic value in this mouse model of prostate cancer and may play a role in lymphangiogenesis. CD151 is likely an important regulator of cancer cell communication with the surrounding microenvironment.
Collapse
Affiliation(s)
- Sujitra Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, VIC, Australia
| | | | | | | |
Collapse
|
7
|
Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci 2013; 34:283-9. [PMID: 23571046 PMCID: PMC3640670 DOI: 10.1016/j.tips.2013.03.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Advances in diagnosis and treatment have rendered most solid tumors largely curable if they are diagnosed and treated before dissemination. However, once they spread beyond the initial primary location, these cancers are usually highly morbid, if not fatal. Thus, current efforts focus on both limiting initial dissemination and preventing secondary spread. There are two modes of tumor dissemination - invasion and metastasis - each leading to unique therapeutic challenges and likely to be driven by distinct mechanisms. However, these two forms of dissemination utilize some common strategies to accomplish movement from the primary tumor, establishment in an ectopic site, and survival therein. The adaptive behaviors of motile cancer cells provide an opening for therapeutic approaches if we understand the molecular, cellular, and tissue biology that underlie them. Herein, we review the signaling cascades and organ reactions that lead to dissemination, as these are non-genetic in nature, focusing on cell migration as the key to tumor progression. In this context, the cellular phenotype will also be discussed because the modes of migration are dictated by quantitative and physical aspects of the cell motility machinery.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh and Pittsburgh VAHS, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Zhou ZN, Boimel PJ, Segall JE. Tumor-stroma: In vivo assays and intravital imaging to study cell migration and metastasis. DRUG DISCOVERY TODAY. DISEASE MODELS 2011; 8:95-112. [PMID: 22081771 PMCID: PMC3212048 DOI: 10.1016/j.ddmod.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of metastatic disease is often correlated with poor patient outcome in a variety of different cancers. The metastatic cascade is a complex, multistep process that involves the growth of the primary tumor and angiogenesis, invasion into the local environment, intravasation into the vasculature, tumor cell survival in the circulation, extravasation from the vasculature and sustained growth at secondary organ sites to form metastases. Although in vitro assays of single cell types can provide information regarding cell autonomous mechanisms contributing to metastasis, the in vivo microenvironment entails a network of interactions between cells which is also important. Insight into the mechanisms underlying tumor cell migration, invasion and metastasis in vivo has been aided by development of multiphoton microscopy and in vivo assays, which we will review here.
Collapse
Affiliation(s)
| | | | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology
- Gruss Lipper Center for Biophotonics
| |
Collapse
|
10
|
Zal T, Chodaczek G. Intravital imaging of anti-tumor immune response and the tumor microenvironment. Semin Immunopathol 2010; 32:305-17. [PMID: 20652252 DOI: 10.1007/s00281-010-0217-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/01/2010] [Indexed: 01/13/2023]
Abstract
Tumor growth, invasiveness, and metastasis are dynamic processes involving cancer interactions with the extracellular matrix, the vasculature, and various types of non-cancerous host cells that form the tumor stroma. An often-present stromal component is the immune cells, such as tumor-associated myeloid and lymphocytic infiltrates, yet endogenous anti-tumor immune responses are typically ineffective in tumor rejection and may even contribute to the progression of some cancers. How exactly cancer cells interact with the stroma and invade healthy tissues while avoiding anti-tumor immune responses, and which interactions should be targeted for anti-tumor therapy, can now be studied by minimally invasive observation using multiphoton and other low impact confocal microscopy techniques and fluorescent animal tumor models. Intravital video microscopy has already been instrumental in defining the roles and modes of cellular motility in the angiogenic process and during tissue invasion at the tumor margin. In the hands of cancer immunologists, intravital video microscopy is beginning to unravel the complexity of effector and suppressory lymphocytic interactions in tumors and in the draining lymphoid organs. As the intravital microscopy approach is beginning to move beyond fundamental description and into analyzing the molecular underpinnings of cell's dynamics, future technical advances will undoubtedly provide yet deeper insight while stitching together a systems dynamics view of cancer-host interactions that will keep on inspiring cancer researchers and therapists.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas MD Anderson Cancer Center, Unit 902, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
11
|
