1
|
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J 2023; 122:99-113. [PMID: 36403087 PMCID: PMC9822800 DOI: 10.1016/j.bpj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Tissue factor pathway inhibitor (TFPI) is one such inhibitor, well known for its inhibitory action on the active enzyme complex comprising tissue factor (TF) and activated clotting factor VII. This complex forms when TF embedded in the blood vessel wall is exposed by injury and initiates coagulation. A different role for TFPI, independent of TF:VIIa, has recently been discovered whereby TFPI binds a partially cleaved form of clotting factor V (FV-h) and impedes thrombin generation on activated platelet surfaces. We hypothesized that this TF-independent inhibitory mechanism on platelet surfaces would be a more effective platform for TFPI than the TF-dependent one. We examined the effects of this mechanism on thrombin generation by including the relevant biochemical reactions into our previously validated mathematical model. Additionally, we included the ability of TFPI to bind directly to and inhibit platelet-bound FXa. The new model was sensitive to TFPI levels and, under some conditions, TFPI could completely shut down thrombin generation. This sensitivity was due entirely to the surface-mediated inhibitory reactions. The addition of the new TFPI reactions increased the threshold level of TF needed to elicit a strong thrombin response under flow, but the concentration of thrombin achieved, if there was a response, was unchanged. Interestingly, we found that direct binding of TFPI to platelet-bound FXa had a greater anticoagulant effect than did TFPI binding to FV-h alone, but that the greatest effects occurred if both reactions were at play. The model includes activated platelets' release of FV species, and we explored the impact of varying the FV/FV-h composition of the releasate. We found that reducing the zymogen FV fraction of this pool, and thus increasing the fraction that is FV-h, led to acceleration of thrombin generation.
Collapse
Affiliation(s)
- Kenji Miyazawa
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Karin Leiderman
- Mathematics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
2
|
Nechipurenko DY, Shibeko AM, Sveshnikova AN, Panteleev MA. In Silico Hemostasis Modeling and Prediction. Hamostaseologie 2020; 40:524-535. [PMID: 32916753 DOI: 10.1055/a-1213-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Computational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient "virtual thrombus formation," and what one can already get from the existing models.
Collapse
Affiliation(s)
- Dmitry Y Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
3
|
Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27:57-95. [PMID: 29550179 DOI: 10.1016/j.plrev.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
Hemostasis is a complex physiological mechanism that functions to maintain vascular integrity under any conditions. Its primary components are blood platelets and a coagulation network that interact to form the hemostatic plug, a combination of cell aggregate and gelatinous fibrin clot that stops bleeding upon vascular injury. Disorders of hemostasis result in bleeding or thrombosis, and are the major immediate cause of mortality and morbidity in the world. Regulation of hemostasis and thrombosis is immensely complex, as it depends on blood cell adhesion and mechanics, hydrodynamics and mass transport of various species, huge signal transduction networks in platelets, as well as spatiotemporal regulation of the blood coagulation network. Mathematical and computational modeling has been increasingly used to gain insight into this complexity over the last 30 years, but the limitations of the existing models remain profound. Here we review state-of-the-art-methods for computational modeling of thrombosis with the specific focus on the analysis of unresolved challenges. They include: a) fundamental issues related to physics of platelet aggregates and fibrin gels; b) computational challenges and limitations for solution of the models that combine cell adhesion, hydrodynamics and chemistry; c) biological mysteries and unknown parameters of processes; d) biophysical complexities of the spatiotemporal networks' regulation. Both relatively classical approaches and innovative computational techniques for their solution are considered; the subjects discussed with relation to thrombosis modeling include coarse-graining, continuum versus particle-based modeling, multiscale models, hybrid models, parameter estimation and others. Fundamental understanding gained from theoretical models are highlighted and a description of future prospects in the field and the nearest possible aims are given.
Collapse
|
4
|
Liu T, Liu S, Zhang K, Chen J, Huang N. Endothelialization of implanted cardiovascular biomaterial surfaces: The development fromin vitrotoin vivo. J Biomed Mater Res A 2013; 102:3754-72. [DOI: 10.1002/jbm.a.35025] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Shihui Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
- Naton Institute of Medical Technology, Naton Medical Group; Peking China
| | - Kun Zhang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Junying Chen
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| |
Collapse
|
5
|
MAKIN JOSEPHG, NARAYANAN SRINI. A HYBRID-SYSTEM MODEL OF THE COAGULATION CASCADE: SIMULATION, SENSITIVITY, AND VALIDATION. J Bioinform Comput Biol 2013; 11:1342004. [DOI: 10.1142/s0219720013420043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.
