1
|
Borovsky D, Rougé P. Heliothis virescens chymotrypsin is translationally controlled by AeaTMOF binding ABC putative receptor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-24. [PMID: 37526204 DOI: 10.1002/arch.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Heliothis virescens larval chymotrypsin (GenBank accession number AF43709) was cloned, sequenced and its three dimensional (3D) conformation modeled. The enzyme's transcript was first detected 6 days after larval emergence and the transcript level was shown to fall between larval ecdysis periods. Comparisons between the activities of larval gut chymotrypsin and trypsin shows that chymotrypsin activity is only 16% of the total trypsin activity and the pH optimum of the larval chymotrypsin is between pH 9-10, however the enzyme also exhibited a broad activity between pH 4-6. Injections of AeaTMOF and several shorter analogues into 3rd instar larvae followed by Northern blot analyses showed that although the chymotrypsins activities were inhibited by 60%-80% the transcript level of the sequenced chymotrypsin was not reduced and was similar to controls in which the chymotrypsin activity was not inhibited, indicating that AeaTMOF and its analogues exert a translational control. Based on these observations a putative AeaTMOF receptor (ABCC4) homologous to the Ae. aegypti ABC receptor sequence was found in the H. virescens genome. 3D molecular modeling and docking of the AeaTMOF and several of its analogues to the ABCC4 receptor showed that it can bind AeaTMOF and its analogues as was shown before for the Ae. aegypti receptor.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, Toulouse, France
| |
Collapse
|
2
|
Borovsky D, Van Ekert E, Buytaert E, Peeters T, Rougé P. Cloning and characterization of Aedes aegypti juvenile hormone epoxide hydrolases (JHEHs). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21977. [PMID: 36254855 DOI: 10.1002/arch.21977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone epoxide hydrolase (JHEH) plays an important role in the metabolism of juvenile hormone III (JH III) in insects. To study the role that JHEH plays in female Aedes aegypti JHEH 1, 2, and 3 complementary DNA (cDNAs) were cloned and sequenced. Northern blot analyses show that the three transcripts are expressed in the head thorax, the gut, the ovaries, and the fat body of females. Molecular modeling shows that the enzyme is a homodimer that binds JH III acid (JH IIIA) at the catalytic groove better than JH III. The cDNA of JHEH 1 and 2 are very similar indicating close relationship. Knocking down of jheh 1, 2, and 3 in adult female and larval Ae. aegypti using double-stranded RNA (dsRNA) did not affect egg development or caused adult mortality. Larvae that were fed bacterial cells expressing dsRNA against jheh 1, 2, and 3 grew normally. Treating blood-fed female Ae. aegypti with [12-3 H](10R) JH III and analyzing the metabolites by C18 reversed phase chromatography showed that JHEH preferred substrate is not JH III but JH IIIA. Genomic analysis of jheh 1, 2, and 3 indicate that jheh 1 and 2 are transcribed from a 1.53 kb DNA whereas jheh 3 is transcribed from a 10.9 kb DNA. All three genes are found on chromosome two at distinct locations. JHEH 2 was expressed in bacterial cells and purified by Ni affinity chromatography. Sequencing of the recombinant protein by MS/MS identified JHEH 2 as the expressed recombinant protein.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Tom Peeters
- Open BioLab Brussels, Erasmushogeschool, Brussels, Belgium
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, Toulouse, France
| |
Collapse
|
3
|
Borovsky D, Breyssens H, Buytaert E, Peeters T, Laroye C, Stoffels K, Rougé P. Cloning and Characterization of Drosophila melanogaster Juvenile Hormone Epoxide Hydrolases (JHEH) and Their Promoters. Biomolecules 2022; 12:biom12070991. [PMID: 35883546 PMCID: PMC9313241 DOI: 10.3390/biom12070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Juvenile hormone epoxide hydrolase (JHEH) plays an important role in the metabolism of JH III in insects. To study the control of JHEH in female Drosophila melanogaster, JHEH 1, 2 and 3 cDNAs were cloned and sequenced. Northern blot analyses showed that the three transcripts are expressed in the head thorax, the gut, the ovaries and the fat body of females. Molecular modeling shows that the enzyme is a homodimer that binds juvenile hormone III acid (JH IIIA) at the catalytic