1
|
Katsavou E, Sarafoglou C, Balabanidou V, Skoufa E, Nauen R, Linka M, Geibel S, Denecke S, Vontas J. Characterisation of lepidopteran geranylgeranyl diphosphate synthase as a putative pesticide target. INSECT MOLECULAR BIOLOGY 2024; 33:147-156. [PMID: 37962063 DOI: 10.1111/imb.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ralf Nauen
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Marc Linka
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Sven Geibel
- R&D Pest Control, Crop Science Division, Bayer AG, Monheim am Rhein, Germany
| | - Shane Denecke
- Department of Biology, University of Crete, Crete, Greece
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- Department of Biology, University of Crete, Crete, Greece
| |
Collapse
|
2
|
Song X, Liu C, Dhiloo KH, Yi CQ, Zhang TT, Zhang YJ. Functional characterization of a geranylgeranyl diphosphate synthase in the leaf beetle Monolepta hieroglyphica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22088. [PMID: 38349673 DOI: 10.1002/arch.22088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.
Collapse
Affiliation(s)
- Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chang Liu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Khalid H Dhiloo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Chao-Qun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Song X, Qin YG, Zhang YH, Zhou YB, Li ZX. Farnesyl/geranylgeranyl diphosphate synthases regulate the biosynthesis of alarm pheromone in a unique manner in the vetch aphid Megoura viciae. INSECT MOLECULAR BIOLOGY 2023; 32:229-239. [PMID: 36533988 DOI: 10.1111/imb.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/13/2022] [Indexed: 05/15/2023]
Abstract
Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.
Collapse
Affiliation(s)
- Xuan Song
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yi-Han Zhang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yu-Bei Zhou
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zheng-Xi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Yang X, Jiang X, Yan W, Huang Q, Sun H, Zhang X, Zhang Z, Ye W, Wu Y, Govers F, Liang Y. The Mevalonate Pathway Is Important for Growth, Spore Production, and the Virulence of Phytophthora sojae. Front Microbiol 2021; 12:772994. [PMID: 36338274 PMCID: PMC9635365 DOI: 10.3389/fmicb.2021.772994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 09/29/2023] Open
Abstract
The mevalonate (MVA) pathway in eukaryotic organisms produces isoprenoids, sterols, ubiquinone, and dolichols. These molecules are vital for diverse cellular functions, ranging from signaling to membrane integrity, and from post-translational modification to energy homeostasis. However, information on the MVA pathway in Phytophthora species is limited. In this study, we identified the MVA pathway genes and reconstructed the complete pathway in Phytophthora sojae in silico. We characterized the function of the MVA pathway of P. sojae by treatment with enzyme inhibitor lovastatin, deletion of the geranylgeranyl diphosphate synthase gene (PsBTS1), and transcriptome profiling analysis. The MVA pathway is ubiquitously conserved in Phytophthora species. Under lovastatin treatment, mycelial growth, spore production, and virulence of P. sojae were inhibited but the zoospore encystment rate increased. Heterozygous mutants of PsBTS1 showed slow growth, abnormal colony characteristics, and mycelial morphology. Mutants showed decreased numbers of sporangia and oospores as well as reduced virulence. RNA sequencing analysis identified the essential genes in sporangia formation were influenced by the enzyme inhibitor lovastatin. Our findings elucidate the role of the MVA pathway in P. sojae and provide new insights into the molecular mechanisms underlying the development, reproduction, and virulence of P. sojae and possibly other oomycetes. Our results also provide potential chemical targets for management of plant Phytophthora diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Weiqi Yan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhichao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Picard MÈ, Cusson M, Sen SE, Shi R. Rational design of Lepidoptera-specific insecticidal inhibitors targeting farnesyl diphosphate synthase, a key enzyme of the juvenile hormone biosynthetic pathway. JOURNAL OF PESTICIDE SCIENCE 2021; 46:7-15. [PMID: 33746541 PMCID: PMC7953025 DOI: 10.1584/jpestics.d20-078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reducing the use of broad-spectrum insecticides is one of the many challenges currently faced by insect pest management practitioners. For this reason, efforts are being made to develop environmentally benign pest-control products through bio-rational approaches that aim at disrupting physiological processes unique to specific groups of pests. Perturbation of hormonal regulation of insect development and reproduction is one such strategy. It has long been hypothesized that some enzymes in the juvenile hormone biosynthetic pathway of moths, butterflies and caterpillars (order Lepidoptera) display unique structural features that could be targeted for the development of Lepidoptera-specific insecticides, a promising avenue given the numerous agricultural and forest pests belonging to this order. Farnesyl diphosphate synthase, FPPS, is one such enzyme, with recent work suggesting that it has structural characteristics that may enable its selective inhibition. This review synthesizes current knowledge on FPPS and summarizes recent advances in its use as a target for insecticide development.
