1
|
Vujovic F, Farahani RM. Thyroid Hormones and Brain Development: A Focus on the Role of Mitochondria as Regulators of Developmental Time. Cells 2025; 14:150. [PMID: 39936942 PMCID: PMC11816491 DOI: 10.3390/cells14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs in orchestrating cellular dynamics in a developing brain. The evidence from the reviewed scientific literature suggests that the developmental roles of the hormones are predominantly mediated by non-genomic mitochondrial effects of THs due to attenuation of genomic effects of THs that antagonise non-genomic impacts. We argue that the key function of TH signalling during brain development is to orchestrate the tempo of self-organisation of neural progenitor cells. Further, evidence is provided that major neurodevelopmental consequences of hypothyroidism stem from an altered tempo of cellular self-organisation.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Amanollahi R, Holman SL, Bertossa MR, Meakin AS, Thornburg KL, McMillen IC, Wiese MD, Lock MC, Morrison JL. Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep. J Cardiovasc Dev Dis 2025; 12:36. [PMID: 39997470 PMCID: PMC11856455 DOI: 10.3390/jcdd12020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T3 (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life.
Collapse
Affiliation(s)
- Reza Amanollahi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Kent L. Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute of Nutrition and Wellness, Oregon Health & Science University, Portland, OR 97239, USA;
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA 5001, Australia;
| | - Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (R.A.); (S.L.H.); (M.R.B.); (A.S.M.); (I.C.M.)
| |
Collapse
|
3
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Arroum T, Pham L, Raisanen TE, Morse PT, Wan J, Bell J, Lax R, Saada A, Hüttemann M, Weksler-Zangen S. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants (Basel) 2023; 13:19. [PMID: 38275639 PMCID: PMC10812566 DOI: 10.3390/antiox13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Taryn E. Raisanen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Rachel Lax
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Ann Saada
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Sarah Weksler-Zangen
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Zhang P, Lu H, Wu Y, Lu D, Li C, Yang X, Chen Z, Qian J, Ge J. COX5A Alleviates Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress, Mitochondrial Dysfunction and Cardiomyocyte Apoptosis. Int J Mol Sci 2023; 24:10400. [PMID: 37373547 DOI: 10.3390/ijms241210400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX) as a chemotherapeutic agent can cause mitochondrial dysfunction and heart failure. COX5A has been described as an important regulator of mitochondrial energy metabolism. We investigate the roles of COX5A in DOX-induced cardiomyopathy and explore the underlying mechanisms. C57BL/6J mice and H9c2 cardiomyoblasts were treated with DOX, and the COX5A expression was assessed. An adeno-associated virus serum type 9 (AAV9) and lenti-virus system were used to upregulate COX5A expression. Echocardiographic parameters, morphological and histological analyses, transmission electron microscope and immunofluorescence assays were used to assess cardiac and mitochondrial function. In a human study, we found that cardiac COX5A expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to the control group. COX5A was significantly downregulated following DOX stimulation in the heart of mice and H9c2 cells. Reduced cardiac function, decreased myocardium glucose uptake, mitochondrial morphology disturbance, reduced activity of mitochondrial cytochrome c oxidase (COX) and lowered ATP content were detected after DOX stimulation in mice, which could be significantly improved by overexpression of COX5A. Overexpression of COX5A effectively protected against DOX-induced oxidative stress, mitochondrial dysfunction and cardiomyocyte apoptosis in vivo and in vitro. Mechanistically, the phosphorylation of Akt (Thr308) and Akt (Ser473) were also decreased following DOX treatment, which could be reserved by the upregulation of COX5A. Furthermore, PI3K inhibitors abrogated the protection effects of COX5A against DOX-induced cardiotoxicity in H9c2 cells. Thus, we identified that PI3K/Akt signaling was responsible for the COX5A-mediated protective role in DOX-induced cardiomyopathy. These results demonstrated the protective effect of COX5A in mitochondrial dysfunction, oxidative stress, and cardiomyocyte apoptosis, providing a potential therapeutic target in DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yuan Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiangdong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
6
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
7
|
Direct Interaction of Mitochondrial Cytochrome c Oxidase with Thyroid Hormones: Evidence for Two Binding Sites. Cells 2022; 11:cells11050908. [PMID: 35269529 PMCID: PMC8909594 DOI: 10.3390/cells11050908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormones regulate tissue metabolism to establish an energy balance in the cell, in particular, by affecting oxidative phosphorylation. Their long-term impact is mainly associated with changes in gene expression, while the short-term effects may differ in their mechanisms. Our work was devoted to studying the short-term effects of hormones T2, T3 and T4 on mitochondrial cytochrome c oxidase (CcO) mediated by direct contact with the enzyme. The data obtained indicate the existence of two separate sites of CcO interaction with thyroid hormones, differing in their location, affinity and specificity to hormone binding. First, we show that T3 and T4 but not T2 inhibit the oxidase activity of CcO in solution and on membrane preparations with Ki ≈ 100–200 μM. In solution, T3 and T4 compete in a 1:1 ratio with the detergent dodecyl-maltoside to bind to the enzyme. The peroxidase and catalase partial activities of CcO are not sensitive to hormones, but electron transfer from heme a to the oxidized binuclear center is affected. We believe that T3 and T4 could be ligands of the bile acid-binding site found in the 3D structure of CcO by Ferguson-Miller’s group, and hormone-induced inhibition is associated with dysfunction of the K-proton channel. A possible role of this interaction in the physiological regulation of the enzyme is discussed. Second, we find that T2, T3, and T4 inhibit superoxide generation by oxidized CcO in the presence of excess H2O2. Inhibition is characterized by Ki values of 0.3–5 μM and apparently affects the formation of O2●− at the protein surface. The second binding site for thyroid hormones presumably coincides with the point of tight T2 binding on the Va subunit described in the literature.
