1
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
2
|
Kumar HB, Manandhar S, Rathi E, Kabekkodu SP, Mehta CH, Nayak UY, Kini SG, Pai KSR. Identification of potential Akt activators: a ligand and structure-based computational approach. Mol Divers 2024; 28:1485-1503. [PMID: 37394684 PMCID: PMC11269385 DOI: 10.1007/s11030-023-10671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
The Akt pathway plays a significant role in various diseases like Alzheimer's, Parkinson's, and Diabetes. Akt is the central protein whose phosphorylation controls many downstream pathways. Binding of small molecules to the PH domain of Akt facilitates its phosphorylation in the cytoplasm and upregulates the Akt pathway. In the current study, to identify Akt activators, ligand-based approaches like 2D QSAR, shape, and pharmacophore-based screening were used, followed by structure-based approaches such as docking, MM-GBSA, ADME prediction, and MD simulation. The top twenty-five molecules from the Asinex gold platinum database found to be active in most 2D QSAR models were used for shape and pharmacophore-based screening. Later docking was performed using the PH domain of Akt1 (PDB: 1UNQ), and 197105, 261126, 253878, 256085, and 123435 were selected based on docking score and interaction with key residues, which were druggable and formed a stable protein-ligand complex. MD simulations of 261126 and 123435 showed better stability and interactions with key residues. To further investigate the SAR of 261126 and 123435, derivatives were downloaded from PubChem, and structure-based approaches were employed. MD simulation of derivatives 12289533, 12785801, 83824832, 102479045, and 6972939 was performed, in which 83824832 and 12289533 showed interaction with key residues for a longer duration of time, proving that they may act as Akt activators.
Collapse
Affiliation(s)
- Harish B Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Corre E, Soum C, Pfeifer R, Bessière C, Dailhau S, Marbœuf C, Meggetto F, Touriol C, Récher C, Bousquet M, Pyronnet S. Differential prognostic values of the three AKT isoforms in acute myeloid leukemia. Sci Rep 2024; 14:7070. [PMID: 38528080 PMCID: PMC10963760 DOI: 10.1038/s41598-024-57578-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
The PI3K-AKT-mTOR pathway lies at the confluence of signaling pathways in which various components are subjected to activating genetic alterations in acute myeloid leukemia (AML), thus contributing to oncogenesis. Three AKT isoforms exist in humans. However, whether one isoform predominates in AML remains unknown. This study reveals that AKT3 behaves very distinctly than AKT1 or AKT2 in both normal myeloid differentiation and AML. During normal differentiation, AKT3 is preferentially expressed in hematopoietic stem cells whilst AKT1 becomes preferentially expressed as cells differentiate into granulocytes or monocytes. AKT2 expression remains unchanged. In AML, AKT3 expression varies widely among patient samples and is counterintuitively high in mature/monocytic leukemia. Furthermore, a low level of AKT3 expression is strongly correlated to genetic alterations associated with a better outcome (NPM1 mutations and RUNX1-RUNX1T1 translocation), while a high level is correlated to alterations associated to a bad outcome (RUNX1 mutations; and SRSF2, U2AF1, SF3B1, ASXL1 and BCOR mutations occurring frequently in MDS and MPN). Consistently, a high AKT3 expression level appears as a very strong predictor of poor survival. Curiously, although modestly varying among AML samples, a high AKT1 expression shows in contrast as a strong predictor of a better patient outcome. These data suggest that AKT3 and AKT1 expressions have strong, yet opposite, prognostic values.
