1
|
Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis. PLoS Negl Trop Dis 2021; 15:e0009811. [PMID: 34591853 PMCID: PMC8483323 DOI: 10.1371/journal.pntd.0009811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Despite recent evidence suggesting that adult trematodes require oxygen for the generation of bioenergy and eggshells, information on the molecular mechanism by which the parasites acquire oxygen remains largely elusive. In this study, the structural and expressional features of globin genes identified in Clonorchis sinensis, a carcinogenic trematode parasite that invades the hypoxic biliary tracts of mammalian hosts, were investigated to gain insight into the molecules that enable oxygen metabolism. The number of globin paralogs substantially differed among parasitic platyhelminths, ranging from one to five genes, and the C. sinensis genome encoded at least five globin genes. The expression of these Clonorchis genes, named CsMb (CsMb1—CsMb3), CsNgb, and CsGbX, according to their preferential similarity patterns toward respective globin subfamilies, exponentially increased in the worms coinciding with their sexual maturation, after being downregulated in early juveniles compared to those in metacercariae. The CsMb1 protein was detected throughout the parenchymal region of adult worms as well as in excretory-secretory products, whereas the other proteins were localized exclusively in the sexual organs and intrauterine eggs. Stimuli generated by exogenous oxygen, nitric oxide (NO), and nitrite as well as co-incubation with human cholangiocytes variously affected globin gene expression in live C. sinensis adults. Together with the specific histological distributions, these hypoxia-induced patterns may suggest that oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms for energy metabolism and/or, more importantly, eggshell formation by CsMb1 and CsMb3, respectively. Other globin homologs are likely to perform non-respiratory functions. Based on the responsive expression profile against nitrosative stress, an oxygenated form of secreted CsMb1 is suggested to play a pivotal role in parasite survival by scavenging NO generated by host immune cells via its NO dioxygenase activity. Trematode parasites that invade mammalian tissues have long been believed to produce bioenergy via anaerobic respiration in their definitive hosts. However, recent studies have revealed that these parasites require considerable amounts of oxygen for the generation of hard eggshells during sexual reproduction as well as energy metabolism. Despite these findings, information on the biological mechanisms and relevant molecules responsible for oxygen uptake in the host environment remains largely elusive. Clonorchis sinensis is a carcinogenic trematode parasite that causes clonorchiasis in humans by infecting the bile ducts. Here, we investigated globin genes/proteins in the liver fluke. The genome of C. sinensis encoded at least five globin paralogs (CsMb1, CsMb2, CsMb3, CsNgb, and CsGbX). Temporal expression of these globin genes coincided with the sexual maturation of C. sinensis. Based on the histological localities and induction profiles upon hypoxia, it could be postulated that the oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms by CsMb1 and CsMb3, respectively, for energy metabolism and eggshell formation. Other globin homologs were likely to perform non-respiratory functions. In addition, the oxygenated form of secreted CsMb1 seemed to participate in the scavenging of nitric oxide generated by host immune cells via its nitric oxide dioxygenase activity to increase the survival of the parasite.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| | - Young-An Bae
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| |
Collapse
|
2
|
Biswal DK, Roychowdhury T, Pandey P, Tandon V. De novo genome and transcriptome analyses provide insights into the biology of the trematode human parasite Fasciolopsis buski. PLoS One 2018; 13:e0205570. [PMID: 30325945 PMCID: PMC6191129 DOI: 10.1371/journal.pone.0205570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022] Open
Abstract
Many trematode parasites cause infection in humans and are thought to be a major public health problem. Their ecological diversity in different regions provides challenging questions on evolution of these organisms. In this report, we perform transcriptome analysis of the giant intestinal fluke, Fasciolopsis buski, using next generation sequencing technology. Short read sequences derived from polyA containing RNA of this organism were assembled into 30,677 unigenes that led to the annotation of 12,380 genes. Annotation of the assembled transcripts enabled insight into processes and pathways in the intestinal fluke, such as RNAi pathway and energy metabolism. The expressed kinome of the organism was characterized by identifying all protein kinases. A rough draft genome assembly for Fasciolopsis buski is also reported herewith with SRA accessions for crosschecking the findings in the analyzed transcriptome data. Transcriptome data also helped us to identify some of the expressed transposable elements. Though many Long Interspersed elements (LINEs) were identified, only two Short Interspersed Elements (SINEs) were visible. Overall transcriptome and draft genome analysis of F. buski helped us to characterize some of its important biological characteristics and provided enormous resources for development of a suitable diagnostic system and anti-parasitic therapeutic molecules.