Collapse
Affiliation(s)
- JOSEPH G. MAKIN
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
- International Computer Science Institute, Berkeley, CA 94720, USA
| | - SRINI NARAYANAN
- International Computer Science Institute, Division of Cognitive Science and Institute of Cognitive and Brain Sciences, University of California, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA
| |
Collapse
|
6
|
Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance. Blood 2013; 121:2587-95. [PMID: 23327927 DOI: 10.1182/blood-2012-09-456715] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Directional migration determines hematopoietic stem/progenitor cell (HSPC) homing, which depends upon the interaction between the chemokine CXCL12 and its receptor CXCR4. CD26 is a widely expressed membrane-bound ectopeptidase that cleaves CXCL12 thereby depleting its chemokine activity. We identified tissue-factor pathway inhibitor (TFPI) as a biological inhibitor of CD26 in murine and human HSPCs. We observed low-level TFPI expression in endothelial cells in the bone marrow (BM), which did not increase following radiation injury. Treatment of HSPCs with TFPI in vitro led to enhanced HSPC migration toward CXCL12, as well as homing and engraftment in the BM upon transplantation. We found that Glypican-3 (GPC3), a heparan sulfate proteoglycan expressed on murine as well as human HSPCs, mediated this effect. TFPI did not affect CD26 activity, migration, or homing of GPC3(-/-) HSPCs, while it affected GPC1(-/-) HSPCs similar to wild-type HSPCs. Moreover, proliferation of GPC3(-/-) but not GPC1(-/-) BM HSPCs was significantly increased, which was associated with a decrease in the primitive HSC pool in BM and an increase in proportion of the circulating HSPCs in the peripheral blood. Hence, we present a novel role for TFPI and GPC3 in regulating HSC homing as well as retention in the BM.
Collapse
|
7
|
Abstract
Injury-induced bleeding is stopped by a hemostatic plug formation that is controlled by a complex nonlinear and spatially heterogeneous biochemical network of proteolytic enzymes called blood coagulation. We studied spatial dynamics of thrombin, the central enzyme of this network, by developing a fluorogenic substrate-based method for time- and space-resolved imaging of thrombin enzymatic activity. Clotting stimulation by immobilized tissue factor induced localized thrombin activity impulse that propagated in space and possessed all characteristic traits of a traveling excitation wave: constant spatial velocity, constant amplitude, and insensitivity to the initial stimulation once it exceeded activation threshold. The parameters of this traveling wave were controlled by the availability of phospholipids or platelets, and the wave did not form in plasmas from hemophilia A or C patients who lack factors VIII and XI, which are mediators of the two principal positive feedbacks of coagulation. Stimulation of the negative feedback of the protein C pathway with thrombomodulin produced nonstationary patterns of wave formation followed by deceleration and annihilation. This indicates that blood can function as an excitable medium that conducts traveling waves of coagulation.
Collapse
|
8
|
Shah K, Bayoumi R, Banerjee Y. Protein anticoagulants targeting factor VIIa-tissue factor complex: a comprehensive review. Hematology 2012; 18:1-7. [PMID: 22980919 DOI: 10.1179/1607845412y.0000000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Anticoagulants are pivotal for the treatment of debilitating thromboembolic and associated disorders. Current anticoagulants such as heparin and warfarin are non-specific and have a narrow therapeutic window. These limitations have provided the impetus to develop new anticoagulant therapies/strategies that target specific factors in the blood coagulation cascade, ideally those located upstream in the clotting process. Factor VIIa (FVIIa) presents an attractive target as it, in complex with tissue factor (TF), acts as the prima ballerina for the formation of blood clot. A comprehensive review delineating the structure-activity relationship of protein/peptide anticoagulants targeting FVIIa or TF-FVIIa complex is absent in the literature. In this article, we have addressed this deficit by appraising the peptide/protein anticoagulants that target FVIIa/TF-FVIIa complex. Further, the current status of these anticoagulants, with regard to their performance in different clinical trials has also been presented. Lastly, the unexplored domains of these unique proteins have also been highlighted, which will facilitate further translational research in this paradigm, to improve strategies to counter and treat thromboembolic disorders.
