1
|
The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proc Natl Acad Sci U S A 2020; 117:25272-25283. [PMID: 33004626 PMCID: PMC7568274 DOI: 10.1073/pnas.2002956117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease affects a rapidly growing number of individuals worldwide. Key unresolved questions relate to the onset and propagation of the disease, linked to the self-assembly of amyloid β peptide into fibrillar and smaller aggregates. This study investigates the propagation of aggregates of amyloid β peptide and asks whether hydrophobic molecular features observed on the fibril surface correlate with its ability to catalyze the formation of new aggregates. This question is motivated by the associated formation of intermediate forms that are toxic to neuronal cells. The results imply that surface catalysis is independent of surface details but requires that the monomers that form the new aggregate can adopt the structure of the parent aggregate without steric clashes. Crystals, nanoparticles, and fibrils catalyze the generation of new aggregates on their surface from the same type of monomeric building blocks as the parent assemblies. This secondary nucleation process can be many orders of magnitude faster than primary nucleation. In the case of amyloid fibrils associated with Alzheimer’s disease, this process leads to the multiplication and propagation of aggregates, whereby short-lived oligomeric intermediates cause neurotoxicity. Understanding the catalytic activity is a fundamental goal in elucidating the molecular mechanisms of Alzheimer’s and associated diseases. Here we explore the role of fibril structure and hydrophobicity by asking whether the V18, A21, V40, and A42 side chains which are exposed on the Aβ42 fibril surface as continuous hydrophobic patches play a role in secondary nucleation. Single, double, and quadruple serine substitutions were made. Kinetic analyses of aggregation data at multiple monomer concentrations reveal that all seven mutants retain the dominance of secondary nucleation as the main mechanism of fibril proliferation. This finding highlights the generality of secondary nucleation and its independence of the detailed molecular structure. Cryo-electron micrographs reveal that the V18S substitution causes fibrils to adopt a distinct morphology with longer twist distance than variants lacking this substitution. Self- and cross-seeding data show that surface catalysis is only efficient between peptides of identical morphology, indicating a templating role of secondary nucleation with structural conversion at the fibril surface. Our findings thus provide clear evidence that the propagation of amyloid fibril strains is possible even in systems dominated by secondary nucleation rather than fragmentation.
Collapse
|
2
|
Calreticulin protects insulin against reductive stress in vitro and in MIN6 cells. Biochimie 2020; 171-172:1-11. [PMID: 32004653 DOI: 10.1016/j.biochi.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative folding of proinsulin in the endoplasmic reticulum (ER) is critical for the proper sorting and secretion of insulin from pancreatic β-cells. Here, by using non-cell-based insulin aggregation assays and mouse insulinoma-derived MIN6 cells, we searched for a candidate molecular chaperone for (pro)insulin when its oxidative folding is compromised. We found that interaction between insulin and calreticulin (CRT), a lectin that acts as an ER-resident chaperone, was enhanced by reductive stress in MIN6 cells. Co-incubation of insulin with recombinant CRT prevented reductant-induced aggregation of insulin. Furthermore, lysosomal degradation of proinsulin, which was facilitated by dithiothreitol-induced reductive stress, depended on CRT in MIN6 cells. Together, our results suggest that CRT may be a protective molecule against (pro)insulin aggregation when oxidative folding is defective, e.g. under reductive stress conditions, in vitro and in cultured cells. Because CRT acts as a molecular chaperone for not only glycosylated proteins but also non-glycosylated polypeptides, we also propose that (pro)insulin is a novel candidate client of the chaperone function of CRT.
Collapse
|
3
|
Kolli V, Paul S, Guttula PK, Sarkar N. Elucidating the Role of Val-Asn 95 and Arg-Gly 52 Mutations on Structure and Stability of Fibroblast Growth Factor Homologous Factor 2. Protein Pept Lett 2019; 26:848-859. [PMID: 37020363 DOI: 10.2174/0929866526666190503092718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Background:
Fibroblast growth Factor Homologous Factors (FHFs) belong to a subclass
of Fibroblast Growth Factor (FGF) family owing to their high sequence and structural similarities
with FGFs. However, despite these similarities, there are properties which set them apart from
FGFs. FHFs lack the secretion signal sequence unlike other FGF members, except FGF1 and 2.