groove better than JH III. Analyses of the three JHEH promoters and expressing short promoter sequences behind a reporter gene (lacZ) in D. melanogaster cell culture identified a JHEH 3 promoter sequence (626 bp) that is 10- and 25-fold more active than the most active promoter sequences of JHEH 2 and JHEH 1, respectively. A transcription factor (TF) Sp1 that is involved in the activation of JHEH 3 promoter sequence was identified. Knocking down Sp1 using dsRNA inhibited the transcriptional activity of this promoter in transfected D. melanogaster cells and JH III and 20HE downregulated the JHEH 3 promoter. On the other hand, JH IIIA and farnesoic acid did not affect the promoter, indicating that JH IIIA is JHEH's preferred substrate. A transgenic D. melanogaster expressing a highly activated JHEH 3 promoter behind a lacZ reporter gene showed promoter transcriptional activity in many D. melanogaster tissues.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Hilde Breyssens
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Esther Buytaert
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Tom Peeters
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
- Open BioLab Brussels, Erasmushogeschool Brussels, 1210 Brussels, Belgium
| | - Carole Laroye
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Karolien Stoffels
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, 31400 Tolouse, France;
| |
Collapse
|
4
|
Borovsky D, Verhaert P, Rougé P, Powell CA, De Loof A. Culex quinquefasciatus Late Trypsin Biosynthesis Is Translationally Regulated by Trypsin Modulating Oostatic Factor. Front Physiol 2021; 12:764061. [PMID: 34867469 PMCID: PMC8637831 DOI: 10.3389/fphys.2021.764061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Trypsin is a serine protease that is synthesized by the gut epithelial cells of female mosquitoes; it is the enzyme that digests the blood meal. To study its molecular regulation, Culex quinquefasciatus late trypsin was purified by diethylaminoethyl (DEAE), affinity, and C18 reverse-phase high performance liquid chromatography (HPLC) steps, and the N-terminal amino acid sequence was determined for molecular cloning. Five overlapping segments of the late trypsin cDNA were amplified by PCR, cloned, and the full sequence (855 bp) was characterized. Three-dimensional models of the pro-trypsin and activated trypsin were built and compared with other trypsin models. Trypsin modulating oostatic factor (TMOF) concentrations in the hemolymph were determined by ELISA and compared with trypsin activity in the gut after the blood meal. The results showed that there was an increase in TMOF concentrations circulating in the hemolymph which has correlated to the reduction of trypsin activity in the mosquito gut. Northern blot analysis of the trypsin transcripts after the blood meal indicated that trypsin activity also followed the increase and decrease of the trypsin transcript. Injections of different amounts of TMOF (0.025 to 50 μg) decreased the amounts of trypsin in the gut. However, Northern blot analysis showed that TMOF injections did not cause a decrease in trypsin transcript abundance, indicating that TMOF probably affected trypsin translation.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Pierre Rougé
- UMR 152 Pharma-Dev, Institut de Recherche et Développement, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Charles A Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL, United States
| | | |
Collapse
|
5
|
Huang X, Zhu B, Zhang W, Chen L. Cloning and reproductive regulation of a trypsin precursor gene in Adelphocorissuturalis. Int J Biol Macromol 2021; 192:38-44. [PMID: 34597701 DOI: 10.1016/j.ijbiomac.2021.09.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Adelphocoris suturalis is a major pest of cotton. Here, we identified a trypsin precursor gene (AsTryP) in A. suturali, which has an open reading frame region of 873 bp and belongs to the trypsin superfamily. The mRNA of the AsTryP gene was detectable in every life stage and different tissues of 8-day-old females, and the gene was highly expressed in fourth-instar nymphs and the thorax of 8-day-old females. Down-regulation of AsTryP by the injection of double-stranded RNA suppressed the ovarian development and female fertility. These results reveal that trypsin precursor is involved in the reproductive process of A. suturali, and may facilitate the development of new strategies for a better control of A. suturalis.
