1
|
Chua MD, Hipolito KJ, Singerr OB, Solway J, Guttman JA. SM22 is required for the maintenance of actin-rich structures generated during bacterial infections. Exp Cell Res 2018; 369:139-146. [PMID: 29778753 DOI: 10.1016/j.yexcr.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
The host actin cytoskeleton is utilized by an assortment of pathogenic bacteria to colonize and cause disease in their hosts. Two prominently studied actin-hijacking bacteria are enteropathogenic Escherichia coli (EPEC) and Listeria monocytogenes. EPEC form actin-rich pedestals atop its host cells to move across the intestinal epithelia, while Listeria monocytogenes generate branched actin networks arranged as actin clouds around the bacteria and as comet tails for propulsion within and amongst their host cells. Previous mass spectrometry analysis revealed that a member of the calponin family of actin-bundling proteins, transgelin/SM22 was enriched in EPEC pedestals. To validate that finding and examine the role of SM22 during infections, we initially immunolocalized SM22 in EPEC and L. monocytogenes infected cells, used siRNA to deplete SM22 and EGFP-SM22 to overexpress SM22, then quantified the alterations to the bacterially generated actin structures. SM22 concentrated at all bacterially-generated actin structures. Depletion of SM22 resulted in fewer pedestals and comet tails and caused comet tails to shorten. The decrease in comet tail abundance caused a proportional increase in actin clouds whereas overexpression of SM22 reversed the actin cloud to comet tail proportions and increased comet tail length, while not influencing EPEC pedestal abundance. Thus, we demonstrate that SM22 plays a role in regulating the transitions and morphological appearance of bacterially generated actin-rich structures during infections.
Collapse
Affiliation(s)
- Michael Dominic Chua
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr Shrum Science Centre Rm B7239, Burnaby, BC, Canada V5A1S6
| | - Kevin Jay Hipolito
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr Shrum Science Centre Rm B7239, Burnaby, BC, Canada V5A1S6
| | - Onisokumen Benny Singerr
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr Shrum Science Centre Rm B7239, Burnaby, BC, Canada V5A1S6
| | - Julian Solway
- Department of Medicine, University of Chicago, 5841 S. Maryland Ave, MC6026, Rm BH-M644, Chicago, IL 60637, USA
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr Shrum Science Centre Rm B7239, Burnaby, BC, Canada V5A1S6.
| |
Collapse
|
2
|
Liu R, Jin JP. Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene 2016; 585:143-153. [PMID: 26970176 PMCID: PMC5325697 DOI: 10.1016/j.gene.2016.02.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/13/2016] [Accepted: 02/25/2016] [Indexed: 01/04/2023]
Abstract
Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and many types of non-muscle cells. Three homologous genes, CNN1, CNN2 and CNN3, encoding calponin isoforms 1, 2, and 3, respectively, are present in vertebrate species. All three calponin isoforms are actin-binding proteins with functions in inhibiting actin-activated myosin ATPase and stabilizing the actin cytoskeleton, while each isoform executes different physiological roles based on their cell type-specific expressions. Calponin 1 is specifically expressed in smooth muscle cells and plays a role in fine-tuning smooth muscle contractility. Calponin 2 is expressed in both smooth muscle and non-muscle cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 participates in actin cytoskeleton-based activities in embryonic development and myogenesis. Phosphorylation has been extensively studied for the regulation of calponin functions. Cytoskeleton tension regulates the transcription of CNN2 gene and the degradation of calponin 2 protein. This review summarizes our knowledge learned from studies over the past three decades, focusing on the evolutionary lineage of calponin isoform genes, their tissue- and cell type-specific expressions, structure-function relationships, and mechanoregulation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Ferjani I, Fattoum A, Manai M, Benyamin Y, Roustan C, Maciver SK. Two distinct regions of calponin share common binding sites on actin resulting in different modes of calponin-actin interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1760-7. [PMID: 20595006 DOI: 10.1016/j.bbapap.2010.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/05/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Calponins are a small family of proteins that alter the interaction between actin and myosin II and mediate signal transduction. These proteins bind F-actin in a complex manner that depends on a variety of parameters such as stoichiometry and ionic strength. Calponin binds G-actin and F-actin, bundling the latter primarily through two distinct and adjacent binding sites (ABS1 and ABS2). Calponin binds other proteins that bind F-actin and considerable disagreements exist as to how calponin is located on the filament, especially in the presence of other proteins. A study (Galkin, V.E., Orlova, A., Fattoum, A., Walsh, M.P. and Egelman, E.H. (2006) J. Mol. Biol. 359, 478-485.), using EM single-particle reconstruction has shown that there may be four modes of interaction, but how these occur is not yet known. We report that two distinct regions of calponin are capable of binding some of the same sites on actin (such as 18-28 and 360-372 in subdomain 1). This accounts for the finding that calponin binds the filament with different apparent geometries. We suggest that the four modes of filament binding account for differences in stoichiometry and that these, in turn, arise from differential binding of the two calponin regions to actin. It is likely that the modes of binding are reciprocally influenced by other actin-binding proteins since members of the alpha-actinin group also adopt different actin-binding positions and bind actin principally through a domain that is similar to calponin's ABS1.