Unlike FGFs, FHFs are not able to bind to FGF Receptors (FGFRs) and instead have been
implicated in binding to Voltage-Gated Sodium Channels (VGSCs), neuronal MAP kinase scaffold
protein and islet-brain-2 (IB2). The two amino acids Arg-52 and Val95 are conserved in all FHFs
and mutation of these residues lead to its inability to bind with VGSC/IB2. However, it is not clear
whether the loss of binding is due to destabilization of the protein on mutation or due to
involvement of Arg52 and Val95 in conferring functionality to FHFs.
Objective:
In the present study, we have mutated these two conserved residues of FHF2 with its
corresponding FGF counterpart amino acids and studied the effects of the mutations on the
structure and stability of the protein.
Methods:
Several biophysical methods like isothermal equilibrium denaturation study, ANS
fluorescence, intrinsic fluorescence, acrylamide quenching, circular dichroism studies as well as
using computational approaches were employed.
Results:
The single mutations were found to affect the overall stability, conformation and
functionality of the protein.
Conclusion:
Thus, the studies throw light on the role of specific amino acids in deciding the
stability, structure and functionality of proteins and will be useful for development of
therapeutically engineered proteins.
Collapse
Affiliation(s)
- Vidyalatha Kolli
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
4
|
Saif B, Zhang W, Zhang X, Gu Q, Yang P. Sn-Triggered Two-Dimensional Fast Protein Assembly with Emergent Functions. ACS NANO 2019; 13:7736-7749. [PMID: 31244042 DOI: 10.1021/acsnano.9b01392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The discovery of a general strategy for organizing functional proteins into stable nanostructures with the desired dimension, shape, and function is an important focus in developing protein-based self-assembled materials, but the scalable synthesis of such materials and transfer to other substrates remain great challenges. We herein tackle this issue by creating a two-dimensional metal-protein hybrid nanofilm that is flexible and cost-effective with reliable self-recovery, stability, and multifunctionality. As it differs from traditional metal ions, we discover the capability of Sn2+ to initiate fast amyloid-like protein assembly (occurring in seconds) by effectively reducing the disulfide bonds of native globular proteins. The Sn2+-initiated lysozyme aggregation at the air/water interface leads to droplet flattening, a result never before reported in a protein system, which finally affords a multifunctional 2D Sn-doped hybrid lysozyme nanofilm with an ultralarge area (e.g., 0.2 m2) within a few minutes. The hybrid film is distinctive in its ease of coating on versatile material surfaces with endurable chemical and mechanical stability, optical transparency, and diverse end uses in antimicrobial and photo-/electrocatalytic scaffolds. Our approach provides not only insights into the effect of tin ions on macroscopic self-assembly of proteins but also a controllable and scalable synthesis of a potential biomimic framework for biomedical and biocatalytic applications.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Wenxin Zhang
- School and Hospital of Stomatology , Tianjin Medical University , 12 Observatory Road , Tianjin 30070 , P.R. China
| | - Xu Zhang
- School and Hospital of Stomatology , Tianjin Medical University , 12 Observatory Road , Tianjin 30070 , P.R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
5
|
Khan MA, Arif Z, Moinuddin, Alam K. Characterization of methylglyoxal-modified human IgG by physicochemical methods. J Biomol Struct Dyn 2017; 36:3172-3183. [DOI: 10.1080/07391102.2017.1383309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mohd. Adnan Khan
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
6
|
Tao F, Han Q, Liu K, Yang P. Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| |
Collapse
|
7
|
Tao F, Han Q, Liu K, Yang P. Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. Angew Chem Int Ed Engl 2017; 56:13440-13444. [DOI: 10.1002/anie.201706843] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710119 China
| |
Collapse
|
8
|
Shmueli MD, Hizkiahou N, Peled S, Gazit E, Segal D. Total proteome turbidity assay for tracking global protein aggregation in the natural cellular environment. J Biol Methods 2017; 4:e69. [PMID: 31453227 PMCID: PMC6706124 DOI: 10.14440/jbm.2017.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Proteome homeostasis is crucial for optimal cellular function and survival in the face of various stressful impacts. This entails preservation of a balance between protein synthesis, folding, degradation, and trafficking collectively termed proteostasis. A hallmark of proteostasis failure, which underlies various diseases, is enhanced misfolding and aggregation of proteins. Here we adapted the measurement of protein turbidity, which is commonly used to evaluate aggregation of single purified proteins, for monitoring propensity for aggregation of the entire soluble cellular proteome incubated in vitro for several hours. We show that over-expression of an aggregation-prone protein or applying endoplasmic-reticulum (ER) stress to either cells in culture or to the intact organism, Drosophila, enhances the rise in turbidity of the global soluble proteome compared to untreated cells. Additionally, given that Alzheimer's disease (AD) is known to involve ER stress and aggregation of proteins, we demonstrate that the soluble fraction of brain extracts from AD patients displays markedly higher rise of global proteome turbidity than in healthy counterparts. This assay could be valuable for various biological, medical and biotechnological applications.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Aviv University, Aviv 69978, Israel
| | - Noa Hizkiahou
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Aviv University, Aviv 69978, Israel
| | - Sivan Peled
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Aviv University, Aviv 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Aviv University, Aviv 69978, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology and the Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Aviv University, Aviv 69978, Israel
| |
Collapse
|
9
|
Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures. ACS Chem Biol 2016; 11:1661-8. [PMID: 27008438 PMCID: PMC5461432 DOI: 10.1021/acschembio.5b01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them currently depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS's, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of (15)N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of (1)H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of helices and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ∼60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation.