Collapse
Affiliation(s)
- Eulalie Corre
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Cécile Soum
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Romain Pfeifer
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Chloé Bessière
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Sandra Dailhau
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Catherine Marbœuf
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Fabienne Meggetto
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Christian Touriol
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Toulouse, France
| | - Marina Bousquet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Stéphane Pyronnet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
Amiran MR, Taghdir M, Joozdani FA. Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study. Int J Biol Macromol 2023; 242:124853. [PMID: 37172698 DOI: 10.1016/j.ijbiomac.2023.124853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, -203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| |
Collapse
|
5
|
Fedorova O, Parfenyev S, Daks A, Shuvalov O, Barlev NA. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel) 2022; 14:cancers14153786. [PMID: 35954450 PMCID: PMC9367281 DOI: 10.3390/cancers14153786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved developmental program, which, upon aberrant reactivation, is also involved in the formation of cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this knowledge, we speculate about new possible strategies for cancer treatment. Abstract Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.
Collapse
|
6
|
Wang Z, Ran T, Xu F, Wen C, Song S, Zhou Y, Chen H, Lu X. Deep learning-driven scaffold hopping in the discovery of Akt kinase inhibitors. Chem Commun (Camb) 2021; 57:10588-10591. [PMID: 34560776 DOI: 10.1039/d1cc03392a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scaffold hopping has been widely used in drug discovery and is a topic of high interest. Here a deep conditional transformer neural network, SyntaLinker, was applied for the scaffold hopping of a phase III clinical Akt inhibitor, AZD5363. A number of novel scaffolds were generated and compound 1a as a proof-of-concept was synthesized and validated by biochemical assay. Further structure-based optimization of 1a led to a novel Akt inhibitor with high potency (Akt1 IC50 = 88 nM) and in vitro antitumor activities.
Collapse
Affiliation(s)
- Zuqin Wang
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ting Ran
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou 510530, China.
| | - Fang Xu
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Chang Wen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou 510530, China.
| | - Shukai Song
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Yang Zhou
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Hongming Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou 510530, China.
| | - Xiaoyun Lu
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
7
|
Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 2021; 13:v13091849. [PMID: 34578430 PMCID: PMC8472851 DOI: 10.3390/v13091849] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.
Collapse
|
8
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Palumbo S, Paterson C, Yang F, Hood VL, Law AJ. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 2021; 26:411-428. [PMID: 33328589 PMCID: PMC7854513 DOI: 10.1038/s41380-020-00964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.
Collapse
Affiliation(s)
- Sara Palumbo
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy (current)
| | - Clare Paterson
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Feng Yang
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Division of Neurodegenerative Diseases and Translational Sciences Tiantan Hospital & Advanced Innovation Center for Human Brain Protection. Capital Medical University, Beijing, China (current)
| | - Veronica L. Hood
- Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Amanda J. Law
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045.,To whom correspondence should be addressed:
| |
Collapse
|
10
|
Daks AA, Fedorova OA, Shuvalov OY, Parfenev SE, Barlev NA. The Role of ERBB2/HER2 Tyrosine Kinase Receptor in the Regulation of Cell Death. BIOCHEMISTRY (MOSCOW) 2020; 85:1277-1287. [PMID: 33202212 DOI: 10.1134/s0006297920100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HER2 (Human Epidermal Growth Factor Receptor 2), also known as ERBB2, CD340, and Neu protooncogene, is a member of the epidermal growth factor receptor (EGRF) family. Members of the ERBB family, including HER2, activate molecular cascades that stimulate proliferation and migration of cancer cells, as well as their resistance to the anticancer therapy. These proteins are often overexpressed and/or mutated in various cancer types and represent promising targets for the anti-cancer therapy. Currently, anti-HER2 drugs have been approved for the treatment of several types of solid tumors. HER2-specific therapy includes monoclonal antibodies and low-molecular weight inhibitors of tyrosine kinase receptors, such as lapatinib, neratinib, and pyrotinib. In addition to the activation of molecular pathways responsible for cell proliferation and survival under stress conditions, HER2 directly regulates programmed cell death. Here, we review the studies focused on the involvement of HER2 in various signaling pathways and its role in the regulation of apoptosis.