Collapse
Affiliation(s)
- Marie-Ève Picard
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
- To whom correspondence should be addressed. E-mail:
| | - Michel Cusson
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Station Ste. Foy, Quebec City, QC, G1V 4C7, Canada
| | - Stephanie E. Sen
- Department of Chemistry, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628, USA
| | - Rong Shi
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
7
|
Feng Y, Morgan RML, Fraser PD, Hellgardt K, Nixon PJ. Crystal Structure of Geranylgeranyl Pyrophosphate Synthase (CrtE) Involved in Cyanobacterial Terpenoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:589. [PMID: 32523588 PMCID: PMC7261888 DOI: 10.3389/fpls.2020.00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized. Here we show that the predicted type II prenyltransferase CrtE encoded by the model cyanobacterium Synechococcus sp. PCC 7002 is homodimeric and able to synthesize C20-geranylgeranyl pyrophosphate (GGPP) from C5-isopentenyl pyrophosphate (IPP) and C5-dimethylallyl pyrophosphate (DMAPP). The crystal structure of CrtE solved to a resolution of 2.7 Å revealed a strong structural similarity to the large subunit of the heterodimeric geranylgeranyl pyrophosphate synthase 1 from Arabidopsis thaliana with each subunit containing 14 helices. Using mutagenesis, we confirmed that the fourth and fifth amino acids (Met-87 and Ser-88) before the first conserved aspartate-rich motif (FARM) play important roles in controlling chain elongation. While the WT enzyme specifically produced GGPP, variants M87F and S88Y could only generate C15-farnesyl pyrophosphate (FPP), indicating that residues with large side chains obstruct product elongation. In contrast, replacement of M87 with the smaller Ala residue allowed the formation of the longer C25-geranylfarnesyl pyrophosphate (GFPP) product. Overall, our results provide new structural and functional information on the cyanobacterial CrtE enzyme that could lead to the development of improved cyanobacterial platforms for terpenoid production.
Collapse
Affiliation(s)
- Yuchi Feng
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - R. Marc L. Morgan
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Klaus Hellgardt
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Ronnebaum TA, Gupta K, Christianson DW. Higher-order oligomerization of a chimeric αβγ bifunctional diterpene synthase with prenyltransferase and class II cyclase activities is concentration-dependent. J Struct Biol 2020; 210:107463. [PMID: 31978464 DOI: 10.1016/j.jsb.2020.107463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The unusual diterpene (C20) synthase copalyl diphosphate synthase from Penicillium verruculosum (PvCPS) is the first bifunctional terpene synthase identified with both prenyltransferase and class II cyclase activities in a single polypeptide chain with αβγ domain architecture. The C-terminal prenyltransferase α domain generates geranylgeranyl diphosphate which is then cyclized to form copalyl diphosphate at the N-terminal βγ domain interface. We now demonstrate that PvCPS exists as a hexamer at high concentrations - a unique quaternary structure for known αβγ terpene synthases. Hexamer assembly is corroborated by a 2.41 Å-resolution crystal structure of the α domain prenyltransferase obtained from limited proteolysis of full-length PvCPS, as well as the ab initio model of full-length PvCPS derived from small-angle X-ray scattering data. Hexamerization of the prenyltransferase α domain appears to drive the hexamerization of full-length PvCPS. The PvCPS hexamer dissociates into lower-order species at lower concentrations, as evidenced by size-exclusion chromatography in-line with multiangle light scattering, sedimentation velocity analytical ultracentrifugation, and native polyacrylamide gel electrophoresis experiments, suggesting that oligomerization is concentration dependent. Even so, PvCPS oligomer assembly does not affect prenyltransferase activity in vitro.
Collapse
Affiliation(s)
- Trey A Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
9
|
Su P, Gao L, Tong Y, Guan H, Liu S, Zhang Y, Zhao Y, Wang J, Hu T, Tu L, Zhou J, Ma B, Huang L, Gao W. Analysis of the role of geranylgeranyl diphosphate synthase 8 from Tripterygium wilfordii in diterpenoids biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:184-192. [PMID: 31203883 DOI: 10.1016/j.plantsci.2019.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Tripterygium wilfordii is known to contain various types of bioactive diterpenoids that exhibit many remarkable activities. Many studies have recently been targeted toward the elucidation of the diterpenoids biosynthetic pathways in attempts to obtain these compounds with a view to solving the dilemma of low yield in plants. However, the short-chain prenyltransferases (SC-PTSs) responsible for the formation of geranylgeranyl diphosphate (GGPP), a crucial precursor for synthesizing the skeleton structures of diterpenoids, have not been characterized in depth. Here, T. wilfordii transcriptome data were used to identify eight putative GGPPSs, including two small subunits of geranyl diphosphate synthase (GPPS.SSU). Of them, GGPPS1, GGPPS7, GGPPS8, GPPS.SSU II and GPPS.SSU were translocated mainly into chloroplasts, and GGPPS8 exhibited the optimal catalytic efficiency with respect to catalyzing the formation of GGPP. In addition, the expression pattern of GGPPS8 was similar to that of downstream terpene synthase genes that are directly correlated with triptolide production in roots, indicating that GGPPS8 was most likely to participate in triptolide biosynthesis in roots among the studied enzymes. GPPS.SSU was inactive alone but interacted with GGPPS1, GGPPS7 and GGPPS8 to change the product from GGPP to GPP. These findings implicate that these candidate genes can be regulated to shift the metabolic flux toward diterpenoid formation, increasing the yields of bioactive diterpenoids in plants.