Collapse
|
8
|
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48:400-415. [PMID: 34687092 DOI: 10.1002/biof.1797] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control, and/or molecular damage altering cellular functions. This redox imbalance may trigger different responses depending on the antioxidant potential of a given cell, the level of reactive oxygen/nitrogen species (ROS/RNS) attained and the time of exposure, with protective effects being induced at low ROS/RNS levels in acute or short-term conditions, and harmful effects after high ROS/RNS exposure in prolonged situations. Relevant conditions underlying liver redox imbalance include iron overload associated with ROS production via Fenton chemistry and the magnitude of the iron labile pool achieved, with low iron exposure inducing protective effects related to nuclear factor-κB, signal transducer and activation of transcription 3, and nuclear factor erythroid-related factor 2 (Nrf2) activation and upregulation of ferritin, hepcidin, acute-phase response and antioxidant components, whereas high iron exposure causes drastic oxidation of biomolecules, mitochondrial dysfunction, and cell death due to necrosis, apoptosis and/or ferroptosis. Redox imbalance in nonalcoholic fatty liver disease (NAFLD) is related to polyunsaturated fatty acid depletion, lipogenic factor sterol regulatory element-binding protein-1c upregulation, fatty acid oxidation-dependent peroxisome proliferator-activated receptor-α downregulation, low antioxidant factor Nrf2 and insulin resistance, a phenomenon that is exacerbated in nonalcoholic steatohepatitis triggering an inflammatory response. Thyroid hormone (T3 ) administration determines liver preconditioning against ischemia-reperfusion injury due to the redox activation of several transcription factors, AMP-activated protein kinase, unfolded protein response and autophagy. High grade liver redox imbalance occurring in severe iron overload is adequately handled by iron chelation, however, that underlying NAFLD/NASH is currently under study in several Phase II and Phase III trials.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Vogt S, Ramzan R, Grossman LI, Singh KK, Ferguson-Miller S, Yoshikawa S, Lee I, Hüttemann M. Mitochondrial respiration is controlled by Allostery, Subunit Composition and Phosphorylation Sites of Cytochrome c Oxidase: A trailblazer's tale - Bernhard Kadenbach. Mitochondrion 2021; 60:228-233. [PMID: 34481964 DOI: 10.1016/j.mito.2021.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
In memoriam of Bernhard Kadenbach: Although the main focus of his research was the structure, function, and regulation of mitochondrial cytochrome c oxidase (CytOx), he earlier studied the mitochondrial phosphate carrier and found an essential role of cardiolipin. Later, he discovered tissue-specific and developmental-specific protein isoforms of CytOx. Defective activity of CytOx is found with increasing age in human muscle and neuronal cells resulting in mitochondrial diseases. Kadenbach proposed a theory on the cause of oxidative stress, aging, and associated diseases stating that allosteric feedback inhibition of CytOx at high mitochondrial ATP/ADP ratios is essential for healthy living while stress-induced reversible dephosphorylation of CytOx results in the formation of excessive reactive oxygen species that trigger degenerative diseases. This article summarizes the main discoveries of Kadenbach related to mammalian CytOx and discusses their implications for human disease.
Collapse
Affiliation(s)
- Sebastian Vogt
- Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany; Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany.
| | - Rabia Ramzan
- Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany; Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Ramzan R, Napiwotzki J, Weber P, Kadenbach B, Vogt S. Cholate Disrupts Regulatory Functions of Cytochrome c Oxidase. Cells 2021; 10:1579. [PMID: 34201437 PMCID: PMC8303988 DOI: 10.3390/cells10071579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c oxidase (CytOx), the oxygen-accepting and rate-limiting enzyme of mitochondrial respiration, binds with 10 molecules of ADP, 7 of which are exchanged by ATP at high ATP/ADP-ratios. These bound ATP and ADP can be exchanged by cholate, which is generally used for the purification of CytOx. Many crystal structures of isolated CytOx were performed with the enzyme isolated from mitochondria using sodium cholate as a detergent. Cholate, however, dimerizes the enzyme isolated in non-ionic detergents and induces a structural change as evident from a spectral change. Consequently, it turns off the "allosteric ATP-inhibition of CytOx", which is reversibly switched on under relaxed conditions via cAMP-dependent phosphorylation and keeps the membrane potential and ROS formation in mitochondria at low levels. This cholate effect gives an insight into the structural-functional relationship of the enzyme with respect to ATP inhibition and its role in mitochondrial respiration and energy production.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
- Department of Heart Surgery, University Hospital of Giessen and Marburg, D-35043 Campus Marburg, Germany
| | | | - Petra Weber
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
| | | | - Sebastian Vogt
- Biochemical-Pharmacological Center, Cardiovascular Research Laboratory, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany; (R.R.); (P.W.)