Collapse
Affiliation(s)
- A A Daks
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - O A Fedorova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - O Y Shuvalov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - S E Parfenev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - N A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia. .,Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
11
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
12
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Pataky MW, Arias EB, Wang H, Zheng X, Cartee GD. Exercise effects on γ3-AMPK activity, phosphorylation of Akt2 and AS160, and insulin-stimulated glucose uptake in insulin-resistant rat skeletal muscle. J Appl Physiol (1985) 2020; 128:410-421. [PMID: 31944891 DOI: 10.1152/japplphysiol.00428.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
15
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
16
|
Nekoonam S, Naji M, Mortezaee K, Amidi F. Roles of methyltrienolone (R1881) in AKTs and AR expression patterns of cultured granulosa‐lutein cells. J Cell Biochem 2018; 119:7204-7211. [DOI: 10.1002/jcb.26861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Saeid Nekoonam
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Naji
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Keywan Mortezaee
- Department of Anatomy, School of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Musarrat F, Jambunathan N, Rider PJF, Chouljenko VN, Kousoulas KG. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes. J Virol 2018; 92:e01842-17. [PMID: 29321326 PMCID: PMC5827371 DOI: 10.1128/jvi.01842-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/17/2017] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes.IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes.
Collapse
Affiliation(s)
- Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - V N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - K G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
18
|
Chen O, Cao Z, Li H, Ye Z, Zhang R, Zhang N, Huang J, Zhang T, Wang L, Han L, Liu W, Sun X. High-concentration hydrogen protects mouse heart against ischemia/reperfusion injury through activation of thePI3K/Akt1 pathway. Sci Rep 2017; 7:14871. [PMID: 29093541 PMCID: PMC5665927 DOI: 10.1038/s41598-017-14072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
The study investigated the role of Akt1 through the cardioprotection of high-concentration hydrogen (HCH). C57BL/6 mice were randomly divided into the following groups: sham, I/R, I/R + HCH, I/R + HCH + LY294002 (PI3K inhibitor), I/R + HCH + wortmannin (PI3K inhibitor), I/R + LY294002, and I/R + wortmannin. After 45 min of ischemia, HCH (67% H2 and 33% O2) was administered to mice during a 90-min reperfusion. To investigate the role of Akt1 in the protective effects of HCH, mice were divided into the following groups: I/R + A-674563 (Akt1 selective inhibitor), I/R + HCH + A-674563, I/R + CCT128930 (Akt2 selective inhibitor), and I/R + HCH + CCT128930. After a 4-h reperfusion, serum biochemistry, histological, western blotting, and immunohistochemical analyses were performed to evaluate the role of the PI3K-Akt1 pathway in the protection of HCH. In vitro, 75% hydrogen was administered to cardiomyocytes during 4 h of reoxygenation after 3-h hypoxia. Several analyses were performed to evaluate the role of the Akt1 in the protective effects of hydrogen. HCH resulted in the phosphorylation of Akt1 but not Akt2, and Akt1 inhibition markedly abolished HCH-induced cardioprotection. Our findings reveal that HCH may exert cardioprotective effects through a PI3K-Akt1-dependent mechanism.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhiyong Cao
- Department of Cardiology, No.411 Hospital of PLA, Shanghai, 200081, People's Republic of China
| | - He Li
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Clinical Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhouheng Ye
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Rongjia Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Junlong Huang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ting Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Ling Han
- Central Laboratory, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wenwu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xuejun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
19
|