Collapse
Affiliation(s)
- Ping Su
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Linhui Gao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yuru Tong
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyu Guan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiadian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Petrova TE, Boyko KM, Nikolaeva AY, Stekhanova TN, Gruzdev EV, Mardanov AV, Stroilov VS, Littlechild JA, Popov VO, Bezsudnova EY. Structural characterization of geranylgeranyl pyrophosphate synthase GACE1337 from the hyperthermophilic archaeon Geoglobus acetivorans. Extremophiles 2018; 22:877-888. [PMID: 30062607 DOI: 10.1007/s00792-018-1044-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
A novel type 1 geranylgeranyl pyrophosphate synthase GACE1337 has been identified within the genome of a newly identified hyperthermophilic archaeon Geoglobus acetivorans. The enzyme has been cloned and over-expressed in Escherichia coli. The recombinant enzyme has been biochemically and structurally characterized. It is able to catalyze the synthesis of geranylgeranyl pyrophosphate as a major product and of farnesyl pyrophosphate in smaller amounts, as measured by gas chromatography-mass spectrometry at an elevated temperature of 60 °C. Its ability to produce two products is consistent with the fact that GACE1337 is the only short-chain isoprenyl diphosphate synthase in G. acetivorans. Attempts to crystallize the enzyme were successful only at 37 °C. The three-dimensional structure of GACE1337 was determined by X-ray diffraction to 2.5 Å resolution. A comparison of its structure with those of related enzymes revealed that the Geoglobus enzyme has the features of both type I and type III geranylgeranyl pyrophosphate synthases, which allow it to regulate the product length. The active enzyme is a dimer and has three aromatic amino acids, two Phe, and a Tyr, located in the hydrophobic cleft between the two subunits. It is proposed that these bulky residues play a major role in the synthetic reaction by controlling the product elongation.
Collapse
Affiliation(s)
- Tatiana E Petrova
- Institute of Mathematical Problems of Biology, RAS, Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Professor Vitkevich St., Pushchino, 142290, Russian Federation.
| | - Konstantin M Boyko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Alena Yu Nikolaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Tatiana N Stekhanova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Eugeny V Gruzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Andrey V Mardanov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Viktor S Stroilov
- N. D. Zelinsky Institute of Organic Chemistry (ZIOC RAS), Leninsky Prospekt, 47, Moscow, 119991, Russian Federation
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Vladimir O Popov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| |
Collapse
|
11
|
Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus. Sci Rep 2016; 6:27181. [PMID: 27273151 PMCID: PMC4895135 DOI: 10.1038/srep27181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis.
Collapse
|
12
|
Zhang M, Su P, Zhou YJ, Wang XJ, Zhao YJ, Liu YJ, Tong YR, Hu TY, Huang LQ, Gao W. Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii. PLANT CELL REPORTS 2015; 34:2179-88. [PMID: 26449416 DOI: 10.1007/s00299-015-1860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 05/22/2023]
Abstract
We found triptolide synthesis is correlated with the expressions of TwGGPPS1 and TwGGPPS4 . This lays the foundation for future studies of biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii. Tripterygium wilfordii is a traditional Chinese medical plant commonly used to treat rheumatoid arthritis. One of its main bioactive compounds is triptolide, which is identified as an abietane-type diterpenoid natural product. Geranylgeranyl diphosphate synthase (GGPPS) catalyses the synthesis of GGPP (geranylgeranyl diphosphate), the common precursor of diterpenes, and is therefore a crucial enzyme in diterpene biosynthesis. A previous study showed that GGPP could be catalyzed by copalyl diphosphate synthase and kaurene synthase like of Salvia miltiorrhiza (SmCPS, SmKSL) to miltiradiene, a key intermediate in tanshinone biosynthesis. In this paper, five new full-length cDNAs (TwGGPPS) encoding GGPP synthases were cloned from T. wilfordii. Sequence comparisons revealed that all six TwGGPPSs (including TwGGPPS2 cloned previously) exhibit similarities to GGPPSs of other plants. Subsequent functional complement assays demonstrated that TwGGPPS1, TwGGPPS4 and TwGGPPS5 can participate in miltiradiene biosynthesis in the recombinant E. coli. Correlation analysis of gene expressions and secondary metabolite accumulation indicated that TwGGPPS1 and TwGGPPS4 are likely involved in the biosynthesis of triptolide. These findings lay the foundation for future studies of the biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Jin Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Göteborg, Sweden
| | - Xiu-Juan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Yu-Jun Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu-Jia Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yu-Ru Tong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tian-Yuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Liang MH, Liang YJ, Jin HH, Jiang JG. Characterization and Functional Identification of a Gene Encoding Geranylgeranyl Diphosphate Synthase from Dunaliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7805-7812. [PMID: 26289929 DOI: 10.1021/acs.jafc.5b02732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGPS) catalyzes the biosynthesis of geranylgeranyl diphosphate, a key precursor for carotenoid biosynthesis. In this study, a full-length cDNA encoding GGPS from Dunaliella bardawil (DbGGPS) was isolated by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of DbGGPS was 1814 bp, containing a 1074 bp ORF encoding 357 amino acids with a calculated mass of 38.88 kDa. Analysis of DbGGPS genomic DNA revealed that it contained 10 exons and 9 introns. It was predicted that DbGGPS possessed a 48 amino acid transit peptide at its N terminus. Bioinformatic analysis revealed that DbGGPS was a member of a group of polyprenyltransferases with five conserved domains and two highly conserved aspartate-rich motifs. Using heterologous expression, carotenoid complementation assay, and gene deletion analysis, it was shown that the coding region of DbGGPS encodes a functional GGPS. This provides new gene sources for carotenoid genetic engineering.