Räsänen K, Vaheri A. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. Exp Cell Res 2010; 316:1739-47. [DOI: 10.1016/j.yexcr.2010.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 12/13/2022]
|
12
|
Mathias RA, Chen YS, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration. J Proteome Res 2010; 9:1007-19. [PMID: 19954229 DOI: 10.1021/pr900907g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process whereby immotile epithelial cells escape structural constraints imposed by cellular architecture and acquire a phenotype characteristic of migratory mesenchymal cells. Implicated in carcinoma progression and metastasis, EMT has been the focus of several recent proteomics-based studies aimed at identifying new molecular players. To gain insights into extracellular mediators associated with EMT, we conducted an extensive proteomic analysis of the secretome from MDCK cells following oncogenic Ras-induced EMT (21D1 cells). Using Orbitrap technology and a label-free quantitative approach, differential expression of several secreted modulators were revealed. Proteomic findings were further substantiated by mRNA transcript expression analysis with 71% concordance. MDCK cells undergoing Ras-induced EMT remodel the extracellular matrix (ECM) via diminished expression of basement membrane constituents (collagen type IV and laminin 5), up-regulation of extracellular proteases (MMP-1, kallikreins -6 and -7), and increased production and secretion of ECM constituents (SPARC, collagen type I, fibulins -1 and -3, biglycan, and decorin). Collectively, these findings suggest that hierarchical regulation of a subset of extracellular effectors may coordinate a biological response during EMT that enhances cell motility. Transient silencing of MMP-1 in 21D1 cells via siRNA-mediated knockdown attenuated cell migration. Many of the secretome proteins identified broaden our understanding of the EMT process.
Collapse
Affiliation(s)
- Rommel A Mathias
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Harris MP, Kim E, Weidow B, Wikswo JP, Quaranta V. Migration of isogenic cell lines quantified by dynamic multivariate analysis of single-cell motility. Cell Adh Migr 2009; 2:127-36. [PMID: 19271355 DOI: 10.4161/cam.2.2.6482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is essential in many physiological and pathological processes. To understand this complex behavior, researchers have turned to quantitative, in vitro, image-based measurements to dissect the steps of cellular motility. With the rise of automated microscopy, the bottleneck in these approaches is no longer data acquisition, but data analysis. Using time-lapse microscopy and computer-assisted image analysis, we have developed a novel, quantitative assay that extracts a multivariate profile for cellular motility. This technique measures three dynamic parameters per single cell: speed, surface area, and an in-dex of cell expansion/contraction activity (DECCA). Our assay can be used in combination with a variety of extracellular matrix components, or other soluble agents, to analyze the effects of the microenvironment on cellular migration dynamics in vitro. Our application was developed and tested using A431 and HT-1080 cell lines plated on laminin-332 or fibronectin substrates. Our results indicate that HT-1080 cells migrate faster, have a greater surface area, and have a higher DECCA index than A431 cells on both matrices (for all parameters, p < 0.05). Spearman's correlation coefficients suggest that for these cell lines and matrices, various combinations of the three measurements display low to medium-high levels of correlation. These findings compare well with previous literature. Our approach provides new tools to measure cellular migration dynamics and address questions on the relationship between cell motility and the microenvironment, using only common microscopy techniques, accessible image analysis applications, and a basic desktop computer for image processing.
Collapse
Affiliation(s)
- Mark P Harris
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-6840, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
The primary cause of cancer treatment failure is invasion and metastasis, and invading tumor cells utilize many of the motility patterns that have been documented for normal morphogenesis. Recently, the role of mechanical forces in guiding various tissue and cell movements in embryonic development has been systematically analyzed with new experimental and computational methods. The tissue and cellular mechanobiology approach also holds promise for increasing the understanding of tumor invasion. In fact, the mechanical stiffness of tumors has correlated with invasiveness, and manipulation of extracellular matrix (ECM) stiffness in vitro has suppressed the cancer phenotype. Several important signaling molecules reside on the cytoskeleton, which is affected by external stress imparted by the ECM, and deformation of the nucleus can trigger the activation of certain genes. All these observations suggest that a synthesis of the biology of cancer cell invasion and cellular mechanobiology may offer new targets for the treatment of malignant disease. Accordingly, sensitive and relevant in vivo models and methods to study cancer mechanobiology are needed.
