1
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
2
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
3
|
Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, Ramirez BE, Peet NP, Caffrey M, Thatcher GRJ, Saphire EO, Cheng H, Rong L. Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathog 2021; 17:e1009312. [PMID: 33539432 PMCID: PMC7888603 DOI: 10.1371/journal.ppat.1009312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.
Collapse
Affiliation(s)
- Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Raghad Nowar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Biophysics core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Benjamin E Ramirez
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America.,NMR Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois, United States of America
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
High level stable expression of recombinant HIV gp120 in glutamine synthetase gene deficient HEK293T cells. Protein Expr Purif 2021; 181:105837. [PMID: 33529763 DOI: 10.1016/j.pep.2021.105837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
Due to the important pathological roles of the HIV-1 gp120, the protein has been intensively used in the research of HIV. However, recombinant gp120 preparation has proven to be difficult because of extremely low expression levels. In order to facilitate gp120 expression, previous methods predominantly involved the replacement of native signal peptide with a heterologous one, resulting in very limited improvement. Currently, preparation of recombinant gp120 with native glycans relies solely on transient expression systems, which are not amendable for large scale production. In this work, we employed a different approach for gp120 expression. Besides replacing the native gp120 signal peptide with that of rat serum albumin and optimizing its codon usage, we generated a stable gp120-expressing cell line in a glutamine synthetase knockout HEK293T cell line that we established for the purpose of amplification of recombinant gene expressions. The combined usage of these techniques dramatically increased gp120 expression levels and yielded a functional product with human cell derived glycan. This method may be applicable to large scale preparation of other viral envelope proteins, such as that of the emerging SARS-CoV-2, or other glycoproteins which require the presence of authentic human glycans.
Collapse
|
5
|
Identification of Novel Structural Determinants in MW965 Env That Regulate the Neutralization Phenotype and Conformational Masking Potential of Primary HIV-1 Isolates. J Virol 2018; 92:JVI.01779-17. [PMID: 29237828 DOI: 10.1128/jvi.01779-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The subtype C HIV-1 isolate MW965.26 is a highly neutralization-sensitive tier 1a primary isolate that is widely used in vaccine studies, but the basis for the sensitive neutralization phenotype of this isolate is not known. Substituting the MW965.26 V1/V2 domain into a neutralization-sensitive SF162 Env clone resulted in high resistance to standard anti-V3 monoclonal antibodies, demonstrating that this region possesses strong masking activity in a standard Env backbone and indicating that determinants elsewhere in MW965.26 Env are responsible for its unusual neutralization sensitivity. Key determinants for this phenotype were mapped by generating chimeric Envs between MW965.26 Env and a typical resistant Env clone, the consensus C (ConC) clone, and localized to two residues, Cys384 in the C3 domain and Asn502 in the C5 domain. Substituting the sensitizing mutations Y384C and K502N at these positions into several resistant primary Envs resulted in conversion to neutralization-sensitive phenotypes, demonstrating the generalizability of this effect. In contrast to the sensitizing effects of these substitutions on normally masked epitopes, these mutations reduced the sensitivity of VRC01-like epitopes overlapping the CD4-binding domain, while they had no effect on several other classes of broadly neutralizing epitopes, including members of several lineages of V2-dependent quaternary epitopes and representatives of N332 glycan-dependent epitopes (PGT121) and quaternary, cleavage-dependent epitopes centered at the gp41-gp120 interface on intact HIV-1 Env trimers (PGT151). These results identify novel substitutions in gp120 that regulate the expression of alternative conformations of Env and differentially affect the exposure of different classes of epitopes, thereby influencing the neutralization phenotype of primary HIV-1 isolates.IMPORTANCE A better understanding of the mechanisms that determine the wide range of neutralization sensitivity of circulating primary HIV-1 isolates would provide important information about the natural structural and conformational diversity of HIV-1 Env and how this affects the neutralization phenotype. A useful way of studying this is to determine the molecular basis for the unusually high neutralization sensitivities of the limited number of available tier 1a viruses. This study localized the neutralization sensitivity of MW965.26, an extremely sensitive subtype C-derived primary isolate, to two rare substitutions in the C3 and C5 domains and demonstrated that the sequences at these positions differentially affect the presentation of epitopes recognized by different classes of standard and conformation-dependent broadly neutralizing antibodies. These results provide novel insight into how these regions regulate the neutralization phenotype and provide tools for controlling the Env conformation that could have applications both for structural studies and in vaccine design.