Collapse
Affiliation(s)
- Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| |
Collapse
|
10
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Zhang Y, Zhang H, Tang Z, Kohama K, Lin Y. Inverse interaction between tropomyosin and phosphorylated myosin in the presence or absence of caldesmon. Acta Biochim Biophys Sin (Shanghai) 2013; 45:601-6. [PMID: 23665794 DOI: 10.1093/abbs/gmt047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present study, co-sedimentation assay, intrinsic fluorescence intensity measurement, and Mg²⁺-ATPase activity analysis were carried out to investigate the direct effect of tropomyosin (TM) on unphosphorylated myosin (UM) or phosphorylated myosin (PM) in the presence or absence of caldesmon (CaD). Results showed that TM significantly decreased the sedimentation, intrinsic fluorescence intensity, and the Mg²⁺-ATPase activity of PM, but not UM. In the presence of CaD, TM also significantly decreased these parameters irrespective of myosin phosphorylation, suggesting that the interaction between TM and CaD abolished the effects of TM on PM or UM and that there was an inverse interaction between TM and PM, characterized by the decreased PM sedimentation and intrinsic fluorescence intensity.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
12
|
Ni S, Hong F, Haldeman BD, Baker JE, Facemyer KC, Cremo CR. Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin. J Biol Chem 2012; 287:22068-79. [PMID: 22549781 DOI: 10.1074/jbc.m112.343491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.
Collapse
Affiliation(s)
- Shaowei Ni
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
14
|
Chapter 4 Scallop adductor muscles: Structure and function. SCALLOPS: BIOLOGY, ECOLOGY AND AQUACULTURE 2006. [DOI: 10.1016/s0167-9309(06)80031-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Debreczeni JE, Farkas L, Harmat V, Hetényi C, Hajdú I, Závodszky P, Kohama K, Nyitray L. Structural Evidence for Non-canonical Binding of Ca2+ to a Canonical EF-hand of a Conventional Myosin. J Biol Chem 2005; 280:41458-64. [PMID: 16227209 DOI: 10.1074/jbc.m506315200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.
Collapse
Affiliation(s)
- Judit E Debreczeni
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bódis E, Szarka K, Nyitrai M, Somogyi B. Dynamic reorganization of the motor domain of myosin subfragment 1 in different nucleotide states. ACTA ACUST UNITED AC 2004; 270:4835-45. [PMID: 14653810 DOI: 10.1046/j.1432-1033.2003.03883.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atomic models of the myosin motor domain with different bound nucleotides have revealed the open and closed conformations of the switch 2 element [Geeves, M.A. & Holmes, K.C. (1999) Annu. Rev. Biochem.68, 687-728]. The two conformations are in dynamic equilibrium, which is controlled by the bound nucleotide. In the present work we attempted to characterize the flexibility of the motor domain in the open and closed conformations in rabbit skeletal myosin subfragment 1. Three residues (Ser181, Lys553 and Cys707) were labelled with fluorophores and the probes identified three fluorescence resonance energy transfer pairs. The effect of ADP, ADP.BeFx, ADP.AlF4- and ADP.Vi on the conformation of the motor domain was shown by applying temperature-dependent fluorescence resonance energy transfer methods. The 50 kDa lower domain was found to maintain substantial rigidity in both the open and closed conformations to provide the structural basis of the interaction of myosin with actin. The flexibility of the 50 kDa upper domain was high in the open conformation and further increased in the closed conformation. The converter region of subfragment 1 became more rigid during the open-to-closed transition, the conformational change of which can provide the mechanical basis of the energy transduction from the nucleotide-binding pocket to the light-chain-binding domain.