Collapse
Affiliation(s)
- Milan Makale
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California 92093-0819, USA.
| |
Collapse
|
15
|
Sutton A, Friand V, Brulé-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O, Poiré A, Saffar L, Kraemer M, Vassy J, Nahon P, Salzmann JL, Gattegno L, Charnaux N. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res 2007; 5:21-33. [PMID: 17259344 DOI: 10.1158/1541-7786.mcr-06-0103] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The aim of this study was to determine whether the chemokine stromal cell-derived factor 1 (SDF-1) induces the growth, migration, and invasion of human hepatoma cells. We show that SDF-1 G protein-coupled receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), and SDF-1 mRNA are expressed in human hepatoma Huh7 cells, which secrete and bind SDF-1. This binding depends on CXCR4 and glycosaminoglycans. SDF-1 associates with CXCR4, and syndecan-4 (SDC-4), a heparan sulfate proteoglycan at the plasma membrane of Huh7 cells, induces the growth of Huh7 cells by promoting their entry into the cell cycle, and inhibits the tumor necrosis factor-alpha-mediated apoptosis of the cells. SDF-1 also reorganizes Huh7 cytoskeleton and induces tyrosine phosphorylation of focal adhesion kinase. Finally, SDF-1 activates matrix metalloproteinase-9, resulting in increased migration and invasion of Huh7 cells. These biological effects of SDF-1 were strongly inhibited by the CXCR4 antagonist AMD3100, by a glycosaminoglycan, heparin, as well as by beta-D-xyloside treatment of the cells, or by c-jun NH(2)-terminal kinase/stress-activated protein kinase inhibitor. Therefore, the CXCR4, glycosaminoglycans, and the mitogen-activated protein kinase signaling pathways are involved in these events. The fact that reducing SDC-4 expression by RNA interference decreased SDF-1-induced Huh7 hepatoma cell migration and invasion strongly indicates that SDC-4 may be an auxiliary receptor for SDF-1. Finally, the fact that CXCR4 is expressed in hepatocellular carcinoma cells from liver biopsies indicates that the in vitro results reported here could be extended to in vivo conditions.
Collapse
Affiliation(s)
- Angela Sutton
- UPRES 3410, Université Paris XIII, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Degradation of elastin, the main amorphous component of elastic fibers, by elastases belonging to the serine, metallo, or cysteine families leads to the generation of elastin fragments, designated as elastokines in keeping with their cytokine-like properties. Generation of elastokines from one of the longest lived protein in human might represent a strong tissue repair signal. Indeed, they (1) exhibit potent chemotactic activity for leukocytes, (2) stimulate fibroblast and smooth muscle cell proliferation, and (3) display proangiogenic activity as potent as VEGF. However, continuous exposure of cells to these matrikines, through increased elastase(s) expression with age, can contribute to the formation of a chronic inflammatory state, that is, inflamm-aging. Importantly, binding of elastokines to S-Gal, their cognate receptor, proved to stimulate matrix metalloproteinase expression in normal and cancer cells. Besides, these elastin fragments can polarize lymphocytes toward a Th-1 response or induce an osteogenic response in smooth muscle cells, and arterial wall calcification. In this chapter, emphasis will be made on the contribution of elastokines on the genesis of age-related arterial wall diseases, particularly abdominal aortic aneurysms (AAAs). An elastokine theory of AAAs progression will be proposed. Age is one main risk factor of cancer incidence and development. The myriad of biological effects exerted by elastokines on stromal and inflammatory cells led us to hypothesize that they might be main actors in elaborating a favorable cancerization field in melanoma; for instance these peptides could catalyze the vertical growth phase transition in melanoma through increased expression of gelatinase A and membrane-type 1 matrix metalloproteinase.