Collapse
|
6
|
Kingsley CN, Antanasijevic A, Palka-Hamblin H, Durst M, Ramirez B, Lavie A, Caffrey M. Probing the metastable state of influenza hemagglutinin. J Biol Chem 2017; 292:21590-21597. [PMID: 29127198 DOI: 10.1074/jbc.m117.815043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Indexed: 12/24/2022] Open
Abstract
Viral entry into host cells is mediated by membrane proteins in a metastable state that transition to a more stable state upon a stimulus. For example, in the influenza envelope protein hemagglutinin (HA), the low pH in the endosome triggers a transition from the metastable prefusion conformation to the stable fusion conformation. To identify probes that interfere with HA function, here we screened a library of H7 HA peptides for inhibition of H7 HA-mediated entry. We discovered a peptide, PEP87 (WSYNAELLVAMENQHTI), that inhibited H7 and H5 HA-mediated entry. PEP87 corresponds to a highly conserved helical region of the HA2 subunit of HA that self-interacts in the neutral pH conformation. Mutagenesis experiments indicated that PEP87 binds to its native region in the HA trimer. We also found that PEP87 is unstructured in isolation but tends to form a helix as evidenced by CD and NMR studies. Fluorescence, chemical cross-linking, and saturation transfer difference NMR data suggested that PEP87 binds to the neutral pH conformation of HA and disrupts the HA structure without affecting its oligomerization state. Together, this work provides support for a model in which PEP87 disrupts HA function by displacing native interactions of the neutral pH conformation. Moreover, our observations indicate that the HA prefusion structure (and perhaps the metastable states of other viral entry proteins) is more dynamic with transient motions being larger than generally appreciated. These findings also suggest that the ensemble of prefusion structures presents many potential sites for targeting in therapeutic interventions.
Collapse
Affiliation(s)
- Carolyn N Kingsley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Aleksandar Antanasijevic
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Helena Palka-Hamblin
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Matthew Durst
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Benjamin Ramirez
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Arnon Lavie
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Michael Caffrey
- From the Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
7
|
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells. Front Microbiol 2016; 7:110. [PMID: 26903989 PMCID: PMC4746247 DOI: 10.3389/fmicb.2016.00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Tadahito Kanda
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan; Department of Research Promotion, Division of Infectious Disease Research, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
8
|
Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013; 8:e75665. [PMID: 24086607 PMCID: PMC3784573 DOI: 10.1371/journal.pone.0075665] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022] Open
Abstract
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
Collapse
|
9
|
Calborean O, Mernea M, Avram S, Mihailescu DF. Pharmacological descriptors related to the binding of Gp120 to CD4 corresponding to 60 representative HIV-1 strains. J Enzyme Inhib Med Chem 2012; 28:1015-25. [PMID: 22957718 DOI: 10.3109/14756366.2012.705836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The standardization of HIV-1 strains for vaccine tests include the use of viral reference panels. We determined a series of pharmacological descriptors (molecular surfaces, volumes, electrostatic energies, solvation energies, number of atoms, number of hydrogen donors or acceptors and number of rigid bonds) for the gp120 CD4-binding sites structures in the unliganded state from a reference panel of 60 diverse strains of HIV-1. We identified the descriptors that varied significantly between the strains, the outliner strains for each descriptor set and the possible correlations between the descriptors. Our results improve the knowledge about gp120, its molecular and possible neutralization properties.
Collapse
Affiliation(s)
- Octavian Calborean
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest , Splaiul Independentei, Bucharest , Romania
| | | | | | | |
Collapse
|
10
|
Celigoy J, Ramirez B, Tao L, Rong L, Yan L, Feng YR, Quinnan GV, Broder CC, Caffrey M. Probing the HIV gp120 envelope glycoprotein conformation by NMR. J Biol Chem 2011; 286:23975-81. [PMID: 21592971 DOI: 10.1074/jbc.m111.251025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The HIV envelope glycoprotein gp120 plays a critical role in virus entry, and thus, its structure is of extreme interest for the development of novel therapeutics and vaccines. To date, high resolution structural information about gp120 in complex with gp41 has proven intractable. In this study, we characterize the structural properties of gp120 in the presence and absence of gp41 domains by NMR. Using the peptide probe 12p1 (sequence, RINNIPWSEAMM), which was identified previously as an entry inhibitor that binds to gp120, we identify atoms of 12p1 in close contact with gp120 in the monomeric and trimeric states. Interestingly, the binding mode of 12p1 with gp120 is similar for clades B and C. In addition, we show a subtle difference in the binding mode of 12p1 in the presence of gp41 domains, i.e. the trimeric state, which we interpret as small differences in the gp120 structure in the presence of gp41.