Collapse
Affiliation(s)
- Xingxing Huang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bangqin Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Guiyang Center for Disease Control and Prevention, Guiyang 550003, Guizhou, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
6
|
Borovsky D, Nauwelaers S, Shatters R. Biochemical and Molecular Characterization of Pichia pastoris Cells Expressing Multiple TMOF Genes ( tmfA) for Mosquito Larval Control. Front Physiol 2020; 11:527. [PMID: 32528316 PMCID: PMC7265970 DOI: 10.3389/fphys.2020.00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Trypsin modulating oostatic factor (TMOF), a decapeptide hormone synthesized by female mosquito ovaries, ganglia and the central nervous system of Aedes aegypti, terminates trypsin biosynthesis in larvae, and blood-fed female mosquitoes. Earlier, TMOF was cloned and expressed as a single copy in Chlorella dessicata and in Saccharomyces cerevisiae cells as a potential larvicide. Here we report the use of a methylotrophic yeast cells, Pichia pastoris, that efficiently express multi copies of heterologous proteins, that are readily ingested by mosquito larvae. P. pastoris was engineered using pPICZB (Invitrogen, CA, United States), and 2 genes: gfp-tmfA and tmfA inserted between KpnI and XbaI in the multiple cloning site. The plasmid carries a strong AOXI promoter and P. pastoris KM71 and KM71H cells were transformed by homologous recombination. The synthesis of GFP-TMOF was followed using UV and clones were analyzed using southern and Northern blot analyses. Cloning tmfA into KM71H and selection on high Zeocin concentration (2.0 mg/mL) identified a clone that carried 10 copies of tmfA. A comparison between a single and high copy (10 genes) insertions using Northern blot analyses showed that a tmfA transcript was highly expressed even after 120 h. SDS-PAGE analysis of KM71 cells transformed with gfp-tmfA identified a protein band that ran at the expected Mr of 31 kDa. Enzyme Linked Immunoadsorbant Assay (ELISA) analysis of the recombinant cells showed that 1.65 × 108 and 8.27 × 107 cells produce 229 and 114 μM of TMOF, respectively, and caused 100% larval mortality when fed to groups of 5 larvae in 25 mL water. These results indicate that the recombinant P. pastoris cells could be used in the future in the marsh to control mosquito populations.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | | | - Robert Shatters
- USDA ARS, Subtropical Horticultural Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
7
|
Borovsky D, Hancock RG, Rougé P, Powell CA, Shatters RG. Juvenile hormone affects the splicing of Culex quinquefasciatus early trypsin messenger RNA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21506. [PMID: 30176073 DOI: 10.1002/arch.21506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2015] [Indexed: 06/08/2023]
Abstract
The full length of Culex quiquefasciatus early trypsin has been cloned and sequenced and a three-dimensional (3D) model of the enzyme was built showing that the enzyme has the canonical trypsin's active pocket containing H78, D123, S129, and D128. The biosynthesis of juvenile hormone (JH) III by the corpora allata (CA) in female Cx. quiquefasciatus is sugar-dependent. Females that were maintained on water after emergence synthesize very little JH III, JH III bisepoxide, and methyl farnesoate (MF) (3.8, 1.1, and 0.8 fmol/4 hr/CA, respectively). One hour after sugar feeding, the synthesis of JH III and JH III bisepoxide reached a maximum (11.3 and 5.9 fmol/4 hr/CA, respectively) whereas MF biosynthesis reached a maximum at 24 hr (5.2 fmol/4 hr/CA). The early trypsin is transcribed with a short intron (51 nt) is spliced when JH III biosynthesis is high in sugar fed and at 1 hr after the blood meal (22 and 15 fmol/4 hr/CA, respectively). We investigated the transcriptional and posttranscriptional regulation of the early trypsin gene showing that JH III concentrations influence splicing. In the absence JH III the unspliced transcript is linked by a phosphoamide bond at the 5'-end to RNA ribonuleoprotein (RNP). The biosynthesis of the early trypsin was followed in ligated abdomens (without CA) of newly emerged females that fed blood by enema. Our results show that the early trypsin biosynthesis depends on sugar and blood feeding, whereas the late trypsin biosynthesis does not depend on sugar feeding, or JH III biosynthesis. Downregulating the early trypsin transcript does not affect the late trypsin.