Akt1 and Akt3 but not Akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells. Cell Death Discov 2017; 3:17072. [PMID: 29090098 PMCID: PMC5661268 DOI: 10.1038/cddiscovery.2017.72] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/18/2017] [Indexed: 01/30/2023] Open
Abstract
Akt1 through the C-terminal domain interacts with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and stimulates the repair of DNA double-strand breaks (DSBs) in K-RAS-mutated (K-RASmut) cells. We investigated the interactions of distinct domain(s) of DNA-PKcs in binding to full-length Akt1. Similarly, we analyzed potential interactions of DNA-PKcs with Akt2 and Akt3. Finally the effect of Akt isoforms in cell proliferation and tumor growth was tested. We demonstrated that Akt1 preferentially binds to the N-terminal domain of DNA-PKcs using pull-down studies with distinct eGFP-tagged DNA-PKcs fragments that were expressed by plasmids in combination with mCherry-tagged full-length Akt isoforms. These binding studies also indicated an interaction with the intermediate and C-terminal domains of DNA-PKcs. In contrast, Akt3 interacted with all four DNA-PKcs fragments without a marked preference for any specific domain. Notably, we could not see binding of Akt2 to any of the tested DNA-PKcs fragments. In subsequent studies, we demonstrated that Akt inhibition interferes with binding of Akt1 to the N-terminal domain of DNA-PKcs. This indicated a correlation between Akt1 activity and the Akt1/DNA-PKcs complex formation. Finally, knockdown studies revealed that the depletion of endogenous Akt1 and Akt3, but not Akt2, inhibit clonogenic activity and repair of ionizing radiation (IR)-induced DNA DSBs, leading to radiosensitization. Furthermore, in a xenograft study the expression of shAkt1 or shAkt3, but not shAkt2 in K-RASmut breast cancer cell line MDA-MB-231 showed major tumor growth delay. Together, these data indicate that Akt1 and Akt3, but not Akt2, physically interact with DNA-PKcs, thus stimulating the repair of DSBs and therefore protecting K-RASmut cells against IR. Likewise, interaction of Akt isoforms with DNA-PKcs could be crucial for their role in regulating tumor growth.
Collapse
|
20
|
Liu R, Lo L, Lay AJ, Zhao Y, Ting KK, Robertson EN, Sherrah AG, Jarrah S, Li H, Zhou Z, Hambly BD, Richmond DR, Jeremy RW, Bannon PG, Vadas MA, Gamble JR. ARHGAP18 Protects Against Thoracic Aortic Aneurysm Formation by Mitigating the Synthetic and Proinflammatory Smooth Muscle Cell Phenotype. Circ Res 2017; 121:512-524. [DOI: 10.1161/circresaha.117.310692] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Rationale:
Thoracic aortic aneurysm (TAA) is a potentially lethal condition, which can affect individuals of all ages. TAA may be complicated by the sudden onset of life-threatening dissection or rupture. The underlying mechanisms leading to TAA formation, particularly in the nonsyndromal idiopathic group of patients, are not well understood. Thus, identification of new genes and targets that are involved in TAA pathogenesis are required to help prevent and reverse the disease phenotype.
Objective:
Here we explore the role of ARHGAP18, a novel Rho GAP expressed by smooth muscle cells (SMCs), in the pathogenesis of TAA.
Methods and Results:
Using human and mouse aortic samples, we report that ARHGAP18 levels were significantly reduced in the SMC layer of aortic aneurysms.
Arhgap18
global knockout (
Arhgap18
−/
−
) mice exhibited a highly synthetic, proteolytic, and proinflammatory smooth muscle phenotype under basal conditions and when challenged with angiotensin II, developed TAA with increased frequency and severity compared with littermate controls. Chromatin immunoprecipitation studies revealed this phenotype is partly associated with strong enrichment of H3K4me3 and depletion of H3K27me3 at the
MMP2
and
TNF-α
promoters in
Arhgap18
-deficient SMC. We further show that TAA formation in the
Arhgap18
−/−
mice is associated with loss of Akt activation. The abnormal SMC phenotype observed in the
Arhgap18
−/−
mice can be partially rescued by pharmacological treatment with the mTORC1 inhibitor rapamycin, which reduces the synthetic and proinflammatory phenotype of
Arhgap18
-deficient SMC.
Conclusion:
We have identified
ARHGAP18
as a novel protective gene against TAA formation and define an additional target for the future development of treatments to limit TAA pathogenesis.