Collapse
Affiliation(s)
- Frank Antonicelli
- Faculty of Medicine Extracellular Matrix and Cell Signaling--Reims University, UMR 6198 CNRS 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
17
|
Sidani M, Wyckoff J, Xue C, Segall JE, Condeelis J. Probing the microenvironment of mammary tumors using multiphoton microscopy. J Mammary Gland Biol Neoplasia 2006; 11:151-63. [PMID: 17106644 DOI: 10.1007/s10911-006-9021-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Advances in optical imaging technologies that allow the subcellular resolution of undissected tissue have begun to offer new clues into the biology of development and disease. For cancer, such advances mean that the primary tumor is no longer a black box and that the disease can be studied throughout the metastatic cascade and not just as an endpoint. In this review we examine the advances in multiphoton imaging technology that have been used to define the microenvironment and its role in delineating the invasion and intravasation steps of metastasis inside living mammary tumors. Results show that the tumor microenvironment is a dynamic place where interactions between tumor cells, macrophages, blood vessels, and extracellular matrix fibers define the metastatic phenotype.
Collapse
Affiliation(s)
- Mazen Sidani
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Expression of melanoma invasiveness, ultimately leading to the formation of metastases, requires that cancer cells break through the successive skin barriers (dermo-epidermal junction, dermis) constituted of various extracellular matrix constituents. In order to facilitate their progression, melanoma cells express, in concert with stromal cells, a group of proteolytic systems which degrade this extracellular structures. However, proteolysis of basement membrane, collagen or elastic fibers can uncover cryptic sites or/and liberate matrix fragments whose properties appeared distinct from their intact macromolecule counterparts. Those fragments, called matrikines, are able to empede or to accelerate melanoma progression ex vivo and in vivo. Non-collagenous domains of basement membrane collagens, which behave like potent "matstatins", are seen as potential pharmacological agents in melanoma.
Collapse
Affiliation(s)
- W Hornebeck
- Umr 6198 Cnrs, Ifr 53 Biomolécules Faculté de médecine, Université de Reims Champagne-Ardenne, 51, rue Cognacq Jay, F 51095 Reims Cedex
| | | |
Collapse
|
19
|
Astigiano S, Damonte P, Fossati S, Boni L, Barbieri O. Fate of embryonal carcinoma cells injected into postimplantation mouse embryos. Differentiation 2005; 73:484-90. [PMID: 16351692 DOI: 10.1111/j.1432-0436.2005.00043.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Embryonal carcinoma (EC) cells, stem cells of teratocarcinoma, represent an excellent model to study the developmental mechanisms that, inappropriately reactivated, can drive tumorigenesis. EC cells are very aggressive, and grow rapidly when injected into adult syngeneic mice. However, when injected into blastocysts, they revert to normality, giving rise to chimeric animals. In order to study the ability of postimplantation embryonic environment to "normalize" tumorigenic cells, and to study their homing, we transplanted F9, Nulli-SCC1, and P19 EC cells into 8 to 15-day allogenic CD1 mouse embryos, into allogenic CD1 newborns, and into syngeneic adult mice, and evaluated tumor formation, spreading, and homing. We found that, although at all embryonic stages successful transplantation occurred, the chances of developing tumors after birth increased with the time of injection of EC cells into the embryo. In addition, using enhanced green fluorescent protein-expressing F9 cells, we demonstrated that the cells not giving rise to tumors remained latent and could be tracked down in tissues during adulthood. Our data indicate that the embryonic environment retains a certain ability to "normalize" tumor cells also during post-implantation development. This could occur through yet unknown epigenetic signals triggering EC cells' differentiation.