Collapse
Affiliation(s)
- Imen Ferjani
- UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes) Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
4
|
Roustan C, Ferjani I, Maciver SK, Fattoum A, Rebière B, Benyamin Y. Calcium-induced conformational changes in the amino-terminal half of gelsolin. FEBS Lett 2007; 581:681-6. [PMID: 17258204 DOI: 10.1016/j.febslet.2007.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/05/2006] [Accepted: 01/15/2007] [Indexed: 11/27/2022]
Abstract
Gelsolin is an actin-binding protein that is regulated by the occupancy of multiple calcium-binding sites. We have studied calcium induced conformational changes in the G1-2 and G1-3 sub-domains, and report the binding affinities for the three type II sites. A new probe for G3 has been produced and a K(d) of 5 microM has been measured for calcium in the context of G1-3. The two halves of gelsolin, G1-3 and G4-6 bind weakly with or without calcium, suggesting that once separated by apoptotic proteolysis, G1-3 and G4-6 remain apart allowing G1-3 to sever actin in a calcium free manner.
Collapse
Affiliation(s)
- Claude Roustan
- UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
5
|
Ferjani I, Fattoum A, Maciver SK, Manai M, Benyamin Y, Roustan C. Calponin binds G-actin and F-actin with similar affinity. FEBS Lett 2006; 580:4801-6. [PMID: 16901482 DOI: 10.1016/j.febslet.2006.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/30/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
Calponins are actin-binding proteins that are implicated in the regulation of actomyosin. Calponin binds filamentous actin (F-actin) through two distinct sites ABS1 and ABS2, with an affinity in the low micromolar range. We report that smooth muscle calponin binds monomeric actin with a similar affinity (K(d) of 0.15 microM). We show that the arrangement of binding is similar to that of F-actin by a number of criteria, most notably that the distance between Cys273 on calponin and Cys374 of actin is 29A when measured by fluorescent resonance energy transfer, the same distance as previously reported for F-actin.
Collapse
Affiliation(s)
- Imen Ferjani
- UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes) Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
6
|
Mazhari SM, Selser CT, Cremo CR. Novel sensors of the regulatory switch on the regulatory light chain of smooth muscle Myosin. J Biol Chem 2004; 279:39905-14. [PMID: 15262959 DOI: 10.1074/jbc.m407062200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin can be switched on by phosphorylation of Ser-19 of the regulatory light chain. Our previous photocross-linking results suggested that an element of the structural mechanism for the regulatory switch was a phosphorylation-induced motion of the regulatory light chain N terminus (Wahlstrom, J. L., Randall, M. A., Jr., Lawson, J. D., Lyons, D. E., Siems, W. F., Crouch, G. J., Barr, R., Facemyer, K. C., and Cremo, C. R. (2003) J. Biol. Chem. 278, 5123-5131). Here we used three different approaches to test this notion, which are reactivity of cysteine thiols, pyrene and acrylodan spectral analysis, and pyrene fluorescence quenching. All methods detected significant differences between the unphosphorylated and phosphorylated regulatory light chain N termini in heavy meromyosin, a double-headed subfragment with an intact regulatory switch. These differences were not observed for subfragment-1, a single-headed, unregulated subfragment. In the presence of either ATP or ADP, phosphorylation increased the solvent exposure and decreased the polarity of the environment about position 23 of the regulatory light chain of heavy meromyosin. These phosphorylation-induced structural changes were not as evident in the absence of nucleotides. Nucleotide binding to unphosphorylated heavy meromyosin caused a decrease in exposure and an increase in polarity of the N terminus, whereas the effects of nucleotide on phosphorylated heavy meromyosin were the opposite. We showed a direct correlation between the kinetics of nucleotide binding/turnover and the conformational change reported by acrylodan at position 23 of the regulatory light chain. Acrylodan-A23C also reports the heads up (extended) to flexed (folded) transition in unphosphorylated heavy meromyosin. This is the first demonstration of direct coupling of nucleotide binding to conformational changes in the N terminus of the regulatory light chain.