Collapse
Affiliation(s)
- Renjing Liu
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Lisa Lo
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Angelina J. Lay
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Yang Zhao
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Ka Ka Ting
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Elizabeth N. Robertson
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Andrew G. Sherrah
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Sorour Jarrah
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Haibo Li
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Zhaoxiong Zhou
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Brett D. Hambly
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - David R. Richmond
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Richmond W. Jeremy
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Paul G. Bannon
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Mathew A. Vadas
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| | - Jennifer R. Gamble
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Vascular Biology Program (R.L., L.L., H.L.) and Centre for the Endothelium, Vascular Biology Program (A.J.L., Y.Z., K.K.T., S.J., Z.Z., M.A.V., J.R.G.), Centenary Institute, Camperdown, New South Wales, Australia; Discipline of Pathology and Bosch Institute, Charles Perkins Center (E.N.R., B.D.H.) and Sydney Medical School (R.L., E.N.R., R.W.J., P.G.B., M.A.V., J.R.G.), University of Sydney, New South Wales, Australia; The Baird Institute
| |
Collapse
|
21
|
Zhuo MQ, Pan YX, Wu K, Xu YH, Zhang LH, Luo Z. AKTs/PKBs: molecular characterization, tissue expression and transcriptional responses to insulin and/or wortmannin in yellow catfish Pelteobagrus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:719-730. [PMID: 28000079 DOI: 10.1007/s10695-016-0327-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
In the present study, four AKT isoforms termed AKT1, AKT2, AKT3a and AKT3b were isolated and characterized from yellow catfish. Their molecular characterizations, tissue expressions and transcriptional responses to insulin and/or wortmannin were determined. The validated complementary DNA (cDNA) of yellow catfish AKT1, AKT2, AKT3a and AKT3b were 1422, 1431, 1389 and 1440 bp in length, encoding the peptide of 472, 475, 462 and 479 amino acid residues, respectively. The amino acid sequences of yellow catfish AKTs possessed all the characteristics of AKTs in other species. AKT1, AKT2 and AKT3b contained a conserved domain structure including a specific PH domain, a central catalytic domain and a C-terminal regulatory domain, while AKT3a lacked the C-terminal regulatory domain. All mRNAs of AKTs were expressed at the highest levels in the ovary. Among other tissues, the messenger RNA (mRNA) of AKT1 was widely distributed in all tested tissues, and AKT2 mRNA was more abundant in the muscle, liver and fat and lowest in other tested tissues, while AKT3a mRNA was predominant in the brain and showed no significant difference among other tested tissues, and AKT3b mRNA was highly expressed in the ovary, followed by the brain, muscle and fat and was relatively low in other tissues. Intraperitoneal insulin injection and incubation increased the mRNA expression of AKT1 and AKT2, but not that of AKT3a and AKT3b in the liver and hepatocytes of yellow catfish. Wortmannin reduced the mRNA level of all AKT isoforms and also alleviated the insulin-induced changes of AKT2 expression. The present study cloned full-length cDNA sequences of four AKTs in fish and determined their tissue expression profiles and studied their transcriptional responses to insulin and/or wortmannin, which serves to increase our understanding of their physiological function in lipid metabolism in fish.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Li-Han Zhang
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
22
|
PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia. PLoS One 2017; 12:e0175993. [PMID: 28467426 PMCID: PMC5414975 DOI: 10.1371/journal.pone.0175993] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia. The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3 polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment during human neocortical development and recurrent copy number variations involving the 1q43-44 locus are associated with cortical malformations and intellectual disability, implicating an essential role in early brain development. Here, we investigated the role of AKT3 as it relates to aspects of learning and memory and behavioral function, relevant to schizophrenia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3 heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery. Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on cortical Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hippocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, memory for novel objects and social function. Akt3 loss-of-function, reduced brain size and dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner. Such changes were observed in the absence of altered Akt1 or Akt2 protein expression. Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a potential mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3, identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR signaling in brain.