Collapse
Affiliation(s)
- Simonetta Astigiano
- S.S. Animali Transgenici, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | | | | | | | | |
Collapse
|
20
|
Kumarakulasingham M, Rooney PH, Dundas SR, Telfer C, Melvin WT, Curran S, Murray GI. Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 2005; 11:3758-65. [PMID: 15897573 DOI: 10.1158/1078-0432.ccr-04-1848] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The cytochromes P450 (P450) are a multigene family of enzymes with a central role in the oxidative metabolism of a wide range of xenobiotics, including anticancer drugs, carcinogens, and endogenous compounds. The purpose of this study was to define the P450 profile of colorectal cancer and establish the prognostic significance of expression of individual P450s in colorectal cancer. EXPERIMENTAL DESIGN Immunohistochemistry for a panel of 23 P450s was done on a colorectal cancer tissue microarray consisting of 264 primary colorectal cancers, 91 lymph node metastasis, and 10 normal colorectal samples. The intensity of immunoreactivity in each sample was established by light microscopy. RESULTS The most frequently expressed form of P450 in normal colon was CYP3A4. In primary colorectal cancer, several P450s (CYP1B1, CYP2S1, CYP2U1, CYP3A5, and CYP51) were present at a significantly higher level of intensity compared with normal colon. P450 expression was also detected in lymph node metastasis and the presence of several P450s (CYP1B1, CYP2A/2B, CYP2F1, CYP4V2, and CYP39) in the lymph node metastasis strongly correlated with their presence in corresponding primary tumors. The presence of strong CYP51 (log-rank = 12.11, P = 0.0005) or strong CYP2S1 (log-rank = 6.72, P = 0.0095) immunoreactivity were associated with poor prognosis. CYP51 was also an independent marker of prognosis (P = 0.009). CONCLUSIONS The expression of individual P450s has been established in colorectal cancer. Several P450s show increased expression in colorectal cancer. High expression of CYP51 or CYP2S1 were associated with poor prognosis and CYP51 is an independent marker of prognosis.
Collapse
Affiliation(s)
- Meera Kumarakulasingham
- Department of Pathology, University of Aberdeen and Auvation, Ltd., Aberdeen, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Alessandro R, Flugy AM, Russo D, Stassi G, De Leo A, Corrado C, Alaimo G, De Leo G. Identification and phenotypic characterization of a subpopulation of T84 human colon cancer cells, after selection on activated endothelial cells. J Cell Physiol 2005; 203:261-72. [PMID: 15484219 DOI: 10.1002/jcp.20236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extravasation of metastatic cells is regulated by molecular events involving the initial adhesion of tumor cells to the endothelium and subsequently the migration of the cells in the host connective tissue. The differences in metastatic ability could be attributed to properties intrinsic of the various primary tumor types. Thus, the clonal selection of neoplastic cells during cancer progression results in cells better equipped for survival and formation of colonies in secondary sites. A cell line (T84SF) exhibiting an altered phenotypic appearance was selected from a colon cancer cell line (T84) by repetitive plating on TNFalpha-activated human endothelial cells and subsequent selection for adherent cells. Cell growth, motility, chemoinvasive abilities, tyrosine phosphorylation signaling, and the metastasis formation in nude mice of the two cell lines was compared. T84SF cells displayed in vitro an higher proliferation rate and a more invasive behavior compared to the parental cells while formed in vivo a greater number of metastatic colonies in nude mice. As concerns the signaling underlying the phenotypes of the selected cells, we examined the general tyrosine phosphorylation levels in both cell lines. Our results indicate that T84SF have an increased basal tyrosine phosphorylation of several proteins among which src kinase was identified. Treatment of cells with a specific inhibitor of src activity caused a greater in vitro inhibition of proliferation and invasive properties of T84 parental cells with respect to T84SF cells and diminished metastasis formation in vivo. Altogether, these data provide evidences that this new cell line may be valuable for identifying molecular mechanisms involved in the metastatic progression of colon cancer.
Collapse
Affiliation(s)
- R Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Extracellular matrix and the development of disease: The role of its components in cancer progression. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-3349(05)15007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Nicholson BE, Frierson HF, Conaway MR, Seraj JM, Harding MA, Hampton GM, Theodorescu D. Profiling the evolution of human metastatic bladder cancer. Cancer Res 2004; 64:7813-21. [PMID: 15520187 DOI: 10.1158/0008-5472.can-04-0826] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary metastases frequently develop in patients with aggressive bladder cancer, yet investigation of this process at the molecular level suffers from the poor availability of human metastatic tumor tissue and the absence of suitable animal models. To address this, we developed progressively more metastatic human bladder cancer cell lines and an in vivo bladder-cancer lung-metastasis model, and we successfully used these to identify genes of which the expression levels change according to the degree of pulmonary metastatic potential. By initially intravenously injecting the poorly metastatic T24T human urothelial cancer cells into nude mice, and then serially reintroducing and reisolating the human tumor cells from the resultant mouse lung tumors, three derivative human lines with increasingly metastatic phenotypes, designated FL1, FL2, and FL3, were sequentially isolated. To identify the genes associated with the most lung-metastatic phenotype, the RNA complement from the parental and derivative cells was evaluated with oligonucleotide microarrays. In doing so, we found 121 genes to be progressively up-regulated during the transition from T24T to FL3, whereas 43 genes were progressively down-regulated. As expected, many of the genes identified in these groups could, according to the ascribed functions of their protein product, theoretically participate in tissue invasion and metastasis. In addition, the magnitude of gene expression changes observed during the metastatic transition correlated with the in vivo propensity for earlier lung colonization and decreased host survival. To additionally define which genes found in the experimental system were of relevance to human bladder cancer lung metastasis, we evaluated gene expression profiles of 23 primary human bladder tumors of various stages and grades, and then we compared these gene expression profiles to the altered profiles in our model cell lines. Here we found that the expression of epiregulin, urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)14, and tissue inhibitor of metalloproteinase (TIMP-2) were consistently and progressively up-regulated when viewed as a function of tumor stage in tissues of patients versus the metastatic potential seen in the mouse lung model. The strong correlation of these four markers between the experimental and clinical situations helps validate this system as a useful tool for the study of lung metastasis and defines targets of therapy that may reduce the incidence of this process in patients.