Collapse
Affiliation(s)
- Karna Shah
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, SQ University, Muscat, Oman
| | | | | |
Collapse
|
9
|
El-Hagracy RS, Kamal GM, Sabry IM, Saad AA, Abou El Ezz NF, Nasr HAR. Tissue Factor, Tissue Factor Pathway Inhibitor and Factor VII Activity in Cardiovascular Complicated Type 2 Diabetes Mellitus. Oman Med J 2011; 25:173-8. [PMID: 22043333 DOI: 10.5001/omj.2010.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Tissue factor (TF) is the main initiator of the extrinsic coagulation pathway through factor VII (FVII) activation, which is physiologically inhibited by tissue factor pathway inhibitor (TFPI). Alteration of this pathway has been described in Type 2 diabetes mellitus (T2DM). The aim of this study is to assess TF and TFPI plasma levels and FVII coagulant activity (FVIIa) in T2DM in relation to cardiothrombotic disease and their correlation to metabolic and clinical behavior of the patients. METHODS The study was conducted on 80 T2DM patients divided to accordingly; groupI: 40 patients without a history or clinically detected heart disease, and groupII: 40 patients with a history of myocardial infarction compared to 30 controls. The patients were recruited from Ain Shams University diabetes clinic from September 2007 to February 2009 after informed consent was obtained. Peripheral blood samples were taken for measurement of plasma TF and TFPI levels using ELISA technique and quantitative FVIIa using FVII deficient plasma. RESULTS Plasma levels of TF, TFPI and FVIIa were significantly higher in T2DM patients compared to the controls (p<0.001). TF (236.50±79.23)and TFPI (242.33±85.84)were significantly higher in group II, compared to group I (150.33±81.16), (152.8± 82.46), (p<0.001). TF and TFPI were significantly correlated to body mass index and glycemic control. Also, TF and TFPI were significantly higher in hypertensives (p=0.001) and dyslipidemics (p=0.006) but not in smokers (p=0.64), (p=0.11) respectively. CONCLUSION There was a correlation between high TF, TFPI plasma levels, FVIIa activity and cardiothrombotic complications in T2DM especially in the presence of high risk factors such as poor glycemic control, dyslipidemia and obesity. Future target therapy against TF may be beneficial for T2DM patients.
Collapse
|
10
|
Shibeko AM, Lobanova ES, Panteleev MA, Ataullakhanov FI. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC SYSTEMS BIOLOGY 2010; 4:5. [PMID: 20102623 PMCID: PMC2823678 DOI: 10.1186/1752-0509-4-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/26/2010] [Indexed: 11/23/2022]
Abstract
Background Blood coagulation is a complex network of biochemical reactions, which is peculiar in that it is time- and space-dependent, and has to function in the presence of rapid flow. Recent experimental reports suggest that flow plays a significant role in its regulation. The objective of this study was to use systems biology techniques to investigate this regulation and to identify mechanisms creating a flow-dependent switch in the coagulation onset. Results Using a detailed mechanism-driven model of tissue factor (TF)-initiated thrombus formation in a two-dimensional channel we demonstrate that blood flow can regulate clotting onset in the model in a threshold-like manner, in agreement with existing experimental evidence. Sensitivity analysis reveals that this is achieved due to a combination of the positive feedback of TF-bound factor VII activation by activated factor X (Xa) and effective removal of factor Xa by flow from the activating patch depriving the feedback of "ignition". The level of this trigger (i.e. coagulation sensitivity to flow) is controlled by the activity of tissue factor pathway inhibitor. Conclusions This mechanism explains the difference between red and white thrombi observed in vivo at different shear rates. It can be speculated that this is a special switch protecting vascular system from uncontrolled formation and spreading of active coagulation factors in vessels with rapidly flowing blood.