Collapse
|
23
|
Nekoonam S, Naji M, Nashtaei MS, Mortezaee K, Koruji M, Safdarian L, Amidi F. Expression of AKT1 along with AKT2 in granulosa-lutein cells of hyperandrogenic PCOS patients. Arch Gynecol Obstet 2017; 295:1041-1050. [PMID: 28271235 DOI: 10.1007/s00404-017-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE AKTs have a pivotal role in the granulosa-lutein cell (GC) proliferation and folliculogenesis, and there is a reciprocal feedback between AKT with androgen. Therefore, we aimed to evaluate the role of AKTs in GCs of hyperandrogenic (+HA) PCOS cases. METHOD There were three groups: control, +HA PCOS and -HA (non-hyperandrogenic) PCOS. All groups were subjected to GnRH antagonist protocol for stimulation of ovulation. Follicular fluid was aspirated from large follicles, and GCs were isolated using cell strainer method. AKT1, AKT2, AKT3, and androgen receptor (AR) mRNA expressions were analyzed with quantitative real-time PCR (qRT-PCR), and total-AKT and p-AKT (Ser473 & Thr308) were investigated using western blotting. RESULTS There were high levels of AKT1, AKT2, and AR mRNA expressions and high levels of p-AKT protein expression in the +HA PCOS group (p ≤ 0.05). There was a direct positive correlation between free testosterone (FT) and total testosterone (TT) with the levels of AKT1, AKT2, and p-AKT (Ser473), and also between FT with the levels of AR. CONCLUSION High expressions of AKT1 and AKT2 through possible relation with androgen may cause GCs dysfunction in the +HA PCOS patients.
Collapse
Affiliation(s)
- Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, Postal code 1417613151, Iran
| | - Mohammad Naji
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, Postal code 1417613151, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, Postal code 1417613151, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Koruji
- Department of Anatomy, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Safdarian
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, Postal code 1417613151, Iran. .,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Wang B, Zeng H, Wen Z, Chen C, Wang DW. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1. Aging Cell 2016; 15:940-52. [PMID: 27416746 PMCID: PMC5013012 DOI: 10.1111/acel.12507] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2−/− mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2−/− mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Hesong Zeng
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Zheng Wen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Chen Chen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Dao Wen Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
25
|
Li D, Chen H, Luo XH, Sun Y, Xia W, Xiong YC. CX3CR1-Mediated Akt1 Activation Contributes to the Paclitaxel-Induced Painful Peripheral Neuropathy in Rats. Neurochem Res 2016; 41:1305-14. [PMID: 26961886 DOI: 10.1007/s11064-016-1827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Dai Li
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Hui Chen
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Xiao-Huan Luo
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Yang Sun
- Department of Pain, Branch of The First Affiliate Hospital of Xinjiang Medical University, Changji, People's Republic of China
| | - Wei Xia
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
26
|
Gungor H, Saleem A, Babar S, Dina R, El-Bahrawy MA, Curry E, Rama N, Chen M, Pickford E, Agarwal R, Blagden S, Carme S, Salinas C, Madison S, Krachey E, Santiago-Walker A, Smith DA, Morris SR, Stronach EA, Gabra H. Dose-Finding Quantitative 18F-FDG PET Imaging Study with the Oral Pan-AKT Inhibitor GSK2141795 in Patients with Gynecologic Malignancies. J Nucl Med 2015; 56:1828-35. [DOI: 10.2967/jnumed.115.156505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022] Open
|
27
|
Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35:180-90. [PMID: 26192967 DOI: 10.1016/j.semcancer.2015.07.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will be discussed.
Collapse
|
28
|
Santi SA, Douglas AC, Lee H. The Akt isoforms, their unique functions and potential as anticancer therapeutic targets. Biomol Concepts 2015; 1:389-401. [PMID: 25962012 DOI: 10.1515/bmc.2010.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Akt (also known as protein kinase B or PKB) is the major downstream nodal point of the PI3K signaling pathway. This pathway is a promising anticancer therapeutic target, because constitutive activation of the PI3K-Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies. The Akt serine/threonine kinase regulates diverse cellular functions including cell growth, proliferation, glucose metabolism, and survival. Although all three known Akt isoforms (Akt1-3) are encoded by separate genes, their amino acid sequences show a high degree of similarity. For this and other reasons, it has long been assumed that all three Akt isoforms are activated in the same way, and their functions largely overlap. However, accumulating lines of evidence now suggest that the three Akt isoforms might have unique modes of activation and many distinct functions. In particular, it has recently been found that the Akt isoforms are localized at different subcellular compartments in both adipocytes and cancer cells. In this review, we highlight the unique roles of each Akt isoform by introducing published data obtained from both in vitro and in vivo studies. We also discuss the significant potential of the Akt isoforms as effective anticancer therapeutic targets.