Collapse
Affiliation(s)
- Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Ying-Jie Liang
- School of Biological Science & Engineering, South China University of Technology , Guangzhou 510006, China
| | - Hong-Hao Jin
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
14
|
Richter A, Seidl-Adams I, Köllner TG, Schaff C, Tumlinson JH, Degenhardt J. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. PLANTA 2015; 241:1351-61. [PMID: 25680349 DOI: 10.1007/s00425-015-2254-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/26/2015] [Indexed: 05/26/2023]
Abstract
Of the three functional FPPS identified in maize, fpps3 is induced by herbivory to produce FDP important for the formation of the volatile sesquiterpenes of plant defense. Sesquiterpenes are not only crucial for the growth and development of a plant but also for its interaction with the environment. The biosynthesis of sesquiterpenes proceeds over farnesyl diphosphate (FDP), which is either used as a substrate for protein prenylation, converted to squalene, or to volatile sesquiterpenes. To elucidate the regulation of sesquiterpene biosynthesis in maize, we identified and characterized the farnesyl diphosphate synthase (FPPS) gene family which consists of three genes. Synteny analysis indicates that fpps2 and fpps3 originate from a genome duplication in an ancient tetraploid ancestor. The three FPPSs encode active enzymes that produce predominantly FDP from the isopentenyl diphosphate and dimethylallyl diphosphate substrates. Only fpps1 and fpps3 are induced by elicitor treatment, but induced fpps1 levels are much lower and only increased to the amounts of fpps3 levels in intact leaves. Elicitor-induced fpps3 levels in leaves increase to more than 15-fold of background levels. In undamaged roots, transcript levels of fpps1 are higher than those of fpps3, but only fpps3 transcripts are induced in response to herbivory by Diabrotica virgifera virgifera. A kinetic of transcript abundance in response to herbivory in leaves provided further evidence that the regulation of fpps3 corresponds to that of tps23, a terpene synthase, that converts FDP to the volatile (E)-ß-caryophyllene. Our study indicates that the differential expression of fpps1 and fpps3 provides maize with FDP for both primary metabolism and terpene-based defenses. The expression of fpps3 seems to coincide with the herbivore-induced emission of volatile sesquiterpenes that were demonstrated to be important defense signals.
Collapse
Affiliation(s)
- Annett Richter
- Institute of Pharmacy, Martin Luther University Halle, Hoher Weg 8, 06120, Halle, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Han X, Chen CC, Kuo CJ, Huang CH, Zheng Y, Ko TP, Zhu Z, Feng X, Wang K, Oldfield E, Wang AHJ, Liang PH, Guo RT, Ma Y. Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins 2015; 83:37-45. [PMID: 24895191 PMCID: PMC4256133 DOI: 10.1002/prot.24618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules to form a C40 long-chain product OPP, which serves as a side chain of ubiquinone and menaquinone. OPPs belongs to the trans-prenyltransferase class of proteins. The structures of OPPs from Escherichia coli were solved in the apo-form as well as in complexes with IPP and a FPP thio-analog, FsPP, at resolutions of 2.2-2.6 Å, and revealed the detailed interactions between the ligands and enzyme. At the bottom of the active-site tunnel, M123 and M135 act in concert to form a wall which determines the final chain length. These results represent the first ligand-bound crystal structures of a long-chain trans-prenyltransferase and provide new information on the mechanisms of catalysis and product chain elongation.
Collapse
Affiliation(s)
- Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinxin Feng
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Ke Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| |
Collapse
|
16
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
17
|
Barbar A, Couture M, Sen SE, Béliveau C, Nisole A, Bipfubusa M, Cusson M. Cloning, expression and characterization of an insect geranylgeranyl diphosphate synthase from Choristoneura fumiferana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:947-958. [PMID: 23907071 DOI: 10.1016/j.ibmb.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGPPS) catalyzes the condensation of the non-allylic diphosphate, isopentenyl diphosphate (IPP; C5), with allylic diphosphates to generate the C20 prenyl chain (GGPP) used for protein prenylation and diterpenoid biosynthesis. Here, we cloned the cDNA of a GGPPS from the spruce budworm, Choristoneura fumiferana, and characterized the corresponding recombinant protein (rCfGGPPS). As shown for other type-III GGPPSs, rCfGGPPS preferred farnesyl diphosphate (FPP; C15) over other allylic substrates for coupling with IPP. Unexpectedly, rCfGGPPS displayed inhibition by its FPP substrate at low IPP concentration, suggesting the existence of a mechanism that may regulate intracellular FPP pools. rCfGGPPS was also inhibited by its product, GGPP, in a competitive manner with respect to FPP, as reported for human and bovine brain GGPPSs. A homology model of CfGGPPS was prepared and compared to human and yeast GGPPSs. Consistent with its enzymological properties, CfGGPPS displayed a larger active site cavity that can accommodate the binding of FPP and GGPP in the region normally occupied by IPP and the allylic isoprenoid tail, and the binding of GGPP in an alternate orientation seen for GGPP binding to the human protein. To begin exploring the role of CfGGPPS in protein prenylation, its transcripts were quantified by qPCR in whole insects, along with those of other genes involved in this pathway. CfGGPPS was expressed throughout insect development and the abundance of its transcripts covaried with that of other prenylation-related genes. Our qPCR results suggest that geranylgeranylation is the predominant form of prenylation in whole C. fumiferana.