- Department of Heart Surgery, University Hospital of Giessen and Marburg, D-35043 Campus Marburg, Germany
| |
Collapse
|
11
|
Ramzan R, Kadenbach B, Vogt S. Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase. Cells 2021; 10:cells10030514. [PMID: 33671025 PMCID: PMC7997345 DOI: 10.3390/cells10030514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the "allosteric ATP inhibition of COX" is described here in more detail. Most regulatory properties of COX are related to "supernumerary" subunits, which are largely absent in bacterial COX. The "allosteric ATP inhibition of COX" was also recently described in intact isolated rat heart mitochondria.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Laboratory, Biochemical-Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, D-35043 Marburg, Germany;
| | - Bernhard Kadenbach
- Fachbereich Chemie, Philipps-University, D-35032 Marburg, Germany
- Correspondence:
| | - Sebastian Vogt
- Department of Heart Surgery, Campus Marburg, University Hospital of Giessen and Marburg, D-35043 Marburg, Germany;
| |
Collapse
|
12
|
Cytochrome c Oxidase at Full Thrust: Regulation and Biological Consequences to Flying Insects. Cells 2021; 10:cells10020470. [PMID: 33671793 PMCID: PMC7931083 DOI: 10.3390/cells10020470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Collapse
|
13
|
Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2020; 58:296-302. [PMID: 33069909 DOI: 10.1016/j.mito.2020.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
ATP, the universal energy currency in all living cells, is mainly synthesized in mitochondria by oxidative phosphorylation (OXPHOS). The final and rate limiting step of the respiratory chain is cytochrome c oxidase (COX) which represents the regulatory center of OXPHOS. COX is regulated through binding of various effectors to its "supernumerary" subunits, by reversible phosphorylation, and by expression of subunit isoforms. Of particular interest is its feedback inhibition by ATP, the final product of OXPHOS. This "allosteric ATP-inhibition" of phosphorylated and dimeric COX maintains a low and healthy mitochondrial membrane potential (relaxed state), and prevents the formation of ROS (reactive oxygen species) which are known to cause numerous diseases. Excessive work and stress abolish this feedback inhibition of COX by Ca2+-activated dephosphorylation which leads to monomerization and movement of NDUFA4 from complex I to COX with higher rates of COX activity and ATP synthesis (active state) but increased ROS formation and decreased efficiency.
Collapse
|
14
|
Kadenbach B. Regulation of cytochrome c oxidase contributes to health and optimal life. World J Biol Chem 2020; 11:52-61. [PMID: 33024517 PMCID: PMC7520645 DOI: 10.4331/wjbc.v11.i2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Fachbereich Chemie, Philipps-Universität Marburg, Marburg D-35043, Hessen, Germany
| |
Collapse
|
15
|
Xiyang YB, Liu R, Wang XY, Li S, Zhao Y, Lu BT, Xiao ZC, Zhang LF, Wang TH, Zhang J. COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway. Front Aging Neurosci 2020; 12:215. [PMID: 32754029 PMCID: PMC7365906 DOI: 10.3389/fnagi.2020.00215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer’s disease (Martinez-Losa et al., 2018). In this study, we established and characterized the genomic profiles of genes expressed in the hippocampus of Senescence-Accelerated Mouse-prone 8 (SAMP8) mice, and revealed differential expression of COX5A among 12-month-aged SAMP8 mice and 2-month-aged SAMP8 mice. Newly established transgenic mice with systemic COX5A overexpression (51% increase) resulted in the improvement of spatial recognition memory and hippocampal synaptic plasticity, recovery of hippocampal CA1 dendrites, and activation of the BDNF/ERK1/2 signaling pathway in vivo. Moreover, mice with both COX5A overexpression and BDNF knockdown showed a poor recovery in spatial recognition memory as well as a decrease in spine density and branching of dendrites in CA1, when compared to mice that only overexpressed COX5A. In vitro studies supported that COX5A affected neuronal growth via BDNF. In summary, this study was the first to show that COX5A in the hippocampus plays a vital role in aging-related cognitive deterioration via BDNF/ERK1/2 regulation, and suggested that COX5A may be a potential target for anti-senescence drugs.
Collapse
Affiliation(s)
- Yan-Bin Xiyang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ruan Liu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Ya Zhao
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Zhi-Cheng Xiao
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia
| | - Lian-Feng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
16
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
17
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
18
|