Collapse
Affiliation(s)
- Alexey M Shibeko
- National Research Center for Hematology, 4a Novyi Zykovskii pr, Moscow 125167, Russia
| | | | | | | |
Collapse
|
11
|
DelGiudice LA, White GA. The role of tissue factor and tissue factor pathway inhibitor in health and disease states. J Vet Emerg Crit Care (San Antonio) 2009; 19:23-9. [PMID: 19691583 DOI: 10.1111/j.1476-4431.2008.00380.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review the veterinary and human literature on the role of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in health and disease states. DATA SOURCES Original research articles and scientific reviews from both human and veterinary literature were searched for relevance to TF and TFPI. HUMAN DATA SYNTHESIS Interest in both TF and TFPI has grown widely over the last several years. The impact TF plays in coagulation, inflammation, angiogenesis, tumor metastasis, and cellular signaling has become apparent. Treatment with TFPI for severe sepsis has been examined and is still currently under investigation. Inhibition of the TF pathway is being studied as an aid in the treatment of neoplasia. The important physiologic and pathophysiologic role these molecules play has only begun to be understood. VETERINARY DATA SYNTHESIS There is a paucity of publications that discuss the importance of TF and TFPI in veterinary medicine. An enhanced understanding of the TF pathway in human medicine, in experimental animal models treating sepsis with TFPI, and in animal models demonstrating the proangiogenic properties of TF provides relevance to veterinary medicine. CONCLUSION It is apparent that TF and TFPI are important in health and disease. An enhanced understanding of the physiologic and pathophysiologic roles of these factors provides better insight into coagulation, inflammation, angiogenesis, disseminated intravascular coagulation, and tumor metastasis. This greater understanding may provide for the development of therapeutics for sepsis, disseminated intravascular coagulation, and neoplasia.
Collapse
|
12
|
Textured and Smooth Breast Implants: Is There a Difference in the Chemical Structure of Silicone? Ann Plast Surg 2009; 63:373-7. [DOI: 10.1097/sap.0b013e3181953791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Audu P, Nielsen VG, Armstead V, Powell G, Kim J, Kim L, Mehta M. The Impact of Tissue Factor Pathway Inhibitor on Coagulation Kinetics Determined by Thrombelastography. Anesth Analg 2006; 103:841-5. [PMID: 17000790 DOI: 10.1213/01.ane.0000237285.40106.1e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is a 40-kDa, endogenous protein that inhibits tissue factor (TF)-initiated coagulation by bonding with activated factor X (FXa). The TFPI/FXa complex then subsequently binds with TF/activated factor VII (FVIIa) complex, ultimately inhibiting thrombin generation. Heparin administration causes endothelial release of TFPI concentrations up to sixfold normal values. Thrombelastography (TEG) is often used to monitor hemostasis in the perioperative period, and TFPI could potentially affect the diagnostic interpretation of TEG-based data, given its inhibition of both common and TF coagulation pathways. Thus, in this study we characterized the effect of TFPI on coagulation kinetics via TEG. METHODS Whole blood, Factor VII-deficient plasma, and normal plasma were exposed in vitro to various concentrations of TFPI, after which unmodified, celite-activated, and TF-activated TEG were performed. RESULTS The addition of 87.5 ng/mL TFPI (twice normal concentration) was required to prolong clot propagation in whole blood, with propagation and strength only significantly affected by the addition of 175 ng/mL concentrations. Experiments with Factor VII-deficient plasma demonstrated that TFPI-mediated suppression of coagulation kinetics at these concentrations was secondary to FXa inhibition. Celite activation markedly attenuated TFPI-mediated effects on coagulation kinetics, whereas TF activation accentuated TFPI-mediated prolongation of clot initiation and diminution of propagation. CONCLUSIONS In settings involving heparin administration (e.g., cardiopulmonary bypass), TFPI-mediated inhibition of coagulation should be considered during TEG-based hemostatic monitoring.
Collapse
Affiliation(s)
- Paul Audu
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Anand M, Rajagopal K, Rajagopal KR. A Model for the Formation and Lysis of Blood Clots. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 34:109-20. [PMID: 16432312 DOI: 10.1159/000089931] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both biochemical and mechanical factors have to be taken into account if a meaningful model for the formation, growth, and lysis of clots in flowing blood is to be developed. Most models that are currently in use neglect one or the other of these factors. We have previously reported a model [J Theoret Med 2003;5:183-218] that we believe is a step in this direction, incorporating many of the crucial biochemical and rheological factors that play a role in the formation, growth, and lysis of clots. While this model takes into account the extrinsic pathway of coagulation, it largely ignores the intrinsic pathway. Here, we discuss some of the general issues with respect to mathematical modeling of thrombus formation and lysis, as well as specific aspects of the model that we have developed.