Collapse
Affiliation(s)
- Aline Barbar
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., C.P. 10380, Succ. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Characterization of potential drug targets farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase in Schistosoma mansoni. Antimicrob Agents Chemother 2013; 57:5969-76. [PMID: 24041901 DOI: 10.1128/aac.00699-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis affects over 200 million people worldwide, with over 200,000 deaths annually. Currently, praziquantel is the only drug available against schistosomiasis. We report here that Schistosoma mansoni farnesyl diphosphate synthase (SmFPPS) and geranylgeranyl diphosphate synthase (SmGGPPS) are potential drug targets for the treatment of schistosomiasis. We expressed active, recombinant SmFPPS and SmGGPPS for subsequent kinetic characterization and testing against a variety of bisphosphonate inhibitors. Recombinant SmFPPS was found to be a soluble 44.2-kDa protein, while SmGGPPS was a soluble 38.3-kDa protein. Characterization of the substrate utilization of the two enzymes indicates that they have overlapping substrate specificities. Against SmFPPS, several bisphosphonates had 50% inhibitory concentrations (IC50s) in the low micromolar to nanomolar range; these inhibitors had significantly less activity against SmGGPPS. Several lipophilic bisphosphonates were active against ex vivo adult worms, with worm death occurring over 4 to 6 days. These results indicate that FPPS and GGPPS could be of interest in the context of the emerging resistance to praziquantel in schistosomiasis therapy.
Collapse
|
19
|
Li ZH, Cintrón R, Koon NA, Moreno SNJ. The N-terminus and the chain-length determination domain play a role in the length of the isoprenoid product of the bifunctional Toxoplasma gondii farnesyl diphosphate synthase. Biochemistry 2012; 51:7533-40. [PMID: 22931372 DOI: 10.1021/bi3005335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Toxoplasma gondii possesses a bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS) that synthesizes C(15) and C(20) isoprenoid diphosphates from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This enzyme has a unique arrangement of the fourth and fifth amino acid upstream from the first aspartic rich motif (FARM) where the fourth amino acid is aromatic and the fifth is a cysteine. We mutated these amino acids, converting the enzyme to an absolute FPPS by changing the cysteine to a tyrosine. The enzyme could be converted to an absolute GGPPS by changing both the fourth and fifth amino acids to alanines. We also constructed four mutated TgFPPSs whose regions around the first aspartate rich motif were replaced with the corresponding regions of FPP synthases from Arabidopsis thaliana or Saccharomyces cerevisiae or with the corresponding regions of GGPP synthases from Homo sapiens or S. cerevisiae. We determined that the presence of a cysteine at the fifth position is essential for the TgFPPS bifunctionality. We also found that the length of the N-terminal domain plays a role in determining the specificity and the length of the isoprenoid product. Phylogenetic analysis supports the grouping of this enzyme with other type I FPPSs, but the biochemical data indicate that TgFPPS has unique characteristics that differentiate it from mammalian FPPSs and GGPPSs and is therefore an important drug target.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
20
|
Smanski MJ, Peterson RM, Huang SX, Shen B. Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 2012; 16:132-41. [PMID: 22445175 DOI: 10.1016/j.cbpa.2012.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/15/2022]
Abstract
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Michael J Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
21
|
Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol 2012; 515:163-86. [PMID: 22999174 DOI: 10.1016/b978-0-12-394290-6.00008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diterpenoid natural products cover a vast chemical diversity and include many medicinally and industrially relevant compounds. All diterpenoids derive from a common substrate, (E,E,E)-geranylgeranyl diphosphate, which is cyclized into one of many scaffolds by a diterpene synthase (DTS). While diterpene biosynthesis has been extensively studied in plants and fungi, bacteria are now recognized for their production of unique diterpenoids and are likely to harbor an underexplored reservoir of new DTSs. Bacterial diterpenoid biosynthesis can be exploited for the discovery of new natural products, a better mechanistic understanding of DTSs, and the rational engineering of whole metabolic pathways. This chapter describes methods and protocols for identification and characterization of bacterial DTSs, based on our recent work with the DTSs involved in platensimycin and platencin biosynthesis.
Collapse
|
22
|
Ogawa T, Yoshimura T, Hemmi H. Connected cavity structure enables prenyl elongation across the dimer interface in mutated geranylfarnesyl diphosphate synthase from Methanosarcina mazei. Biochem Biophys Res Commun 2011; 409:333-7. [DOI: 10.1016/j.bbrc.2011.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
23
|
Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J Biol Chem 2010; 286:3729-40. [PMID: 21068379 DOI: 10.1074/jbc.m110.147991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution. Biochem Biophys Res Commun 2010; 393:16-20. [DOI: 10.1016/j.bbrc.2010.01.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/21/2022]
|
25
|
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. THE PLANT CELL 2010; 22:454-67. [PMID: 20139160 PMCID: PMC2845413 DOI: 10.1105/tpc.109.071738] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
26
|
Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 2009; 66:3685-95. [PMID: 19633972 PMCID: PMC11115643 DOI: 10.1007/s00018-009-0100-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/28/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Department of Functional and Evolutionary Entomology, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | |
Collapse
|
27
|
Liang PH. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 2009; 48:6562-70. [PMID: 19537817 DOI: 10.1021/bi900371p] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isoprenoids comprise a family of more than 55000 natural products with great structural variety derived from five-carbon isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Allylic diphosphates such as farnesyl diphosphate (FPP) synthesized from DMAPP and IPP serve as outlet points for a great variety of products. A group of prenyltransferases catalyzing chain elongation of FPP to designated lengths by consecutive condensation reactions with specific numbers of IPP are classified as cis and trans types according to the stereochemistry of the double bonds formed by IPP condensation. The complete kinetics of the multistep IPP condensation reactions by both types of enzymes has been determined using steady-state and pre-steady-state approaches. Because their crystal structures were determined in conjunction with biochemical studies, a more thorough understanding of their catalytic mechanisms, protein conformational changes, and product chain-length determination mechanisms has been gained recently. Since these prenyltransferases play important roles, potent inhibitors have been identified and their cocrystal structures have been determined for drug development. In this review, the current knowledge of these prenyltransferases that synthesize prenyl oligomers or polymers is summarized.