Collapse
Affiliation(s)
- Dov Borovsky
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, Florida
| | - Robert G Hancock
- Department of Biology, Metropolitan State University of Denver, Denver, Colorado
| | - Pierre Rougé
- Faculté des Sciences Pharmaceutiques, UMR 152 Pharma-Dev, Université Toulouse 3, Toulouse Cedex 09, France
| | - Charles A Powell
- Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, Florida
| | | |
Collapse
|
8
|
Mahmoud SB, Ramos JE, Shatters RG, Hall DG, Lapointe SL, Niedz RP, Rougé P, Cave RD, Borovsky D. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 136:1-11. [PMID: 28187824 DOI: 10.1016/j.pestbp.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Diaprepes abbreviatus (L.) is an important pest of citrus in the USA. Currently, no effective management strategies of D. abbreviatus exist in citriculture, and new methods of control are desperately sought. To protect citrus against D. abbreviatus a transgenic citrus rootstock expressing Bacillus thuringiensis Cyt2Ca1, an insect toxin protein, was developed using Agrobacterium-mediated transformation of 'Carrizo' citrange [Citrus sinensis (L) Osbeck Poncirus trifoliate (L) Raf]. The transgenic citrus root stock expressed the cytolytic toxin Cyt2Ca1 constitutively under the control of a 35S promoter in the transgenic Carrizo citrange trifoliate hybrid including the roots that are the food source of larval D. abbreviatus. The engineered citrus was screened by Western blot and RT-qPCR analyses for cyt2Ca1 and positive citrus identified. Citrus trees expressing different levels of cyt2Ca1 transcripts were identified (Groups A-C). High expression of the toxin in the leaves (109 transcripts/ng RNA), however, retarded plant growth. The transgenic plants were grown in pots and the roots exposed to 3week old D. abbreviatus larvae using no-choice plant bioassays. Three cyt2Ca1 transgenic plants were identified that sustained less root damage belonging to Group B and C. One plant caused death to 43% of the larvae that fed on its roots expressed 8×106cyt2Ca1 transcripts/ng RNA. These results show, for the first time, that Cyt2Ca1 expressed in moderate amounts by the roots of citrus does not retard citrus growth and can protect it from larval D. abbreviatus.
Collapse
Affiliation(s)
- Sulley Ben Mahmoud
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| | - John E Ramos
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA
| | - Robert G Shatters
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA
| | - David G Hall
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA
| | - Stephen L Lapointe
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA
| | - Randall P Niedz
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA
| | - Pierre Rougé
- Université de Toulouse, UPS, Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Ronald D Cave
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| | - Dov Borovsky
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Ft. Pierce, FL 34945, USA.
| |
Collapse
|
9
|
Ben-Mahmoud S, Ramos JE, Shatters RG, Rougé P, Powell CA, Smagghe G, Borovsky D. Cloning and characterization of a basic cysteine-like protease (cathepsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae). JOURNAL OF INSECT PHYSIOLOGY 2015; 72:1-13. [PMID: 25445662 DOI: 10.1016/j.jinsphys.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid sequence identity with cathepsin L's, was the most abundant in the EST dataset representing 14.4% and 3.6% of the total sequences in feeding larvae and adults, respectively. The predominant cathepsin (Da-CTSL1) among this class was further studied. Three dimensional modeling of the protein sequence showed that the mature Da-CTSL1 protein folds into an expected cathepsin L structure producing a substrate binding pocket with appropriate positioning of conserved amino acid residues. A full-length cDNA was obtained and the proCTSL1 encoding sequence was expressed in Rosetta™ Escherichia coli cells engineered to express tRNAs specific for eukaryotic codon usage. The Da-CTSL1 was expressed as a fusion protein with GST and His6 tags and purified in the presence of 1% Triton X-100 by Ni-NTA affinity and size exclusion chromatography. Recombinant mature Da-CTSL1 (23 KDa) exhibits optimal activity at pH 8, rather than at acidic pH that was shown of all previously characterized cathepsins L. Substrate specificity supports the hypothesis that Da-CTSL1 is a unique basic cathepsin L and protease inhibitor studies also suggest unique activity, unlike other characterized acidic cathepsin Ls. This paper describes for the first time a prokaryotic expression system for the production of a functional eukaryotic cathepsin L1 from larval gut of D. abbreviatus.
Collapse
Affiliation(s)
- Sulley Ben-Mahmoud
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | | | | | - Pierre Rougé
- Université de Toulouse, UPS, Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-Dev, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Charles A Powell
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | | | | |
Collapse
|
10
|
Abstract
Oostatic peptides are organic molecules, which influence an insect reproduction due to a regulation of the eggs development. It was proved that decapeptide-H-Tyr-Asp-Pro-Ala-Pro-Pro-Pro-Pro-Pro-Pro-OH (YDPAPPPPPP)-isolated from mosquito Aedes aegypti, inhibits trypsin activity in the midgut of the mosquito. Therefore, it was named trypsin-modulating oostatic factor (Aea-TMOF). Feeding the recombinant cells with cloned and expressed TMOF on the coat protein of tobacco mosaic virus (TMV) to mosquito larvae, caused larval mortality. The TMOF was therefore designed for usage as a new biorational insecticide against mosquito. Similarly, a hexapeptide-H-Asn-Pro-Thr-Asn-Leu-His-OH (NPTNLH)-was isolated from the grey flesh fly Neobellieria bullata. This peptide and some of its analogs inhibited trypsin-like synthesis by the midgut in female flies and was therefore entitled Neb-TMOF. Interestingly, the synthetic Aea-TMOF and mainly its C-terminus shorten analogs, including those containing D-amino acids or methylene-oxy isosteric bond, quickly and strongly inhibited the hatchability and egg development in the flesh fly N. bullata.