Collapse
Affiliation(s)
- Jessica Celigoy
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sen J, Yan T, Wang J, Rong L, Tao L, Caffrey M. Alanine scanning mutagenesis of HIV-1 gp41 heptad repeat 1: insight into the gp120-gp41 interaction. Biochemistry 2010; 49:5057-65. [PMID: 20481578 DOI: 10.1021/bi1005267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of mutagenesis, biochemical, and structural studies, heptad repeat 1 of HIV gp41 (HR1) has been shown to play numerous critical roles in HIV entry, including interacting with gp120 in prefusion states and interacting with gp41 heptad repeat 2 (HR2) in the fusion state. Moreover, HR1 is the site of therapeutic intervention by enfuviritide, a peptide analogue of HR2. In this study, the functional importance of each amino acid residue in gp41 HR1 has been systematically examined by alanine scanning mutagenesis, with subsequent characterization of the mutagenic effects on folding (as measured by incorporation into virions), association with gp120, and membrane fusion. The mutational effects on entry can be grouped into three classes: (1) wild type (defined as >40% of wild-type entry), (2) impaired (defined as 5-40% of wild-type entry), and (3) nonfunctional (defined as <5% of wild-type entry). Interestingly, the majority of HR1 mutations (77%) exhibit impaired or nonfunctional entry. Surprisingly, effects of mutations on folding, association, or fusion are not correlated to heptad position; however, folding defects are most often found in the N-terminal region of HR1. Moreover, disruption of the gp41-gp120 interaction is correlated to the C-terminal region of HR1, suggesting that this region interacts most closely with gp120. In summary, the sensitivity of gp41 HR1 to alanine substitutions suggests that even subtle changes in the local environment may severely affect envelope function, thereby strengthening the notion that HR1 is an attractive site for therapeutic intervention.
Collapse
Affiliation(s)
- Jayita Sen
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
12
|
A low-molecular-weight entry inhibitor of both CCR5- and CXCR4-tropic strains of human immunodeficiency virus type 1 targets a novel site on gp41. J Virol 2010; 84:7288-99. [PMID: 20427524 DOI: 10.1128/jvi.00535-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A low-molecular-weight human immunodeficiency virus type 1 (HIV-1) inhibitor, PF-68742 (molecular weight, 573), has been identified in a high-throughput screen for compounds that block HIV-1 envelope glycoprotein (Env)-mediated fusion. The compound is shown to be potent against R5 and X4 isolates in both cell-cell fusion and antiviral assays (50% effective concentrations of approximately 0.1 to 1 muM). Postfusion and HIV-1 pseudotyping control experiments confirm that PF-68742 is an entry inhibitor with Env as the specific target for antiviral action. PF-68742 was not able to block binding of monomeric gp120 to soluble CD4 or the binding of gp120:CD4 complexes to cell-associated CCR5, thus distinguishing PF-68742 from described gp120 antagonists and coreceptor binders. Escape variants of HIV-1(NL4-3) were selected, and all resistant viruses were found to contain a common G514R (HxB2 numbering) mutation in Env, located proximal to the furin cleavage site in the fusion peptide of gp41. When introduced into wild-type NL4-3 gp41, G514R conferred resistance to PF-68742. Resistance via G514R is shown to be associated with enhancement of virion infectivity by PF-68742 that may result from altered properties of inhibitor-bound Env, rather than from a loss of compound binding. Wild-type viruses and those with substitutions in the disulfide loop (DSL) region of gp41 were also examined for PF-68742 sensitivity. Here, complete resistance to PF-68742 was found to occur through changes outside of position 514, including in the gp41 DSL region. The results highlight PF-68742 as a starting point for novel therapies against HIV-1 and provide new insights into models of Env-mediated fusion.