Collapse
Affiliation(s)
| | - Tanmoy Roychowdhury
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyatama Pandey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Veena Tandon
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
3
|
Ren M, He L, Huang Y, Mao Q, Li S, Qu H, Bian M, Liang P, Chen X, Ling J, Chen T, Liang C, Wang X, Li X, Yu X. Molecular characterization of Clonorchis sinensis secretory myoglobin: delineating its role in anti-oxidative survival. Parasit Vectors 2014; 7:250. [PMID: 24885788 PMCID: PMC4057808 DOI: 10.1186/1756-3305-7-250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Clonorchiasis is a globally important, neglected food-borne disease caused by Clonorchis sinensis (C. sinensis), and it is highly related to cholangiocarcinoma and hepatocellular carcinoma. Increased molecular evidence has strongly suggested that the adult worm of C. sinensis continuously releases excretory-secretory proteins (ESPs), which play important roles in the parasite-host interactions, to establish successful infection and ensure its own survival. Myoglobin, a hemoprotein, is present in high concentrations in trematodes and ESPs. To further understand the biological function of CsMb and its putative roles in the interactions of C. sinensis with its host, we explored the molecular characterization of CsMb in this paper. Methods We expressed CsMb and its mutants in E. coli BL21 and identified its molecular characteristics using bioinformatics analysis and experimental approaches. Reverse transcription PCR analysis was used to measure myoglobin transcripts of C. sinensis with different culture conditions. The peroxidase activity of CsMb was confirmed by spectrophotometry. We co-cultured RAW264.7 cells with recombinant CsMb (rCsMb), and we then measured the production of hydrogen peroxide (H2O2) and nitric oxide (NO) in addition to the mRNA levels of inducible nitric oxide synthase (iNOS), Cu-Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in activated RAW264.7 cells. Results In the in vitro culture of adult worms, the transcripts of CsMb increased with the increase of oxygen content. Oxidative stress conditions induced by H2O2 increased the levels of CsMb transcripts in a dose-dependent manner. Furthermore, CsMb catalyzed oxidation reactions in the presence of H2O2, and amino acid 34 of CsMb played an essential role in its reaction with H2O2. In addition, CsMb significantly reduced H2O2 and NO levels in LPS-activated macrophages, and CsMb downregulated iNOS and SOD expression in activated macrophages. Conclusion The present study is the first to investigate the peroxidase activity of CsMb. This investigation suggested that C. sinensis may decrease the redox activation of macrophages by CsMb expression to evade host immune responses. These studies contribute to a better understanding of the role of CsMb in the molecular mechanisms involved in ROS detoxification by C. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong 510080, China.
| | | |
Collapse
|
4
|
Pomaznoy M, Tatkov S, Katokhin A, Afonnikov D, Babenko V, Furman D, Brusentsov I, Belavin P, Najakshin A, Guselnikov S, Vasiliev G, Sivkov A, Prokhortchouk E, Skryabin K, Mordvinov V. Adult Opisthorchis felineus major protein fractions deduced from transcripts: comparison with liver flukes Opisthorchis viverrini and Clonorchis sinensis. Exp Parasitol 2013; 135:297-306. [PMID: 23891942 DOI: 10.1016/j.exppara.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
The epidemiologically important liver flukes Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis are of interest to health professionals, epidemiologists, pharmacologists, and molecular biologists. Recently the transcriptomes of the latter two species were intensively investigated. However our knowledge on molecular biology of O. felineus is scarce. We report the first results of the O. felineus transcriptome analysis. We isolated and annotated a total of 2560 expressed sequence tag (EST) sequences from adult O. felineus (deposited within the database of expressed sequence tags (dbEST), under accession numbers GenBank: JK624271-JK626790, JK006511-JK006547, JK649790-JK649792). Clustering and analysis resulted in the detection of 267 contigs. Of the protein sequences deduced from these, 82% had homologs in the NCBI (nr) protein database and 63% contained conserved domains, allowing the functions to be interpreted using the Gene Ontology terms. Comprehensive analysis of Opisthorchiidae- and Trematoda-specific substitutions within amino acid sequences deduced for the proteins myoglobin, vitelline precursor protein, cathepsin F, and 28kDa glutathione transferase was carried out. The gene set of the 32 ribosomal proteins for the three Opisthorchiidae species with the addition of available Schistosoma and Fasciola orthologs was created and is provided in the supplementary. The orthologous gene set created was used for inferring phylogeny within the Trematoda with special attention to interrelations within the Opisthorchiidae. The phylogenetic analysis revealed a closer relationship between C. sinensis and O. viverrini and some divergence of O. felineus from either O. viverrini or C. sinensis.