Zhang P, Chen Z, Lu D, Wu Y, Fan M, Qian J, Ge J. Overexpression of COX5A protects H9c2 cells against doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 2020; 524:43-49. [PMID: 31980176 DOI: 10.1016/j.bbrc.2020.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Mitochondrial dysfunction plays a pivotal role in doxorubicin (DOX)-induced cardiomyopathy. Cytochrome c oxidase subunit 5A (COX5A) is a nuclear-encoded subunit of the terminal oxidase involved in mitochondrial electron transport. Although COX5A appears to play a key role in modulating the physiological activity of COX and involve in energy metabolism, the involvement of COX5A in DOX-induced cardiotoxicity remains unclear. In this study, we showed that COX5A was significantly downregulated by DOX treatment of H9c2 cells. Overexpression of COX5A in H9c2 cells effectively attenuated DOX-induced apoptosis. Meanwhile, DOX-induced decrease in mitochondrial membrane potential could be reserved by COX5A overexpression. Furthermore, COX5A overexpression relieved the DOX-induced suppression of mitochondrial respiration, due an increase in basal respiration, maximal respiration, ATP production, and spare respiratory capacity. These findings indicate that up-regulation of COX5A may inhibit the apoptosis and alleviate the mitochondrial dysfunction of DOX-treated H9c2 cells. Thus, COX5A may have potential for clinical use as a therapeutic target in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengkang Fan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Videla LA. Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life 2019; 71:1211-1220. [PMID: 31091354 DOI: 10.1002/iub.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Liver preconditioning (PC) refers to the development of an enhanced tolerance to injuring stimuli. For example, the protection from ischemia-reperfusion (IR) in the liver that is obtained by previous maneuvers triggering beneficial molecular and functional changes. Recently, we have assessed the PC effects of thyroid hormone (T3; single dose of 0.1 mg/kg) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs; daily doses of 450 mg/kg for 7 days) that abrogate IR injury to the liver. This feature is also achieved by a combined T3 and the n-3 LCPUFA docosahexaenoic acid (DHA) using a reduced period of supplementation of the FA (daily doses of 300 mg/kg for 3 days) and half of the T3 dosage (0.05 mg/kg). T3 -dependent protective mechanisms include (i) the reactive oxygen species (ROS)-dependent activation of transcription factors nuclear factor-κB (NF-κB), AP-1, signal transducer and activator of transcription 3, and nuclear factor erythroid-2-related factor 2 (Nrf2) upregulating the expression of protective proteins. (ii) ROS-induced endoplasmic reticulum stress affording proper protein folding. (iii) The autophagy response to produce FAs for oxidation and ATP supply and amino acids for protein synthesis. (iv) Downregulation of inflammasome nucleotide-bonding oligomerization domain leucine-rich repeat containing family pyrin containing 3 and interleukin-1β expression to prevent inflammation. N-3 LCPUFAs induce antioxidant responses due to Nrf2 upregulation, with inflammation resolution being related to production of oxidation products and NF-κB downregulation. Energy supply to achieve liver PC is met by the combined DHA plus T3 protocol through upregulation of AMPK coupled to peroxisome proliferator-activated receptor-γ coactivator 1α signaling. In conclusion, DHA plus T3 coadministration favors hepatic bioenergetics and lipid homeostasis that is of crucial importance in acute and clinical conditions such as IR, which may be extended to long-term or chronic situations including steatosis in obesity and diabetes. © 2019 IUBMB Life, 71(9):1211-1220, 2019.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
21
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
22
|
Regulation of mitochondrial respiration and ATP synthesis via cytochrome c oxidase. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Silvestri E, Cioffi F, De Matteis R, Senese R, de Lange P, Coppola M, Salzano AM, Scaloni A, Ceccarelli M, Goglia F, Lanni A, Moreno M, Lombardi A. 3,5-Diiodo-L-Thyronine Affects Structural and Metabolic Features of Skeletal Muscle Mitochondria in High-Fat-Diet Fed Rats Producing a Co-adaptation to the Glycolytic Fiber Phenotype. Front Physiol 2018; 9:194. [PMID: 29593557 PMCID: PMC5854997 DOI: 10.3389/fphys.2018.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
Hyperlipidemic state-associated perturbations in the network of factors controlling mitochondrial functions, i. e., morphogenesis machinery and metabolic sensor proteins, produce metabolic inflexibility, insulin resistance and reduced oxidative capacity in skeletal muscle. Moreover, intramyocellular lipid (IMCL) accumulation leads to tissue damage and inflammation. The administration of the naturally occurring metabolite 3,5-diiodo-L-thyronine (T2) with thyromimetic actions to high fat diet (HFD)-fed rats exerts a systemic hypolipidemic effect, which produces a lack of IMCL accumulation, a shift toward glycolytic fibers and amelioration of insulin sensitivity in gastrocnemius muscle. In this study, an integrated approach combining large-scale expression profile and functional analyses was used to characterize the response of skeletal muscle mitochondria to T2 during a HFD regimen. Long-term T2 administration to HDF rats induced a glycolytic phenotype of gastrocnemius muscle as well as an adaptation of mitochondria to the fiber type, with a decreased representation of enzymes involved in mitochondrial oxidative metabolism. At the same time, T2 stimulated the activity of individual respiratory complex I, IV, and V. Moreover, T2 prevented the HFD-associated increase in the expression of peroxisome proliferative activated receptor γ coactivator-1α and dynamin-1-like protein as well as mitochondrial morphological aberrations, favoring the appearance of tubular and tethered organelles in the intermyofibrillar regions. Remarkably, T2 reverted the HDF-associated expression pattern of proinflammatory factors, such as p65 subunit of NF-kB, and increased the fiber-specific immunoreactivity of adipose differentiation–related protein in lipid droplets. All together, these results further support a role of T2 in counteracting in vivo some of the HFD-induced impairment in structural/metabolic features of skeletal muscle by impacting the mitochondrial phenotype.