Collapse
|
13
|
Moebius K, Eichler J. HIV-derived peptide mimics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2009; 6:e1-e40. [PMID: 24128988 DOI: 10.1016/j.ddtec.2009.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
14
|
Wang J, Sen J, Rong L, Caffrey M. Role of the HIV gp120 conserved domain 1 in processing and viral entry. J Biol Chem 2008; 283:32644-9. [PMID: 18815131 DOI: 10.1074/jbc.m806099200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of the N-terminal region of HIV gp120 conserved domain 1 (gp120-C1) to envelope function has been examined by alanine-scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry; envelope expression, processing, and incorporation; and gp120 association with gp41. With respect to the wild-type gp120, mutational effects on viral entry fall into two classes: functional, as defined by >20% entry with respect to wild type, and impaired, as defined by <20% entry with respect to wild type. Based on Western blot analyses of cell lysates and virions, the entry impairment of W35A, V38A, Y39A, Y40A, G41A, V42A, and I52A is due primarily to disruption of envelope processing. The entry impairment of P43A and W45A is apparently due to a combination of effects on processing and incorporation into virions. In contrast, the entry impairment of V44A and F53A is primarily due to disruption of the gp120-gp41 interaction, which results in dissociation of gp120 from the virion. We present a model for gp120-C1 interactions with gp120-C5 and the gp41 disulfide loop in unprocessed gp160 and processed gp120/gp41.
Collapse
Affiliation(s)
- Jizhen Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
15
|
Lapidot A, Berchanski A, Borkow G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 2008; 275:5236-57. [PMID: 18803669 DOI: 10.1111/j.1742-4658.2008.06657.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, based on peptide models of HIV-1 RNA binding, NMR structures of Tat-responsive element-ligand complexes and aminoglycoside-RNA interactions, and HIV-1 Tat structure, we have designed and synthesized aminoglycoside-arginine conjugates (AACs) and aminoglycoside poly-arginine conjugates (APACs), to serve as Tat mimetics. These novel molecules inhibit HIV-1 infectivity with 50% effective concentration values in the low micromolar range, the most potent compounds being the hexa-arginine-neomycin B and nona-D-arginine-neomycin conjugates. Importantly, these compounds, in addition to acting as Tat antagonists, inhibit HIV-1 infectivity by blocking several steps in HIV-1 cell entry. The AACs and APACs inhibit HIV-1 cell entry by interacting with gp120 at the CD4-binding site, by interacting with CXCR4 at the binding site of the CXCR4 mAb 12G5, and apparently by interacting with transient structures of the ectodomain of gp41. In the current review, we discuss the mechanisms of anti-HIV-1 activities of these AACs, APACs and other aminoglycoside derivatives in detail. Targeting several key processes in the viral life cycle by the same compound not only may increase its antiviral efficacy, but more importantly, may reduce the capacity of the virus to develop resistance to the compound. AACs and APACs may thus serve as leading compounds for the development of multitargeting novel HIV-1 inhibitors.
Collapse
Affiliation(s)
- Aviva Lapidot
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
16
|
Abstract
The importance of the HIV gp120 conserved domain 5 (gp120-C5) to envelope function has been examined by alanine scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry and envelope expression, processing, and incorporation, as well as gp120 association with gp41. With respect to the wild-type gp120, mutational effects on viral entry fall into three classes: (1) functional (V489A, E492A, P493A, T499A, K500A, K502A, R503A, R504A, V505A, and V506A; (2) nonfunctional (I491A, L494A, V496A, and P498A); (3) enhanced (K490A, G495A, and Q507A). The nonfunctionality of the mutants is attributed to a combination of deleterious effects on processing, gp120-gp41 association, and membrane fusion. In the case of the nonfunctional mutant P498A, the introduction of the SOS mutation (A501C/T601C) results in substantially increased envelope processing and a gain of function. The effects of the mutants are interpreted with respect to the structures of gp41 and gp120. The extent of sensitivity of gp120-C5 to alanine substitutions underscores the importance of this domain to envelope function and suggests that gp120-C5 is an attractive and novel target for future drug discovery efforts.