Collapse
Affiliation(s)
- Mikhail Pomaznoy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dewilde S, Ioanitescu AI, Kiger L, Gilany K, Marden MC, Van Doorslaer S, Vercruysse J, Pesce A, Nardini M, Bolognesi M, Moens L. The hemoglobins of the trematodes Fasciola hepatica and Paramphistomum epiclitum: a molecular biological, physico-chemical, kinetic, and vaccination study. Protein Sci 2008; 17:1653-62. [PMID: 18621914 DOI: 10.1110/ps.036558.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The trematode Fasciola hepatica (Fa.he.) is a common parasite of human and livestock. The hemoglobin (Hb) of Fa.he., a potential immunogen, was chosen for characterization in the search for an effective vaccine. Characterization of trematode Hbs show that they are intracellular single-domain globins with the following remarkable features: (1) Fa.he. expresses two Hb isoforms that differ at two amino acid sites (F1: 119Y/123Q; F2: 119F/123L). Both isoforms are monoacetylated at their N-termini; (2) the genes coding for Fa.he. and Paramphistomum epiclitum (Pa.ep.) Hbs are interrupted by two introns at the conserved positions B12.2 and G7.0.; (3) UV/VIS and resonance Raman spectroscopy identify the recombinant Fa.he. HbF2 as a pentacoordinated high-spin ferrous Hb; (4) electron paramagnetic resonance spectroscopy of cyano-met Fa.he. HbF2 proves that the endogenously bound imidazole has no imidazolate character; (5) the major structural determinants of the globin fold are present, they contain a TyrB10/TyrE7 residue pair on the distal side. Although such distal-site pair is a signature for high oxygen affinity, as shown for Pa.ep. Hb, the oxygen-binding rate parameters for Fa.he. Hb are intermediate between those of myoglobin and those of other trematode Hbs; (6) the three-dimensional structure of recombinant Fa.he. HbF2 from this study closely resembles the three-dimensional structure of Pa.ep. determined earlier. The set of distal-site polar interactions observed in Pa.ep. Hb is matched with small but significant structural adjustments; (7) despite the potential immunogenic character of the fluke Hb, vaccination of calves with recombinant Fa.he. HbF2 failed to promote protection against parasitic infection.
Collapse
Affiliation(s)
- Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
de Guzman JV, Yu HS, Jeong HJ, Hong YC, Kim J, Kong HH, Chung DI. Molecular characterization of two myoglobins of Paragonimus westermani. J Parasitol 2007; 93:97-103. [PMID: 17436948 DOI: 10.1645/ge-846r3.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Myoglobins (Mbs), globin proteins, are present in high concentrations in trematodes. In Paragonimus westermani, 2 cDNAs were found to encode Mbs. The first clone, Pwmyo1, codes a total of 149 amino acids with a calculated mass of 16.6 kDa. The second, Pwmyo2, encodes a 146-amino acid protein with a calculated mass of 16.2 kDa. The predicted secondary structures showed the presence of 8 helices, which is the basic characteristic of Mbs. Sequence alignment revealed a high homology with the other trematode Mbs. The 2 clones contained the characteristic tyrosyl residues at helical positions B10 and distal E7, which are substitutions that have been previously shown to contribute to the high oxygen affinity of Mbs. Polyclonal antibodies against the recombinant Mbs were raised with no cross-reactivity observed. Immunolocalization revealed the proteins to be distributed generally throughout the parenchymal tissues, but absent from the tegument and reproductive organs. The cell mass of the eggs of the worm stained positive to Pwmyo2 but not Pwmyo1, suggesting the stage-specific expression of these Mbs.