Collapse
Affiliation(s)
- Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
28
|
Noike M, Katagiri T, Nakayama T, Nishino T, Hemmi H. Effect of mutagenesis at the region upstream from the G(Q/E) motif of three types of geranylgeranyl diphosphate synthase on product chain-length. J Biosci Bioeng 2009; 107:235-9. [DOI: 10.1016/j.jbiosc.2008.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/21/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
|
29
|
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:719-33. [PMID: 18466308 DOI: 10.1111/j.1365-313x.2008.03547.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina. The cDNA of P. bellina GDP synthase (PbGDPS) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg(2+) and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.
Collapse
Affiliation(s)
- Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Noike M, Katagiri T, Nakayama T, Koyama T, Nishino T, Hemmi H. The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction. FEBS J 2008; 275:3921-33. [PMID: 18616462 DOI: 10.1111/j.1742-4658.2008.06538.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Motoyoshi Noike
- Department of Biochemistry and Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Moreno SNJ, Li ZH. Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii. Expert Opin Ther Targets 2008; 12:253-63. [PMID: 18269336 DOI: 10.1517/14728222.12.3.253] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Isoprenoids are an extensive group of natural products with diverse structures consisting of various numbers of five carbon isopentenyl diphosphate (IPP) units. OBJECTIVE We review here what is known about the isoprenoid pathway in T. gondii. METHODS Recent primary literature is reviewed. RESULTS/CONCLUSION Genomic evidence points toward the presence of a 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway, similar to the one found in plants, which will produce isopentenyl diphosphate (IPP). The DOXP/MEP pathway has been validated as a target in the related Apicomplexan parasite Plasmodium. The DOXP/MEP pathway in Toxoplasma has not been characterized. Downstream in the pathway, the enzyme farnesyl diphosphate synthase (FPPS) has a central role in forming important intermediates since farnesyl diphosphate (FPP) is a precursor of critical molecules with fundamental biological function such as dolichols, heme a, cholesterol, farnesylated proteins and others. Strong evidence indicates that this enzyme is a valid target for drugs since bisphosphonates, which are specific FPPS inhibitors, inhibited parasite growth in vitro and in vivo. Our hypothesis is that the isoprenoid pathway constitutes a major novel target for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Silvia N J Moreno
- University of Georgia, Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, 500 D. W. Brooks Dr, Athens, Georgia 30602, USA.
| | | |
Collapse
|
32
|
Specific partial reduction of geranylgeranyl diphosphate by an enzyme from the thermoacidophilic archaeon Sulfolobus acidocaldarius yields a reactive prenyl donor, not a dead-end product. J Bacteriol 2008; 190:3923-9. [PMID: 18375567 DOI: 10.1128/jb.00082-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geranylgeranyl reductase from Sulfolobus acidocaldarius was shown to catalyze the reduction of geranylgeranyl groups in the precursors of archaeal membrane lipids, generally reducing all four double bonds. However, when geranylgeranyl diphosphate was subjected to the reductase reaction, only three of the four double bonds were reduced. Mass spectrometry and acid hydrolysis indicated that the allylic double bond was preserved in the partially reduced product derived from geranylgeranyl diphosphate. Thus, the reaction product was shown to be phytyl diphosphate, which is a substrate for archaeal prenyltransferases, unlike the completely reduced compound phytanyl diphosphate.
Collapse
|
33
|
Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. ACTA ACUST UNITED AC 2008; 112:184-99. [DOI: 10.1016/j.mycres.2007.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
|
34
|
Ling Y, Li ZH, Miranda K, Oldfield E, Moreno SNJ. The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J Biol Chem 2007; 282:30804-16. [PMID: 17724033 DOI: 10.1074/jbc.m703178200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Farnesyl-diphosphate synthase (FPPS) catalyzes the synthesis of farnesyl diphosphate, an important precursor of sterols, dolichols, ubiquinones, and prenylated proteins. We report the cloning and characterization of two Toxoplasma gondii farnesyl-diphosphate synthase (TgFPPS) homologs. A single genetic locus produces two transcripts, TgFPPS and TgFPPSi, by alternative splicing. Both isoforms were heterologously expressed in Escherichia coli, but only TgFPPS was active. The protein products predicted from the nucleotide sequences have 646 and 605 amino acids and apparent molecular masses of 69.5 and 64.5 kDa, respectively. Several conserved sequence motifs found in other prenyl-diphosphate synthases are present in both TgFPPSs. TgFPPS was also expressed in the baculovirus system and was biochemically characterized. In contrast to the FPPS of other eukaryotic organisms, TgFPPS is bifunctional, catalyzing the formation of both farnesyl diphosphate and geranylgeranyl diphosphate. TgFPPS localizes to the mitochondria, as determined by the co-localisation of the affinity-purified antibodies against the protein with MitoTracker, and in accord with the presence of an N-terminal mitochondria-targeting signal in the protein. This enzyme is an attractive target for drug development, because the order of inhibition of the enzyme by a number of bisphosphonates is the same as that for inhibition of parasite growth. In summary, we report the first bifunctional farnesyl-diphosphate/geranylgeranyl-diphosphate synthase identified in eukaryotes, which, together with previous results, establishes this enzyme as a valid target for the chemotherapy of toxoplasmosis.