Collapse
Affiliation(s)
- Sam M Mazhari
- Department of Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
7
|
Lener T, Burgstaller G, Gimona M. The role of calponin in the gene profile of metastatic cells: inhibition of metastatic cell motility by multiple calponin repeats. FEBS Lett 2004; 556:221-6. [PMID: 14706854 DOI: 10.1016/s0014-5793(03)01401-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metastasis of diseased cells is the basic event leading to death in individuals with cancer. Establishment of metastasis requires that tumour cells migrate from the site of the primary tumour into the circulation system, escape from the vasculature and form secondary tumours at novel sites. These processes depend to a large degree on cytoskeletal remodeling. We show here that multiple copies of the short actin-binding module CLIK(23) from human or Caenorhabditis elegans calponin proteins effectively inhibit cell motility on two dimensional matrices and suppress soft agar colony formation of metastatic melanoma and adenocarcinoma cells of murine and human origin. Ectopic expression of CLIK(23) modules for 30 days results in the formation of multinucleated cells. The repeat displays true modular behaviour, resulting in increased cytoskeletal effects in direct correlation with the increase in number of modules. Our results demonstrate that the role of calponin in the signature profile of metastasising cells is that of a mechanical stabiliser of the actin cytoskeleton, which interferes with actin turnover by binding at a unique interface along the actin filament.
Collapse
Affiliation(s)
- Thomas Lener
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020, Salzburg, Austria
| | | | | |
Collapse
|
8
|
Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G. Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 2003; 14:2482-91. [PMID: 12808045 PMCID: PMC194896 DOI: 10.1091/mbc.e02-11-0743] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Revised: 12/11/2002] [Accepted: 01/30/2003] [Indexed: 01/04/2023] Open
Abstract
Phorbol ester induces actin cytoskeleton rearrangements in cultured vascular smooth muscle cells. Calponin and SM22 alpha are major components of differentiated smooth muscle and potential regulators of actin cytoskeleton interactions. Here we show that actin fibers decorated with h1 CaP remain stable, whereas SM22 alpha-decorated actin bundles undergo rapid reorganization into podosomes within 30 min of PDBu exposure. Ectopic expression of GFP alpha-actinin had no effect on the stability of the actin cytoskeleton and alpha-actinin was transported rapidly into PDBu-induced podosomes. Our results demonstrate the involvement of CaP and SM22 alpha in coordinating the balance between stabilization and dynamics of the actin cytoskeleton in mammalian smooth muscle. We provide evidence for the existence of two functionally distinct actin filament populations and introduce a molecular mechanism for the stabilization of the actin cytoskeleton by the unique actin-binding interface formed by calponin family-specific CLIK23 repeats.
Collapse
Affiliation(s)
- Mario Gimona
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, A-5020 Salzburg, Austria.
| | | | | | | | | |
Collapse
|
9
|
Fattoum A, Roustan C, Smyczynski C, Der Terrossian E, Kassab R. Mapping the microtubule binding regions of calponin. Biochemistry 2003; 42:1274-82. [PMID: 12564930 DOI: 10.1021/bi020336g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The smooth muscle basic calponin interacts with F-actin and inhibits the actomyosin ATPase in a calmodulin or phosphorylation modulated manner. It also binds in vitro to microtubules and its acidic isoform, present in nonmuscle cells, and co-localizes with microfilaments and microtubules in cultured neurons. To assess the physiological significance and the molecular basis of the calponin-microtubule interaction, we have first studied the solution binding of recombinant acidic calponin to microtubules using quantitative cosedimentation analyses. We have also characterized, for the first time, the ability of both calponin isoforms to induce the inhibition of the microtubule-stimulated ATPase activity of the cytoskeletal, kinesin-related nonclaret dysjunctional motor protein (ncd) and the abolition of this effect by calcium calmodulin. This property makes calponin a potent inhibitor of all filament-activated motor ATPases and, therefore, a potential regulatory factor of many motor-based biological events. By combining the enzymatic measurements of the ncd-microtubules system with various in vitro binding assays employing proteolytic, recombinant and synthetic fragments of basic calponin, we further unambiguously identified the interaction of microtubules at two distinct calponin sites. One is inhibitory and resides in the segment 145-182, which also binds F-actin and calmodulin. The other one is noninhibitory, specific for microtubules, and is located on the COOH-terminal repeat-containing region 183-292. Finally, quantitative fluorescence studies of the binding of basic calponin to the skeletal pyrenyl F-actin in the presence of microtubules did not reveal a noticeable competition between the two sets of filaments for calponin. This result implies that calponin undergoes a concomitant binding to both F-actin and microtubules by interaction at the former site with actin and at the second site with microtubules. Thus, in the living cells, calponin could potentially behave as a cross-linking protein between the two major cytoskeletal filaments.