Collapse
Affiliation(s)
- Jefferson V de Guzman
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Gow AJ, Payson AP, Bonaventura J. Invertebrate hemoglobins and nitric oxide: how heme pocket structure controls reactivity. J Inorg Biochem 2005; 99:903-11. [PMID: 15811507 DOI: 10.1016/j.jinorgbio.2004.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/29/2004] [Accepted: 12/06/2004] [Indexed: 11/20/2022]
Abstract
Hemoglobins (Hbs), generally defined as 5 or 6 coordinate heme proteins whose primary function is oxygen transport, are now recognized to occur in virtually all phyla of living organisms. Historically, study of their function focused on oxygen as a reversibly bound ligand of the ferrous form of the protein. Other diatomic ligands like carbon monoxide and nitric oxide were considered "non-physiological" but useful probes of structure-function relationships in Hbs. This investigatory landscape changed dramatically in the 1980s when nitric oxide was discovered to activate a heme protein, cyclic guanylate cyclase. Later, its activation was likened to Perutz' description of Hb's allosteric properties being triggered by a ligand-dependent "out-of-plane/into-plane" movement of the heme iron. In 1996, a functional role for nitric oxide in human and mammalian Hbs was demonstrated and since that time, the interest in NO as a physiologically relevant Hb ligand has greatly increased. Concomitantly, non-oxygen binding properties of Hbs have challenged the view that Hbs arose for their oxygen storage and transport properties. In this focused review we discuss some invertebrate Hbs' functionally significant reactions with nitric oxide and how strategic positioning of a few residues in the heme pocket plays an large role in the interplay of diatomic ligands to ferrous and ferric heme iron in these proteins.
Collapse
Affiliation(s)
- Andrew J Gow
- Stokes Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Du W, Xia Z, Dewilde S, Moens L, La Mar GN. 1H NMR study of the molecular structure and magnetic properties of the active site for the cyanomet complex of O2-avid hemoglobin from the trematode Paramphistomum epiclitum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2707-20. [PMID: 12823541 DOI: 10.1046/j.1432-1033.2003.03638.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solution molecular and electronic structures of the active site in the extremely O2-avid hemoglobin from the trematode Paramphistomum epiclitum have been investigated by 1H NMR on the cyanomet form in order to elucidate the distal hydrogen-bonding to a ligated H-bond acceptor ligand. Comparison of the strengths of dipolar interactions in solution with the alternate crystal structures of methemoglobin establish that the solution structure of wild-type Hb more closely resembles the crystal structure of the recombinant wild-type than the true wild-type met-hemoglobin. The distal Tyr66(E7) is found oriented out of the heme pocket in solution as found in both crystal structures. Analysis of dipolar contacts, dipolar shift and paramagnetic relaxation establishes that the Tyr32(B10) hydrogen proton adopts an orientation that allows it to make a strong H-bond to the bound cyanide. The observation of a significant isotope effect on the heme methyl contact shifts confirms a strong contact between the Tyr32(B10) OH and the ligated cyanide. The quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that the cyanide is tilted approximately 10 degrees from the heme normal so as to avoid van der Waals overlap with the Tyr32(B10) Oeta. The pattern of heme contact shifts with large low-field shifts for 7-CH3 and 18-CH3 is shown to arise not from the 180 degrees rotation about the alpha-gamma-meso axis, but due to the approximately 45 degrees rotation of the axial His imidazole ring, relative to that in mammalian globins.
Collapse
Affiliation(s)
- Weihong Du
- Department of Chemistry, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
9
|
Pesce A, Dewilde S, Kiger L, Milani M, Ascenzi P, Marden MC, Van Hauwaert ML, Vanfleteren J, Moens L, Bolognesi M. Very high resolution structure of a trematode hemoglobin displaying a TyrB10-TyrE7 heme distal residue pair and high oxygen affinity. J Mol Biol 2001; 309:1153-64. [PMID: 11399085 DOI: 10.1006/jmbi.2001.4731] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monomeric hemoglobin from the trematode Paramphistomum epiclitum displays very high oxygen affinity (P(50)<0.001 mm Hg) and an unusual heme distal site containing tyrosyl residues at the B10 and E7 positions. The crystal structure of aquo-met P. epiclitum hemoglobin, solved at 1.17 A resolution via multiwavelength anomalous dispersion techniques (R-factor=0.121), shows that the heme distal site pocket residue TyrB10 is engaged in hydrogen bonding to the iron-bound ligand. By contrast, residue TyrE7 is unexpectedly locked next to the CD globin region, in a conformation unsuitable for heme-bound ligand stabilisation. Such structural organization of the E7 distal residue differs strikingly from that observed in the nematode Ascaris suum hemoglobin (bearing TyrB10 and GlnE7 residues), which also displays very high oxygen affinity. The oxygenation and carbonylation parameters of wild-type P. epiclitum Hb as well as of single- and double-site mutants, with residue substitutions at positions B10, E7 and E11, have been determined and are discussed here in the light of the protein atomic resolution crystal structure.