Collapse
Affiliation(s)
- Yan Ling
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
35
|
Cusson M, Béliveau C, Sen SE, Vandermoten S, Rutledge RG, Stewart D, Francis F, Haubruge E, Rehse P, Huggins DJ, Dowling APG, Grant GH. Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: Implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins 2006; 65:742-58. [PMID: 16972283 DOI: 10.1002/prot.21057] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sesquiterpenoid juvenile hormone (JH) regulates insect development and reproduction. Most insects produce only one chemical form of JH, but the Lepidoptera produce four derivatives featuring ethyl branches. The biogenesis of these JHs requires the synthesis of ethyl-substituted farnesyl diphosphate (FPP) by FPP synthase (FPPS). To determine if there exist more than one lepidopteran FPPS, and whether one FPPS homolog is better adapted for binding the bulkier ethyl-branched substrates/products, we cloned three lepidopteran FPPS cDNAs, two from Choristoneura fumiferana and one from Pseudaletia unipuncta. Amino acid sequence comparisons among these and other eukaryotic FPPSs led to the recognition of two lepidopteran FPPS types. Type-I FPPSs display unique active site substitutions, including several in and near the first aspartate-rich motif, whereas type-II proteins have a more "conventional" catalytic cavity. In a yeast assay, a Drosophila FPPS clone provided full complementation of an FPPS mutation, but lepidopteran FPPS clones of either type yielded only partial complementation, suggesting unusual catalytic features and/or requirements of these enzymes. Although a structural analysis of lepidopteran FPPS active sites suggested that type-I enzymes are better suited than type-II for generating ethyl-substituted products, a quantitative real-time PCR assessment of their relative abundance in insect tissues indicated that type-I expression is ubiquitous whereas that of type-II is essentially confined to the JH-producing glands, where its transcripts are approximately 20 times more abundant than those of type-I. These results suggest that type-II FPPS plays a leading role in lepidopteran JH biosynthesis in spite of its apparently more conventional catalytic cavity.
Collapse
Affiliation(s)
- Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, Québec G1V 4C7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH. Crystal Structure of Type-III Geranylgeranyl Pyrophosphate Synthase from Saccharomyces cerevisiae and the Mechanism of Product Chain Length Determination. J Biol Chem 2006; 281:14991-5000. [PMID: 16554305 DOI: 10.1074/jbc.m512886200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate with isopentenyl pyrophosphate to generate C(20) geranylgeranyl pyrophosphate, which is a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether-linked lipid. For short-chain trans-prenyltransferases that synthesize C(10)-C(25) products, bulky amino acid residues generally occupy the fourth or fifth position upstream from the first DDXXD motif to block further elongation of the final products. However, the short-chain type-III GGPPs in eukaryotes lack any large amino acid at these positions. In this study, the first structure of type-III GGPPs from Saccharomyces cerevisiae has been determined to 1.98 A resolution. The structure is composed entirely of 15 alpha-helices joined by connecting loops and is arranged with alpha-helices around a large central cavity. Distinct from other known structures of trans-prenyltransferases, the N-terminal 17 amino acids (9-amino acid helix A and the following loop) of this GGPPs protrude from the helix core into the other subunit and contribute to the tight dimer formation. Deletion of the first 9 or 17 amino acids caused the dissociation of dimer into monomer, and the Delta(1-17) mutant showed abolished enzyme activity. In each subunit, an elongated hydrophobic crevice surrounded by D, F, G, H, and I alpha-helices contains two DDXXD motifs at the top for substrate binding with one Mg(2+) coordinated by Asp(75), Asp(79), and four water molecules. It is sealed at the bottom with three large residues of Tyr(107), Phe(108), and His(139). Compared with the major product C(30) synthesized by mutant H139A, the products generated by mutant Y107A and F108A are predominantly C(40) and C(30), respectively, suggesting the most important role of Tyr(107) in determining the product chain length.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. PLANT PHYSIOLOGY 2006; 141:220-31. [PMID: 16581875 PMCID: PMC1459322 DOI: 10.1104/pp.106.077008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Isoprenoids are the most diverse and abundant group of natural products. In plants, farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors to many isoprenoids having essential functions. Terpenoids and sterols are derived from FPP, whereas gibberellins, carotenoids, casbenes, taxenes, and others originate from GGPP. The corresponding synthases (FPP synthase [FPPS] and GGPP synthase [GGPPS]) catalyze, respectively, the addition of two and three isopentenyl diphosphate molecules to dimethylallyl diphosphate. Maize (Zea mays L. cv B73) endosperm cDNAs encoding isoprenoid synthases were isolated by functional complementation of Escherichia coli cells carrying a bacterial gene cluster encoding all pathway enzymes needed for carotenoid biosynthesis, except for GGPPS. This approach indicated that the maize gene products were functional GGPPS enzymes. Yet, the predicted enzyme sequences revealed FPPS motifs and homology with FPPS enzymes. In vitro assays demonstrated that indeed these maize enzymes produced both FPP and GGPP and that the N-terminal sequence affected the ratio of FPP to GGPP. Their functionality in E. coli demonstrated that these maize enzymes can be coupled with a metabolon to provide isoprenoid substrates for pathway use, and suggests that enzyme bifunctionality can be harnessed. The maize cDNAs are encoded by a small gene family whose transcripts are prevalent in endosperm beginning mid development. These maize cDNAs will be valuable tools for assessing the critical structural properties determining prenyl transferase specificity and in metabolic engineering of isoprenoid pathways, especially in cereal crops.