Collapse
Affiliation(s)
- Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Maria Coppola
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Anna M Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Louzada RA, Carvalho DP. Similarities and Differences in the Peripheral Actions of Thyroid Hormones and Their Metabolites. Front Endocrinol (Lausanne) 2018; 9:394. [PMID: 30072951 PMCID: PMC6060242 DOI: 10.3389/fendo.2018.00394] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023] Open
Abstract
Thyroxine (T4) and 3,5,3'-triiodothyronine (T3) are secreted by the thyroid gland, while T3 is also generated from the peripheral metabolism of T4 by iodothyronine deiodinases types I and II. Several conditions like stress, diseases, and physical exercise can promote changes in local TH metabolism, leading to different target tissue effects that depend on the presence of tissue-specific enzymatic activities. The newly discovered physiological and pharmacological actions of T4 and T3 metabolites, such as 3,5-diiodothyronine (3,5-T2), and 3-iodothyronamine (T1AM) are of great interest. A classical thyroid hormone effect is the ability of T3 to increase oxygen consumption in almost all cell types studied. Approximately 30 years ago, a seminal report has shown that 3,5-T2 increased oxygen consumption more rapidly than T3 in hepatocytes. Other studies demonstrated that exogenous 3,5-T2 administration was able to increase whole body energy expenditure in rodents and humans. In fact, 3,5-T2 treatment prevents diabetic nephropathy, hepatic steatosis induced by high fat diet, insulin resistance, and weight gain during aging in Wistar male rats. The regulation of mitochondria is likely one of the most important actions of T3 and its metabolite 3,5-T2, which was able to restore the thermogenic program of brown adipose tissue (BAT) in hypothyroid rats, just as T3 does, while T1AM administration induced rapid hypothermia. T3 increases heart rate and cardiac contractility, which are hallmark effects of hyperthyroidism involved in cardiac arrhythmia. These deleterious cardiac effects were not observed with the use of 3,5-T2 pharmacological doses, and in contrast T1AM was shown to promote a negative inotropic and chronotropic action at micromolar concentrations in isolated hearts. Furthermore, T1AM has a cardioprotective effect in a model of ischemic/reperfusion injury in isolated hearts, such as occurs with T3 administration. Despite the encouraging possible therapeutic use of TH metabolites, further studies are needed to better understand their peripheral effects, when compared to T3 itself, in order to establish their risk and benefit. On this basis, the main peripheral effects of thyroid hormones and their metabolites in tissues, such as heart, liver, skeletal muscle, and BAT are discussed herein.
Collapse
|
25
|
Cioffi F, Gentile A, Silvestri E, Goglia F, Lombardi A. Effect of Iodothyronines on Thermogenesis: Focus on Brown Adipose Tissue. Front Endocrinol (Lausanne) 2018; 9:254. [PMID: 29875734 PMCID: PMC5974034 DOI: 10.3389/fendo.2018.00254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Thyroid hormones significantly influence energy expenditure by affecting the activity of metabolic active tissues, among which, mammalian brown adipose tissue (BAT) plays a significant role. For a long time, the modulation of BAT activity by 3,3',5-triiodo-l-thyronine (T3) has been ascribed to its direct actions on this tissue; however, recent evidence indicates that T3, by stimulating specific brain centers, activates the metabolism of BAT via the sympathetic nervous system. These distinct mechanisms of action are not mutually exclusive. New evidence indicates that 3,5-diiodo-l-thyronine (3,5-T2), a thyroid hormone derivative, exerts thermogenic effects, by influencing mitochondrial activity in metabolically active tissues, such as liver, skeletal muscle, and BAT. At the moment, due to the absence of experiments finalized to render a clear cut discrimination between peripheral and central effects induced by 3,5-T2, it is not possible to exclude that some of the metabolic effects exerted by 3,5-T2 may be mediated centrally. Despite this, some evidence suggests that 3,5-T2 plays a role in adrenergic stimulation of thermogenesis in BAT. This mini-review provides an overview of the effects induced by T3 and 3,5-T2 on BAT thermogenesis, with a focus on data suggesting the involvement of central adrenergic stimulation. These aspects may reveal new perspectives in thyroid physiology and in the control of energy metabolism.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | | | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Fernando Goglia, ; Assunta Lombardi,
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Fernando Goglia, ; Assunta Lombardi,
| |
Collapse
|
26
|
Senese R, de Lange P, Petito G, Moreno M, Goglia F, Lanni A. 3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9:427. [PMID: 30090086 PMCID: PMC6068267 DOI: 10.3389/fendo.2018.00427] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)- independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli” , Caserta, Italy
- *Correspondence: Antonia Lanni
| |
Collapse
|
27
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Moreno M, Giacco A, Di Munno C, Goglia F. Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol Cell Endocrinol 2017; 458:121-126. [PMID: 28192176 DOI: 10.1016/j.mce.2017.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 01/16/2023]
Abstract
A growing number of researchers are focusing their attention on the possibility that thyroid hormone metabolites, particularly 3,5-diiodothyronine (T2), may actively regulate energy metabolism at the cellular, rather than the nuclear, level. Due to their biochemical features, mitochondria have been the focus of research on the thermogenic effects of thyroid hormones. Indeed, mitochondrial activities have been shown to be regulated both directly and indirectly by T2-specific pathways. Herein, we describe the effects of T2 on energy metabolism.
Collapse
Affiliation(s)
- Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy.
| |
Collapse
|
29
|
Wirth EK, Meyer F. Neuronal effects of thyroid hormone metabolites. Mol Cell Endocrinol 2017; 458:136-142. [PMID: 28088465 DOI: 10.1016/j.mce.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
Thyroid hormones and their metabolites are active regulators of gene expression, mitochondrial function and various other physiological actions in different organs and tissues. These actions are mediated by a spatio-temporal regulation of thyroid hormones and metabolites within a target cell. This spatio-temporal resolution as well as classical and non-classical actions of thyroid hormones and metabolites is accomplished and regulated on multiple levels as uptake, local activation and signaling of thyroid hormones. In this review, we will give an overview of the systems involved in regulating the presence and activity of thyroid hormones and their metabolites within the brain, specifically in neurons. While a wealth of data on thyroxin (T4) and 3,5,3'-triiodothyronine (T3) in the brain has been generated, research into the presence of action of other thyroid hormone metabolites is still sparse and requires further investigations.