Collapse
Affiliation(s)
- Abdellatif Fattoum
- Centre de Recherches de Biochimie Macromoléculaire du CNRS, UPR 1086, 1919 Route de Mende, 34293 Montpellier, France.
| | | | | | | | | |
Collapse
|
10
|
Burgstaller G, Kranewitter WJ, Gimona M. The molecular basis for the autoregulation of calponin by isoform-specific C-terminal tail sequences. J Cell Sci 2002; 115:2021-9. [PMID: 11973344 DOI: 10.1242/jcs.115.10.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The three genetic isoforms of calponin (CaP), h1, h2 and acidic, are distinguished mostly by their individual C-terminal tail sequences. Deletion of these sequences beyond the last homologous residue Cys273 increases actin filament association for all three isoforms, indicating a negative regulatory role for the unique tail regions. We have tested this hypothesis by constructing a series of deletion and substitution mutants for all three CaP isoforms. Here we demonstrate that the C-terminal sequences regulate actin association by altering the function of the second actin-binding site, ABS2, in CaP comprised of the three 29-residue calponin repeats. Removal of the inhibitory tail resulted in an increased binding and bundling activity, and caused a prominent re-localization of h2 CaP from the peripheral actin network to the central actin stress fibers in transfected A7r5 smooth muscle cells. Domain-swap experiments demonstrated that the tail sequence of h2 CaP can downregulate cytoskeletal association efficiently in all three CaP isoforms, whereas the tail of the smooth-muscle-specific h1 CaP variant had little effect. Site-directed mutagenesis further revealed that the negatively charged residues within the tail region are essential for this regulatory function. Finally we demonstrate that the tail sequences regulate the second actin-binding site (ABS2) and not the strong actin-binding ABS1 region in CaP.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | |
Collapse
|
11
|
Danninger C, Gimona M. Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci 2000; 113 Pt 21:3725-36. [PMID: 11034901 DOI: 10.1242/jcs.113.21.3725] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calponin family of F-actin-, tropomyosin- and calmodulin-binding proteins currently comprises three genetic variants. Their functional roles implicated from in vitro studies include the regulation of actomyosin interactions in smooth muscle cells (h1 calponin), cytoskeletal organisation in non-muscle cells (h2 calponin) and the control of neurite outgrowth (acidic calponin). We have now investigated the effects of calponin (CaP) isoforms and their C-terminal deletion mutants on the actin cytoskeleton by time lapse video microscopy of GFP fusion proteins in living smooth muscle cells and fibroblasts. It is shown that h1 CaP associates with the actin stress fibers in the more central part of the cell, whereas h2 CaP localizes to the ends of stress fibres and in the motile lamellipodial protrusions of spreading cells. Cells expressing h2 CaP spread more efficiently than those expressing h1 CaP and expression of GFP h1 CaP resulted in reduced cell motility in wound healing experiments. Notably, expression of GFP h1 CaP, but not GFP h2 CaP, conferred increased resistance of the actin cytoskeleton to the actin polymerization antagonists cytochalasin B and latrunculin B, as well as to the protein kinase inhibitors H7-dihydrochloride and rho-kinase inhibitor Y-27632. These data point towards a dual role of CaP in the stabilization and regulation of the actin cytoskeleton in vivo. Deletion studies further identify an autoregulatory role for the unique C-terminal tail sequences in the respective CaP isoforms.
Collapse
Affiliation(s)
- C Danninger
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | |
Collapse
|