Collapse
Affiliation(s)
- Jan Hlaváček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
11
|
Jeffers LA, Shen H, Khalil S, Bissinger BW, Brandt A, Gunnoe TB, Roe RM. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol. PEST MANAGEMENT SCIENCE 2012; 68:49-59. [PMID: 21710555 DOI: 10.1002/ps.2219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Trypsin modulating oostatic factor (TMOF), a decapeptide (Tyr-Asp-Pro-Ala-Pro(6)) isolated from the ovaries of the adult yellow fever mosquito, Aedes aegypti, regulates trypsin biosynthesis. TMOF per os is insecticidal to larval mosquitoes and a good model for the development of technologies to enhance protein insecticide activity by reduced catabolism and/or enhanced delivery to the target. RESULTS TFA-TMOF-K (TFA = trifluoro acetyl) allowed the specific conjugation of monodispersed, aliphatic polyethylene glycol (PEG) to the amino group of lysine-producing TMOF-K-methyl(ethyleneglycol)(7)-O-propionyl (TMOF-K-PEG(7) P). The addition of lysine to TMOF reduced its per os larval mosquitocidal activity relative to the parent TMOF, but conjugation of TMOF-K with methyl(ethyleneglycol)(7)-O-propionyl increased its toxicity 5.8- and 10.1-fold above that of TMOF and TMOF-K for Ae. aegypti. Enhanced insecticidal activity was also found for larval Ae. albopictus and for neonates of Heliothis virescens and Heliocoverpa zea. Only TMOF-K was found by MS/MS in the hemolymph for H. virescens fed on TMOF-K-PEG(7) P. No TMOF, TMOF-K or PEGylated TMOF-K was detected in the hemolymph after topical applications. CONCLUSIONS This research suggests that aliphatic PEG polymers can be used as a new method for increasing the activity of insecticidal proteins.
Collapse
Affiliation(s)
- Laura A Jeffers
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Macedo MLR, Freire MDGM, Franco OL, Migliolo L, de Oliveira CFR. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus. Comp Biochem Physiol B Biochem Mol Biol 2010; 158:164-72. [PMID: 21094272 DOI: 10.1016/j.cbpb.2010.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
Abstract
Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests.
Collapse
Affiliation(s)
- Maria Lígia Rodrigues Macedo
- Departamento de Tecnologia de Alimentos, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Invertebrate trypsins: a review. J Comp Physiol B 2008; 178:655-72. [DOI: 10.1007/s00360-008-0263-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 11/26/2022]
|
14
|
Borovsky D, Rabindran S, Dawson WO, Powell CA, Iannotti DA, Morris TJ, Shabanowitz J, Hunt DF, DeBondt HL, DeLoof A. Expression of Aedes trypsin-modulating oostatic factor on the virion of TMV: A potential larvicide. Proc Natl Acad Sci U S A 2006; 103:18963-8. [PMID: 17148608 PMCID: PMC1748160 DOI: 10.1073/pnas.0606146103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Indexed: 11/18/2022] Open
Abstract
We report the engineering of the surface of the tobacco mosaic virus (TMV) virion with a mosquito decapeptide hormone, trypsin-modulating oostatic factor (TMOF). The TMV coat protein (CP) was fused to TMOF at the C terminus by using a read-through, leaky stop codon that facilitated expression of CP and chimeric CP-TMOF (20:1 ratio) that were coassembled into virus particles in infected Nicotiana tabacum. Plants that were infected with the hybrid TMV RNA accumulated TMOF to levels of 1.3% of total soluble protein. Infected tobacco leaf discs that were fed to Heliothis virescens fourth-instar larvae stunted their growth and inhibited trypsin and chymotrypsin activity in their midgut. Purified CP-TMOF virions fed to mosquito larvae stopped larval growth and caused death. Because TMV has a wide host range, expressing TMV-TMOF in plants can be used as a general method to protect them against agricultural insect pests and to control vector mosquitoes.