Collapse
Affiliation(s)
- Eva K Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Comparative biochemistry of cytochrome c oxidase in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:170-184. [PMID: 29180239 DOI: 10.1016/j.cbpb.2017.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport system, is central to aerobic metabolism of animals. Many aspects of its structure and function are highly conserved, yet, paradoxically, it is also an important model for studying the evolution of the metabolic phenotype. In this review, part of a special issue honouring Peter Hochachka, we consider the biology of COX from the perspective of comparative and evolutionary biochemistry. The approach is to consider what is known about the enzyme in the context of conventional biochemistry, but focus on how evolutionary researchers have used this background to explore the role of the enzyme in biochemical adaptation of animals. In synthesizing the conventional and evolutionary biochemistry, we hope to identify synergies and future research opportunities. COX represents a rare opportunity for researchers to design studies that span the breadth of biology: molecular genetics, protein biochemistry, enzymology, metabolic physiology, organismal performance, evolutionary biology, and phylogeography.
Collapse
|
31
|
Role of conformational change and K-path ligands in controlling cytochrome c oxidase activity. Biochem Soc Trans 2017; 45:1087-1095. [PMID: 28842531 DOI: 10.1042/bst20160138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023]
Abstract
Given the central role of cytochrome c oxidase (CcO) in health and disease, it is an increasingly important question as to how the activity and efficiency of this key enzyme are regulated to respond to a variety of metabolic states. The present paper summarizes evidence for two modes of regulation of activity: first, by redox-induced conformational changes involving the K-proton uptake path; and secondly, by ligand binding to a conserved site immediately adjacent to the entrance of the K-path that leads to the active site. Both these phenomena highlight the importance of the K-path in control of CcO. The redox-induced structural changes are seen in both the two-subunit and a new four-subunit crystal structure of bacterial CcO and suggest a gating mechanism to control access of protons to the active site. A conserved ligand-binding site, first discovered as a bile salt/steroid site in bacterial and mammalian oxidases, is observed to bind an array of ligands, including nucleotides, detergents, and other amphipathic molecules. Highly variable effects on activity, seen for these ligands and mutations at the K-path entrance, can be explained by differing abilities to inhibit or stimulate K-path proton uptake by preventing or allowing water organization. A new mutant form in which the K-path is blocked by substituting the conserved carboxyl with a tryptophan clarifies the singularity of the K-path entrance site. Further study in eukaryotic systems will determine the physiological significance and pharmacological potential of ligand binding and conformational change in CcO.
Collapse
|
32
|
Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem 2017; 398:737-750. [PMID: 27926476 DOI: 10.1515/hsz-2016-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022]
Abstract
In the past, divergent results have been reported based on different methods and conditions used for enzymatic activity measurements of cytochrome c oxidase (CytOx). Here, we analyze in detail and show comparable and reproducible polarographic activity measurements of ATP-dependent inhibition of CytOx kinetics in intact and non-intact rat heart mitochondria and mitoplasts. We found that this mechanism is always present in isolated rat heart mitochondria and mitoplasts; however, it is measurable only at high ATP/ADP ratios using optimal protein concentrations. In the kinetics assay, measurement of this mechanism is independent of presence or absence of Tween-20 and the composition of measuring buffer. Furthermore, the effect of atractyloside on intact rat heart mitochondria confirms that (i) ATP inhibition occurs under uncoupled conditions [in the presence of carbonly cyanide m-chlorophenyl hydrazone (CCCP)] when the classical respiratory control is absent and (ii) high ATP/ADP ratios in the matrix as well as in the cytosolic space are required for full ATP inhibition of CytOx. Additionally, ATP inhibition measured in intact mitochondria extends in the presence of oligomycin, thus indicating further that the problem to measure the inhibitory effect of ATP on CytOx is apparently due to the lack of very high ATP/ADP ratios in isolated mitochondria.
Collapse
|
33
|
Iannucci LF, Cioffi F, Senese R, Goglia F, Lanni A, Yen PM, Sinha RA. Metabolomic analysis shows differential hepatic effects of T 2 and T 3 in rats after short-term feeding with high fat diet. Sci Rep 2017; 7:2023. [PMID: 28515456 PMCID: PMC5435676 DOI: 10.1038/s41598-017-02205-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/07/2017] [Indexed: 01/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health problem worldwide, and is often associated with lipotoxic injury, defective mitochondrial function, and insulin resistance. Thyroid hormones (THs) are important regulators of hepatic lipid metabolism. Among the THs, diiodothyronine (T2) and triiodothyronine (T3) have shown promising results in lowering hepatic fat content in various models of NAFLD. In this study, we used a targeted metabolomics approach to investigate the differential effects of T2 and T3 on the early metabolic adaptation in the livers of rats fed high fat diet (HFD), a period when hepatosteatosis is reversible. Our results showed that both T2 and T3 strongly induced autophagy and intra-hepatic acylcarnitine flux but prevented the generation of sphingolipid/ceramides in animals fed HFD. Interestingly, although both T2 and T3 decreased hepatic fat content, only T2 was able to rescue the impairment in AKT and MAPK/ERK pathways caused by HFD. In summary, we have identified and characterized the effects of T2 and T3 on hepatic metabolism during short-term exposure to HFD. These findings illuminate the common and divergent metabolic pathways by T2 and T3 that also may be important in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liliana F Iannucci
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore8 College Road, 169857, Singapore, Singapore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Caserta, Italy.