Collapse
|
17
|
Kim S, Pang HB, Kay MS. Peptide mimic of the HIV envelope gp120-gp41 interface. J Mol Biol 2007; 376:786-97. [PMID: 18178220 DOI: 10.1016/j.jmb.2007.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/29/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, USA
| | | | | |
Collapse
|
18
|
Sen J, Jacobs A, Jiang H, Rong L, Caffrey M. The disulfide loop of gp41 is critical to the furin recognition site of HIV gp160. Protein Sci 2007; 16:1236-41. [PMID: 17525470 PMCID: PMC2206660 DOI: 10.1110/ps.072771407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of the HIV gp41 conserved disulfide loop to envelope function has been examined by mutational and functional analyses. Based on a luciferase-reporter entry assay, mutants gp41-CC/AA (C598A/C604A) and gp41-Delta (deletion of residues 596-606) result in a nonfunctional envelope protein. Western blot analysis shows both mutants to be properly expressed but not processed to form gp120 and gp41, which explains their nonfunctionality. The presence of mutant gp160 on the cell surface, as well as their ability to bind to sCD4, suggests that the mutations have disrupted processing at the furin recognition site encoded within the gp120 conserved domain 5, without resulting in an overall misfolding of the protein. With respect to the furin recognition site, the mutations are sequentially distant, which implies that the gp41 disulfide loop is interacting with gp120 C5 in gp160. In addition, we have modeled the gp120-gp41 interaction in unprocessed precursor gp160 using structural data available for gp120 and gp41 domains in isolation, supplemented by mutagenesis data. We suggest that the mutations have altered the interaction between gp120 C5 and the gp41 disulfide loop, resulting in decreased accessibility of the furin recognition site and implying that the interaction between the gp120 C5 and gp41 loop is a conformational requirement for gp160 processing. The sensitivity of this interaction could be exploited in future antivirals designed to disrupt HIV pathogenesis by disrupting gp160 processing.
Collapse
Affiliation(s)
- Jayita Sen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
19
|
Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6:1917-32. [PMID: 17391016 PMCID: PMC2588348 DOI: 10.1021/pr060394e] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.
Collapse
Affiliation(s)
- Hongbo Xie
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Slobodan Vucetic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Lilia M. Iakoucheva
- Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10021
| | - Christopher J. Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, IN 46202
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence should be addressed to: Vladimir N. Uversky, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS#4021, Indianapolis, IN 46202, USA; Phone: 317-278-9194; Fax: 317-274-4686; E-mail:
| |
Collapse
|
20
|
York J, Nunberg JH. Role of hydrophobic residues in the central ectodomain of gp41 in maintaining the association between human immunodeficiency virus type 1 envelope glycoprotein subunits gp120 and gp41. J Virol 2004; 78:4921-6. [PMID: 15078976 PMCID: PMC387687 DOI: 10.1128/jvi.78.9.4921-4926.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between the gp120 and gp41 subunits of the human immunodeficiency virus envelope glycoprotein serves to stabilize the virion form of the complex and to transmit receptor-induced conformational changes in gp120 to trigger the membrane fusion activity of gp41. In this study, we used site-directed mutagenesis to identify amino acid residues in the central ectodomain of gp41 that contribute to the stability of the gp120-gp41 association. We identified alanine mutations at six positions, including four tryptophan residues, which result in mutant envelope glycoprotein complexes that fail to retain gp120 on the cell surface. These envelope glycoproteins readily shed their gp120 and are unable to mediate cell-cell fusion. These findings suggest an important role for the conserved bulky hydrophobic residues in stabilizing the gp120-gp41 complex.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, The University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
21
|
Park S, Caffrey MS, Johnson ME, Fung LWM. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 2003; 278:21837-44. [PMID: 12672815 DOI: 10.1074/jbc.m300617200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution NMR structure of a recombinant peptide that consists of the first 156 residues of erythroid alpha-spectrin. The first 20 residues preceding the first helix (helix C') are in a disordered conformation. The subsequent three helices (helices A1, B1, and C1) form a triple helical bundle structural domain that is similar, but not identical, to previously published structures for spectrin from Drosophila and chicken brain. Paramagnetic spin label-induced NMR resonance broadening shows that helix C', the partial domain involved in alpha- and beta-spectrin association, exhibits little interaction with the structural domain. Surprisingly, helix C' is connected to helix A1 of the structural domain by a segment of 7 residues (the junction region) that exhibits a flexible disordered conformation, in contrast to the predicted rigid helical structure. We suggest that the flexibility of this particular junction region may play an important role in modulating the association affinity of alpha- and beta-spectrin at the tetramerization site of different isoforms, such as erythroid spectrin and brain spectrin. These findings may provide insight for explaining various physiological and pathological conditions that are a consequence of varying alpha- and beta-subunit self-association affinities in their formation of the various spectrin tetramers.
Collapse
Affiliation(s)
- Sunghyouk Park
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|