Collapse
Affiliation(s)
- A Pesce
- Department of Physics-INFM, Advanced Biotechnology Centre, University of Genova, Largo Rosanna Benzi, 10, Genova, I-16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Hemoglobin (Hb) occurs in all the kingdoms of living organisms. Its distribution is episodic among the nonvertebrate groups in contrast to vertebrates. Nonvertebrate Hbs range from single-chain globins found in bacteria, algae, protozoa, and plants to large, multisubunit, multidomain Hbs found in nematodes, molluscs and crustaceans, and the giant annelid and vestimentiferan Hbs comprised of globin and nonglobin subunits. Chimeric hemoglobins have been found recently in bacteria and fungi. Hb occurs intracellularly in specific tissues and in circulating red blood cells (RBCs) and freely dissolved in various body fluids. In addition to transporting and storing O(2) and facilitating its diffusion, several novel Hb functions have emerged, including control of nitric oxide (NO) levels in microorganisms, use of NO to control the level of O(2) in nematodes, binding and transport of sulfide in endosymbiont-harboring species and protection against sulfide, scavenging of O(2 )in symbiotic leguminous plants, O(2 )sensing in bacteria and archaebacteria, and dehaloperoxidase activity useful in detoxification of chlorinated materials. This review focuses on the extensive variation in the functional properties of nonvertebrate Hbs, their O(2 )binding affinities, their homotropic interactions (cooperativity), and the sensitivities of these parameters to temperature and heterotropic effectors such as protons and cations. Whenever possible, it attempts to relate the ligand binding properties to the known molecular structures. The divergent and convergent evolutionary trends evident in the structures and functions of nonvertebrate Hbs appear to be adaptive in extending the inhabitable environment available to Hb-containing organisms.
Collapse
Affiliation(s)
- R E Weber
- Danish Centre for Respiratory Adaptation, Department of Zoophysiology, Institute of Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
11
|
Das TK, Weber RE, Dewilde S, Wittenberg JB, Wittenberg BA, Yamauchi K, Van Hauwaert ML, Moens L, Rousseau DL. Ligand binding in the ferric and ferrous states of Paramecium hemoglobin. Biochemistry 2000; 39:14330-40. [PMID: 11087382 DOI: 10.1021/bi001681d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unicellular protozoan Paramecium caudatum contains a monomeric hemoglobin (Hb) that has only 116 amino acid residues. This Hb shares the simultaneous presence of a distal E7 glutamine and a B10 tyrosine with several invertebrate Hbs. In the study presented here, we have used ligand binding kinetics and resonance Raman spectroscopy to characterize the effect of the distal pocket residues of Paramecium Hb in stabilizing the heme-bound ligands. In the ferric state, the high-spin to low-spin (aquo-hydroxy) transition takes place with a pK(a) of approximately 9.0. The oxygen affinity (P(50) = 0.45 Torr) is similar to that of myoglobin. The oxygen on- and off-rates are also similar to those of sperm whale myoglobin. Resonance Raman data suggest hydrogen bonding stabilization of bound oxygen, evidenced by a relatively low frequency of Fe-OO stretching (563 cm(-1)). We propose that the oxy complex is an equilibrium mixture of a hydrogen-bonded closed structure and an open structure. Oxygen will dissociate preferentially from the open structure, and therefore, the fraction of open structure population controls the rate of oxygen dissociation. In the CO complex, the Fe-CO stretching frequency at 493 cm(-1) suggests an open heme pocket, which is consistent with the higher on- and off-rates for CO relative to those in myoglobin. A high rate of ligand binding is also consistent with the observation of an Fe-histidine stretching frequency at 220 cm(-1), indicating the absence of significant proximal strain. We postulate that the function of Paramecium Hb is to supply oxygen for cellular oxidative processes.
Collapse
Affiliation(s)
- T K Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|