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore8 College Road, 169857, Singapore, Singapore.
| | - Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
34
|
Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of Near-Infrared Light on Cerebral Bioenergetics Measured with Phosphorus Magnetic Resonance Spectroscopy. Photomed Laser Surg 2017; 35:395-400. [PMID: 28186868 DOI: 10.1089/pho.2016.4238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cerebral photobiomodulation (PBM) improves mood and cognition. Cerebral metabolic enhancement is a mechanism proposed to underlie PBM effects. No PBM studies to date have applied phosphorus magnetic resonance spectroscopy (31P MRS), which can be used to assess metabolic intermediates such as phosphocreatine (PCr) and adenosine triphosphate, the latter of which is elevated by PBM. Accordingly, we used 9.4 Tesla 31P MRS to characterize effects of single and repeat cerebral PBM treatments on metabolism. PBM was delivered to healthy adult beagles in the form of transcranial laser treatment (TLT) at a wavelength of 808 nm, which passes safely through the skull and activates cytochrome C oxidase, a mitochondrial respiratory chain enzyme. METHODS Isoflurane-anesthetized subjects (n = 4) underwent a baseline 31P MRS scan followed by TLT applied sequentially for 2 min each to anterior and posterior cranium midline locations, to irradiate the dorsal cortex. Subjects then underwent 31P MRS scans for 2 h to assess acute TLT effects. After 2 weeks of repeat TLT (3 times/week), subjects were scanned again with 31P MRS to characterize effects of repeat TLT. RESULTS TLT did not induce acute 31P MRS changes over the course of 2 h in either scan session. However, after repeat TLT, the baseline PCr/β-nucleoside triphosphate ratio was higher than the scan 1 baseline (p < 0.0001), an effect attributable to increased PCr level (p < 0.0001). CONCLUSIONS Our findings are consistent with reports that bioenergetic effects of PBM can take several hours to evolve. Thus, in vivo 31P MRS may be useful for characterizing bioenergetic effects of PBM in brain and other tissues.
Collapse
Affiliation(s)
| | - Timothy E Gillis
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Marc J Kaufman
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
35
|
Castellano-González G, Pichaud N, Ballard JWO, Bessede A, Marcal H, Guillemin GJ. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Oncotarget 2016; 7:7426-40. [PMID: 26760769 PMCID: PMC4884929 DOI: 10.18632/oncotarget.6863] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function.
Collapse
Affiliation(s)
- Gloria Castellano-González
- MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine (ASAM), Macquarie University, Sydney, Australia
| | - Nicolas Pichaud
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | | - Helder Marcal
- Topical Therapeutics Research Group, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Gilles J Guillemin
- MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine (ASAM), Macquarie University, Sydney, Australia
| |
Collapse
|
36
|
Spectroscopic investigations on the interaction of biologically active 4-aryloxymethyl coumarins with TiO2 nanoparticles. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Gnocchi D, Steffensen KR, Bruscalupi G, Parini P. Emerging role of thyroid hormone metabolites. Acta Physiol (Oxf) 2016; 217:184-216. [PMID: 26748938 DOI: 10.1111/apha.12648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.
Collapse
Affiliation(s)
- D. Gnocchi
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. R. Steffensen
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - G. Bruscalupi
- Department of Biology and Biotechnology ‘Charles Darwin’; Sapienza University of Rome; Rome Italy
| | - P. Parini
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
- Metabolism Unit; Department of Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
38
|
Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays 2016; 38:556-67. [PMID: 27171124 PMCID: PMC5084804 DOI: 10.1002/bies.201600043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP-dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Annika Rhiel
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Petra Weber
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
39
|
Lietzow J, Golchert J, Homuth G, Völker U, Jonas W, Köhrle J. 3,5-T2 alters murine genes relevant for xenobiotic, steroid, and thyroid hormone metabolism. J Mol Endocrinol 2016; 56:311-23. [PMID: 26903510 DOI: 10.1530/jme-15-0159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
The endogenous thyroid hormone (TH) metabolite 3,5-diiodo-l-thyronine (3,5-T2) acts as a metabolically active substance affecting whole-body energy metabolism and hepatic lipid handling in a desirable manner. Considering possible adverse effects regarding thyromimetic action of 3,5-T2 treatment in rodents, the current literature remains largely controversial. To obtain further insights into molecular mechanisms and to identify novel target genes of 3,5-T2 in liver, we performed a microarray-based liver tissue transcriptome analysis of male lean and diet-induced obese euthyroid mice treated for 4 weeks with a dose of 2.5 µg/g bw 3,5-T2 Our results revealed that 3,5-T2 modulates the expression of genes encoding Phase I and Phase II enzymes as well as Phase III transporters, which play central roles in metabolism and detoxification of xenobiotics. Additionally, 3,5-T2 changes the expression of TH responsive genes, suggesting a thyromimetic action of 3,5-T2 in mouse liver. Interestingly, 3,5-T2 in obese but not in lean mice influences the expression of genes relevant for cholesterol and steroid biosynthesis, suggesting a novel role of 3,5-T2 in steroid metabolism of obese mice. We concluded that treatment with 3,5-T2 in lean and diet-induced obese male mice alters the expression of genes encoding hepatic xenobiotic-metabolizing enzymes that play a substantial role in catabolism and inactivation of xenobiotics and TH and are also involved in hepatic steroid and lipid metabolism. The administration of this high dose of 3,5-T2 might exert adverse hepatic effects. Accordingly, the conceivable use of 3,5-T2 as pharmacological hypolipidemic agent should be considered with caution.
Collapse
Affiliation(s)
- Julika Lietzow
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional GenomicsDepartment of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wenke Jonas
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany German Center for Diabetes Research (DZD)Helmholtz Center Munich, Neuherberg, Germany
| | - Josef Köhrle
- Institut für Experimentelle EndokrinologieCharité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Abstract
The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy &Health Sciences, One Discovery Drive, Rennselaer, New York 12144, USA
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Jack L Leonard
- Department of Microbiology &Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
41
|
Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015; 24:64-76. [PMID: 26190566 DOI: 10.1016/j.mito.2015.07.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.