Collapse
Affiliation(s)
- Brian E Nicholson
- Department of Molecular Physiology and Biological Physics, Division of Biostatistics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hintermann E, Quaranta V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 2004; 23:75-85. [PMID: 15246107 DOI: 10.1016/j.matbio.2004.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 01/10/2023]
Abstract
Cell migration plays a central role in a wide variety of biological events, including embryogenesis, inflammatory immune response, wound healing, or cancer invasion. Tight regulation of cell motility is a prerequisite for normal development and maintenance of an organism, and to avoid metastatic spread of tumor cells. An important determinant of migratory efficiency is the substrate over which a cell migrates. Laminin-5 (Ln-5) is an extracellular matrix component prominent in basement membranes and as such it is a substrate in direct contact with epithelial cells. Interestingly, Ln-5 has been shown to both stimulate and downregulate epithelial cell migration. In this article, we plan to give an overview on the different mechanisms cells employ to regulate their migratory behavior on Ln-5. We will discuss how proteolytic processing of Ln-5 acts as posttranslational modification that plays a major role in the regulation of cell migration. The different proteolytic Ln-5 species may bind to distinct cell surface receptors called integrins, which translate substrate binding into a specific cellular response that triggers cell motility. Furthermore, interaction between Ln-5-binding integrins and other transmembrane and cytoplasmic proteins increases complexity and may allow fine-tuning of cell migration in response to the cellular environment.
Collapse
Affiliation(s)
- Edith Hintermann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Hornebeck W, Birembaut P. Introduction: Stroma reaction and cancer progression. Crit Rev Oncol Hematol 2004; 49:177-8. [PMID: 15036257 DOI: 10.1016/j.critrevonc.2003.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2003] [Indexed: 02/05/2023] Open
|
26
|
Affiliation(s)
- Chia-Ling Hsieh
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Program in Motility and Invasion, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
28
|
Abstract
Cancer is the second most common cause of death among Americans, although for several age groups it ranks first. Most of these deaths are not due to the primary tumour but rather to tumour cell metastases to distant organs. There are many steps that lead to metastasis, all of which are being studied with the goal of preventing these fatalities. Normally, cells attach to the extracellular matrix to maintain tissue integrity. During cancer progression, cells become more motile and acquire invasive qualities. Tumour cells move along blood and lymph vessels or invade into them to travel to distant sites. Then, the tumour cells must attach to the vessel wall, extravasate from the vessel, invade the new tissue, proliferate, and form a secondary tumour. Angiogenesis, the formation of new blood vessels, is critical to survival of these cells at the new site and is also important for primary tumour growth and spread. Tumour cell metastasis is a complex cascade of sequential steps, each of which is not yet fully understood. Progress has been made in identifying several key activators, one of which is the extracellular matrix. A major tumour promoter is the glycoprotein laminin, which is predominantly found in the extracellular matrix produced by endothelial and epithelial cells. This review will follow the metastatic process with particular attention to the effect of laminin on tumour cells.
Collapse
Affiliation(s)
- Jean A Engbring
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health/DHHS, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | | |
Collapse
|