Collapse
Affiliation(s)
- Dov Borovsky
- Florida Medical Entomology Laboratory, University of Florida-Institute of Food and Agricultural Sciences (IFAS), 200 Ninth Street Southeast, Vero Beach, FL 32962-4699, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnson KS, Rabosky D. Phylogenetic distribution of cysteine proteinases in beetles: evidence for an evolutionary shift to an alkaline digestive strategy in Cerambycidae. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:609-19. [PMID: 11026673 DOI: 10.1016/s0305-0491(00)00232-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We characterized the digestive proteinases of eight species of beetles to improve our understanding of the phylogenetic distribution of serine and cysteine proteinases. Serine proteinases function optimally under alkaline pH conditions, whereas cysteine proteinases require acidic pH. The phylogenetic distribution of cysteine proteinases suggests that they first appeared in an early cucujiform ancestor, however, data for some groups is patchy, and there has been speculation that they have been lost in at least one group, the long-horned beetles (Cerambycidae). The pattern we found supports the hypothesized origin of the proteinases and extends their distribution to an additional superfamily. In addition, we confirmed the presence of cysteine proteinases in some Curculionoidea. Cysteine proteinases were absent, however, from all three species of cerambycids surveyed, supporting the hypothesis that this group has reverted to the more ancestral serine (alkaline) digestive strategy. In four species we compared the pH optima for total proteolytic activity to the actual pH of the midgut and found the match between optimal and actual pH to be weaker in the cerambycids. These findings suggest that either a close correlation between midgut pH and the proteolytic pH optimum is not needed for adequate digestive efficiency, or that midgut pH is a more constrained digestive feature and there has been insufficient time for it to shift upwards to maximize serine proteinase activity.
Collapse
Affiliation(s)
- K S Johnson
- Department of Biological Sciences, Ohio University, Athens 45701, USA.
| | | |
Collapse
|
16
|
Zhu YC, Baker JE. Molecular cloning and characterization of a midgut chymotrypsin-like enzyme from the lesser grain borer, Rhyzopertha dominica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 43:173-184. [PMID: 10737921 DOI: 10.1002/(sici)1520-6327(200004)43:4<173::aid-arch3>3.0.co;2-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA encoding a chymotrypsinogen-like protein in midguts of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) was cloned and sequenced. The 901 bp cDNA contains an 816-nucleotide open reading frame encoding 272-amino acids. The predicted molecular mass and pI of the mature enzyme are 23.7 kDa and 4.64, respectively. The encoded protein includes amino acid sequence motifs that are conserved with 5 homologous chymotrypsinogen proteins from other insects. Features of the putative chymotrypsin-like protein from R. dominica include the serine proteinase active site (His(90), Asp(133), Ser(226)), conserved cysteine residues for disulfide bridges, the residues (Gly(220), Gly(243), Asp(252)) that determine chymotrypsin specificity, and both zymogen activation and signal peptides. A TPCK-sensitive caseinolytic protein (P6) with an estimated molecular mass of 24 kDa is present in midgut extracts of R. dominica and can be resolved by electrophoresis on 4-16% polyacrylamide gels. The molecular mass of this caseinolytic enzyme is similar to that of the chymotrypsin deduced from cDNA. Midgut extracts of R. dominica readily hydrolyzed azocasein and N-succinyl-alanine-alanine-proline-phenylalanine-p- nitroanilide (SAAPFpNA), a chymotrypsin-specific substrate. Properties of the enzymes responsible for these activities were partially characterized with respect to distribution in the gut, optimum pH, and sensitivity toward selected proteinase inhibitors. Optimal activity against both azocasein and SAAPFpNA occurs in a broad pH range from about 7 to 10. Both azocasein and SAAPFpNA activities, located primarily in the anterior midgut region, are inhibited by aprotinin, phenylmethyl sulphonylfluoride (PMSF), and soybean trypsin inhibitor (STI). TPCK (N-alpha-tosyl-L-phenylalanine chloromethyl ketone) and chymostatin inhibited more than 60% of SAAPFpNA but only about 10-20% of azocasein activity. These results provide additional evidence for the presence of serine proteinases, including chymotrypsin, in midguts of R. dominica. Arch. Insect Biochem. Physiol. 43:173-184, 2000.Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Y C Zhu
- Grain Marketing and Production Research Center, ARS-USDA, Manhattan, Kansas
| | | |
Collapse
|