Collapse
Affiliation(s)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
42
|
Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev Mol Med 2015; 17:e10. [DOI: 10.1017/erm.2015.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) exerts important actions on cellular energy metabolism, accelerating O2consumption with consequent reactive oxygen species (ROS) generation and redox signalling affording cell protection, a response that is contributed by redox-independent mechanisms. These processes underlie genomic and non-genomic pathways, which are integrated and exhibit hierarchical organisation. ROS production led to the activation of the redox-sensitive transcription factors nuclear factor-κB, signal transducer and activator of transcription 3, activating protein 1 and nuclear factor erythroid 2-related factor 2, promoting cell protection and survival by TH. These features involve enhancement in the homeostatic potential including antioxidant, antiapoptotic, antiinflammatory and cell proliferation responses, besides higher detoxification capabilities and energy supply through AMP-activated protein kinase upregulation. The above aspects constitute the molecular basis for TH-induced preconditioning of the liver that exerts protection against ischemia-reperfusion injury, a strategy also observed in extrahepatic organs of experimental animals and with other types of injury, which awaits application in the clinical setting. Noteworthy, re-adjusting TH to normal levels results in several beneficial effects; for example, it lengthens the cold storage time of organs for transplantation from brain-dead donors; allows a superior neurological outcome in infants of <28 weeks of gestation; reduces the cognitive side-effects of lithium and improves electroconvulsive therapy in patients with bipolar disorders.
Collapse
|
43
|
Lombardi A, Senese R, De Matteis R, Busiello RA, Cioffi F, Goglia F, Lanni A. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS One 2015; 10:e0116498. [PMID: 25658324 PMCID: PMC4319745 DOI: 10.1371/journal.pone.0116498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022] Open
Abstract
3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.
Collapse
Affiliation(s)
- Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Rita De Matteis
- Dipartimento di Scienze Biomolecolari, Sezione di Scienze Motorie e della Salute Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy
| | - Rosa Anna Busiello
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
- * E-mail: (A. Lanni); (FG)
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
- * E-mail: (A. Lanni); (FG)
| |
Collapse
|
44
|
Raghavendra U, Basanagouda M, Melavanki R, Fattepur R, Thipperudrappa J. Solvatochromic studies of biologically active iodinated 4-aryloxymethyl coumarins and estimation of dipole moments. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
|
46
|
Goglia F. The effects of 3,5-diiodothyronine on energy balance. Front Physiol 2015; 5:528. [PMID: 25628573 PMCID: PMC4292545 DOI: 10.3389/fphys.2014.00528] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio Benevento, Italy
| |
Collapse
|
47
|
XiYang YB, Wang YC, Zhao Y, Ru J, Lu BT, Zhang YN, Wang NC, Hu WY, Liu J, Yang JW, Wang ZJ, Hao CG, Feng ZT, Xiao ZC, Dong W, Quan XZ, Zhang LF, Wang TH. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. Mol Neurobiol 2015; 53:955-967. [PMID: 25575679 DOI: 10.1007/s12035-014-9048-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023]
Abstract
The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.
Collapse
Affiliation(s)
- Yan-Bin XiYang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - You-Cui Wang
- Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Zhao
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jin Ru
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue-Ning Zhang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Nai-Chao Wang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Wei-Yan Hu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin-Wei Yang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhao-Jun Wang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Chun-Guang Hao
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhong-Tang Feng
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Cheng Xiao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.,Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, VIC, Australia
| | - Wei Dong
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), 100021, Beijing, China.,Comparative Medicine Centre, Peking Union Medical College (PUMC), 100021, Beijing, China
| | - Xiong-Zhi Quan
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), 100021, Beijing, China.,Comparative Medicine Centre, Peking Union Medical College (PUMC), 100021, Beijing, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), 100021, Beijing, China. .,Comparative Medicine Centre, Peking Union Medical College (PUMC), 100021, Beijing, China.
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China. .,Institute of Neurological Disease, State Key Lab of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Videla LA, Fernández V, Cornejo P, Vargas R, Morales P, Ceballo J, Fischer A, Escudero N, Escobar O. T 3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets. World J Gastroenterol 2014; 20:17416-17425. [PMID: 25516653 PMCID: PMC4265600 DOI: 10.3748/wjg.v20.i46.17416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver.
METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum β-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA).
RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-β and transforming growth factor-β-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1α (CPT-1α) activation and higher expression of peroxisome proliferator-activated receptor-γ co-activator-1α and that of the fatty acid oxidation (FAO)-related enzymes CPT-1α, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of β-hydroxybutyrate, a surrogate marker for hepatic FAO.
CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury.
Collapse
|
49
|
Senese R, Lasala P, Leanza C, de Lange P. New avenues for regulation of lipid metabolism by thyroid hormones and analogs. Front Physiol 2014; 5:475. [PMID: 25538628 PMCID: PMC4256992 DOI: 10.3389/fphys.2014.00475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023] Open
Abstract
Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3'-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through "non-genomic" pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism.
Collapse
Affiliation(s)
- Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| | - Pasquale Lasala
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| | - Cristina Leanza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| |
Collapse
|
50
|
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2014; 8:363-75. [PMID: 25206677 PMCID: PMC4107533 DOI: 10.3969/j.issn.1673-5374.2013.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/20/2013] [Indexed: 01/30/2023] Open
Abstract
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|