Collapse
Affiliation(s)
- Emoke Bódis
- Department of Biophysics, Faculty of Medicine, University of Pécs, Hungary
| | | | | | | |
Collapse
|
17
|
Stafford WF, Jacobsen MP, Woodhead J, Craig R, O'Neall-Hennessey E, Szent-Györgyi AG. Calcium-dependent structural changes in scallop heavy meromyosin. J Mol Biol 2001; 307:137-47. [PMID: 11243809 DOI: 10.1006/jmbi.2000.4490] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of calcium regulation of scallop myosin is not understood, although it is known that both myosin heads are required. We have explored possible interactions between the heads of heavy meromyosin (HMM) in the presence and absence of calcium and nucleotides by sedimentation and electron microscope studies. The ATPase activity of the HMM preparation was activated over tenfold by calcium, indicating that the preparation contained mostly regulated molecules. In the presence of ADP or ATP analogs, calcium increased the asymmetry of the HMM molecule as judged by its slower sedimentation velocity compared with that in EGTA. In the absence of nucleotide the asymmetry was high even in EGTA. The shift in sedimentation occurred with a sharp midpoint at a calcium level of about 0.5 microM. Sedimentation of subfragment 1 was not dependent on calcium or on nucleotides. Modeling accounted for the observed sedimentation behavior by assuming that both HMM heads bent toward the tail in the absence of calcium, while in its presence the heads had random positions. The sedimentation pattern showed a single peak at all calcium concentrations, indicating equilibration between the two forms with a t(1/2) less than 70 seconds. Electron micrographs of crosslinked, rotary shadowed specimens indicated that 81 % of HMM molecules in the presence of nucleotide had both heads pointing back towards the tail in the absence of calcium, as compared with 41 % in its presence. This is consistent with the sedimentation data. We conclude that in the "off" state, scallop myosin heads interact with each other, forming a rigid structure with low ATPase activity. When molecules are switched "on" by binding of calcium, communication between the heads is lost, allowing them to flex randomly about the junction with the tail; this could facilitate their interaction with actin in contracting muscle.
Collapse
Affiliation(s)
- W F Stafford
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | | | | | | | | | |
Collapse
|
18
|
Janes DP, Patel H, Chantler PD. Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain. J Muscle Res Cell Motil 2001; 21:415-22. [PMID: 11129432 DOI: 10.1023/a:1005698407859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have determined the complete cDNA and deduced amino acid sequences of the heavy chain, regulatory light chain and essential light chain which constitute the molecular structure of myosin from the striated adductor muscle of the scallop, Pecten maximus. The deduced amino acid sequences of P. maximus regulatory light chain, essential light chain and heavy chain comprise 156, 156 and 1940 amino acids, respectively. These myosin peptide sequences, obtained from the most common of the eastern Atlantic scallops, are compared with those from three other molluscan myosins: the striated adductor muscles of Argopecten irradians and Placopecten magellanicus, and myosin from the siphon retractor muscle of the squid, Loligo pealei. The Pecten heavy chain sequence resembles those of the other two scallop sequences to a much greater extent as compared with the squid sequence, amino acid identities being 97.5% (A. irradians), 95.6% (P. magellanicus) and 73.6% (L. pealei), respectively. Myosin heavy chain residues that are known to be important for regulation are conserved in Pecten maximus. Using these Pecten sequences, we have overexpressed the regulatory light chain, and a combination of essential light chain and myosin heavy chain fragment, separately, in E. coli BL21 (DE3) prior to recombination, thereby producing Pecten regulatory domains without recourse to proteolytic digestion. The expressed regulatory domain was shown to undergo a calcium-dependent increase (approximately 7%) in intrinsic tryptophan fluorescence with a mid-point at a pCa of 6.6.
Collapse
Affiliation(s)
- D P Janes
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, UK
| | | | | |
Collapse
|