Collapse
Affiliation(s)
- M Anand
- Department of Mechanical Engineering, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
15
|
Ataullakhanov FI, Panteleev MA. Mathematical Modeling and Computer Simulation in Blood Coagulation. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 34:60-70. [PMID: 16432308 DOI: 10.1159/000089927] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the last two decades, mathematical modeling has become a popular tool in study of blood coagulation. The in silico methods were able to yield interesting and significant results in the understanding of both individual reaction mechanisms and regulation of large sections of the coagulation cascade. The objective of this paper is to review the development of theoretical research in hemostasis and thrombosis, to summarize the main findings, and outline problems and possible prospects in the use of mathematical modeling and computer simulation approaches. This review is primarily focused on the studies dealing with: (1) the membrane-dependent reactions of coagulation; (2) regulation of the coagulation cascade, including effects of positive and negative feedback loops, diffusion of coagulation factors, and blood flow.
Collapse
Affiliation(s)
- Fazoil I Ataullakhanov
- Laboratory of Physical Biochemistry of Blood, National Research Center for Hematology, Russian Academy of Medical Sciences, Moscow.
| | | |
Collapse
|
16
|
Panteleev MA, Ovanesov MV, Kireev DA, Shibeko AM, Sinauridze EI, Ananyeva NM, Butylin AA, Saenko EL, Ataullakhanov FI. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys J 2005; 90:1489-500. [PMID: 16326897 PMCID: PMC1367302 DOI: 10.1529/biophysj.105.069062] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blood coagulation in vivo is a spatially nonuniform, multistage process: coagulation factors from plasma bind to tissue factor (TF)-expressing cells, become activated, dissociate, and diffuse into plasma to form enzymatic complexes on the membranes of activated platelets. We studied spatial regulation of coagulation using two approaches: 1), an in vitro experimental model of clot formation in a thin layer of plasma activated by a monolayer of TF-expressing cells; and 2), a computer simulation model. Clotting in factor VIII- and factor XI-deficient plasmas was initiated normally, but further clot elongation was impaired in factor VIII- and, at later stages, in factor XI-deficient plasma. The data indicated that clot elongation was regulated by factor Xa formation by intrinsic tenase, whereas factor IXa was formed by extrinsic tenase on activating cells and diffused into plasma, thus sustaining clot growth. Far from the activating cells, additional factor IXa was produced by factor XIa. Exogenously added TF had no effect on the clot growth rate, suggesting that plasma TF does not contribute significantly to the clot propagation process in a reaction-diffusion system without flow. Addition of thrombomodulin at 3-100 nM caused dose-dependent termination of clot elongation with a final clot size of 2-0.2 mm. These results identify roles of specific coagulation pathways at different stages of spatial clot formation (initiation, elongation, and termination) and provide a possible basis for their therapeutic targeting.
Collapse
Affiliation(s)
- Mikhail A Panteleev
- Laboratory of Physical Biochemistry of Blood, National Research Center for Hematology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Anand M, Rajagopal K, Rajagopal KR. A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood. ACTA ACUST UNITED AC 2003. [DOI: 10.1080/10273660412331317415] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple interacting mechanisms control the formation and dissolution of clots to maintain blood in a state of delicate balance. In addition to a myriad of biochemical reactions, rheological factors also play a crucial role in modulating the response of blood to external stimuli. To date, a comprehensive model for clot formation and dissolution, that takes into account the biochemical, medical and rheological factors, has not been put into place, the existing models emphasizing either one or the other of the factors. In this paper, after discussing the various biochemical, physiologic and rheological factors at some length, we develop a model for clot formation and dissolution that incorporates many of the relevant crucial factors that have a bearing on the problem. The model, though just a first step towards understanding a complex phenomenon, goes further than previous models in integrating the biochemical, physiologic and rheological factors that come into play.
Collapse
Affiliation(s)
- M. Anand
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77843, USA
| | - K. Rajagopal
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - K. R. Rajagopal
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77843, USA
| |
Collapse
|