Collapse
Affiliation(s)
- Miguel Cervantes-Cervantes
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York 10468, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
39
|
Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69:51-78. [PMID: 15755953 PMCID: PMC1082795 DOI: 10.1128/mmbr.69.1.51-78.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.
Collapse
Affiliation(s)
- Daisuke Umeno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Alexander V. Tobias
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
40
|
Lee PC, Petri R, Mijts BN, Watts KT, Schmidt-Dannert C. Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity. Metab Eng 2005; 7:18-26. [PMID: 15721807 DOI: 10.1016/j.ymben.2004.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 05/26/2004] [Indexed: 11/28/2022]
Abstract
Directed evolution of farnesyl diphosphate (FPP, C15) synthase (IspA) of Escherichia coli was carried out by error-prone PCR with a color complementation screen utilizing C40 carotenoid pathway enzymes. This allowed IspA mutants with enhanced production of the C40 carotenoid precursor geranylgeranyl diphosphate (GGPP, C20) to be readily identified. Analysis of these mutants was carried out in order to better understand the mechanisms of product chain length specificity in this enzyme. The 12 evolved clones having enhanced C20 GGPP production have characteristic mutations in the conserved regions of prenyl diphosphate synthases (designated regions I through VII). Some of these mutations (I76T, Y79S, Y79H, C75Y, H83Y, and H83Q) are found near or before the conserved first aspartate rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl synthases. Molecular modeling suggested a mechanism for chain length determination for these mutations including substitutions at the 1st and 9th amino acids upstream of the FARM that have not been reported previously. In addition, a mutation on a helix adjacent to the FARM within the substrate-binding pocket (D115G) suggests a novel mechanism for chain length determination. One mutant IspA clone carries a mutation of C155G at the 2nd amino acid upstream of conserved region IV (GQxxDL), which was recently found to be an important region controlling the chain elongation of a Type III GGPP synthase. One IspA clone carries mutations (T234A and T249I) near the conserved second aspartate rich motif (SARM). As a verification of the in vivo activity of the mutant clones (represented as C40 carotenoid formation), we confirmed the product distribution of wild-type and mutant IspA using an in vitro assay.
Collapse
Affiliation(s)
- Pyung Cheon Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
41
|
Lee PC, Mijts BN, Petri R, Watts KT, Schmidt-Dannert C. Alteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution. Protein Eng Des Sel 2004; 17:771-7. [PMID: 15548566 DOI: 10.1093/protein/gzh089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Directed evolution of the C25 farnesylgeranyl diphosphate synthase of Aeropyrum pernix (Fgs) was carried out by error-prone PCR with an in vivo color complementation screen utilizing carotenoid biosynthetic pathway enzymes. Screening yielded 12 evolved clones with C20 geranylgeranyl diphosphate synthase activity which were isolated and characterized in order to understand better the chain elongation mechanism of this enzyme. Analysis of these mutants revealed three different mechanisms of product chain length specificity. Two mutants (A64T and A64V) have a single mutation at the 8th amino acid upstream of a conserved first aspartate-rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl diphosphate synthases. One mutant (A135T) carries a single mutation at the 7th amino acid upstream of another conserved region (141GQ142), which was recently found to be another important region controlling chain elongation of a type III C20 geranylgeranyl diphosphate synthase and Escherichia coli C15 farnesyl diphosphate synthase. Finally, one mutant carrying four mutations (V84I, H88R, I177 M and M191V) is of interest. Molecular modeling, site-directed mutagenesis and in vitro assays of this mutant suggest that product chain-length distribution can be also controlled by a structural change provoked by a cooperative interaction of amino acids.
Collapse
Affiliation(s)
- Pyung Cheon Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
42
|
Burke C, Klettke K, Croteau R. Heteromeric geranyl diphosphate synthase from mint: construction of a functional fusion protein and inhibition by bisphosphonate substrate analogs. Arch Biochem Biophys 2004; 422:52-60. [PMID: 14725857 DOI: 10.1016/j.abb.2003.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate (C(5)) with isopentenyl diphosphate (C(5)) to produce geranyl diphosphate (C(10)), the essential precursor of monoterpenes. The enzyme from peppermint and spearmint (Menthaxpiperita and Mentha spicata, respectively) functions as a heterodimer or heterotetramer consisting of a 40kDa subunit and 33kDa subunit. The DNAs encoding each subunit were joined with different sized linkers and in both possible orders, and expressed in Escherichia coli to yield the corresponding fused protein. The properties of the recombinant fused version, in which the small subunit was followed by the large subunit with a 10 amino acid linker, resembled those of the native heteromeric enzyme in kinetics, product chain-length specificity, and architecture, and this form thus provided a suitable single gene transcript for biotechnological purposes. Bisphosphonate substrate analogs of the type that inhibit farnesyl diphosphate synthase (C(15)) and geranylgeranyl diphosphate synthase (C(20)) also inhibited the fused geranyl diphosphate synthase, apparently by interacting at both the allylic and homoallylic co-substrate binding sites. The results of inhibition studies, along with the previously established role of the small subunit and related mutagenesis experiments, suggest that geranyl diphosphate synthase employs a different mechanism for chain-length determination than do other short-chain prenyltransferases.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry, Graduate Program in Plant Physiology, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|