Collapse
|
29
|
Mok KW, Chen H, Lee WM, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat sertoli cells. An in vitro study. Endocrinology 2015; 156:1900-13. [PMID: 25714812 PMCID: PMC4398761 DOI: 10.1210/en.2014-1791] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a "bundled" to an "unbundled/branched" configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (K.-W.M., H.C., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
30
|
All Akt isoforms (Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear. PLoS One 2015; 10:e0121599. [PMID: 25811375 PMCID: PMC4374771 DOI: 10.1371/journal.pone.0121599] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear.
Collapse
|
31
|
Zhan W, Lin S, Chen J, Dong X, Chu J, Du W. Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel Benzopyran and Phenylpyrazole Derivatives as Akt Inhibitors. Chem Biol Drug Des 2014; 85:770-9. [PMID: 25453512 DOI: 10.1111/cbdd.12489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/13/2014] [Accepted: 11/16/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Wenhu Zhan
- ZJU-ENS Joint Laboratory of Medicinal Chemistry; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Sendong Lin
- ZJU-ENS Joint Laboratory of Medicinal Chemistry; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Jing Chen
- Department of Medicinal Chemistry; College of Pharmaceutical Science; Zhejiang Chinese Medicinal University; Hangzhou 310053 China
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Jianbo Chu
- Department of Pharmacy; Zhejiang Medical College; 481 Binwen Road Hangzhou 310053 China
| | - Wenting Du
- Department of Pharmacy; Zhejiang Medical College; 481 Binwen Road Hangzhou 310053 China
| |
Collapse
|
32
|
The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol 2014; 89:999-1012. [PMID: 25355887 DOI: 10.1128/jvi.02440-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an essential role of HBx during HBV replication, HBx activation of AKT inhibits hepatocyte apoptosis, and this may facilitate persistent, noncytopathic HBV replication. AKT regulates HBV replication by reducing the activity of the transcription factor hepatocyte nuclear factor 4α (HNF4α). HBx activation of AKT may contribute to the development of liver cancer by facilitating persistent HBV replication, augmenting the dedifferentiation of hepatocytes by inhibiting HNF4α functions, and activating AKT-regulated oncogenic pathways. AKT-regulated factors may provide therapeutic targets for inhibiting HBV replication and the development of HBV-associated liver cancer.
Collapse
|
33
|
Mok KW, Mruk DD, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci 2014; 127:4870-82. [PMID: 25217631 DOI: 10.1242/jcs.152231] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is an emerging regulator of blood-tissue barriers that utilizes ribosomal protein S6 (rpS6) as the downstream signaling molecule. To explore the role of rpS6 in blood-testis barrier (BTB) function, a constitutively active quadruple rpS6 phosphomimetic mutant was constructed in mammalian expression vector and overexpressed in Sertoli cells cultured in vitro that mimicked the BTB in vivo. Using this quadruple phosphomimetic mutant, phosphorylated (p)-rpS6 was shown to disrupt IGF-1/insulin signaling, thereby abolishing Akt phosphorylation, which led to an induction of MMP-9. This increase in MMP-9 secretion perturbed the Sertoli cell tight junction permeability barrier by proteolysis-mediated downregulation of tight junction proteins at the BTB. These findings were confirmed by the use of a specific MMP-9 inhibitor that blocked the disruption of the tight junction permeability barrier by the rpS6 mutant. Additionally, RNA interference (RNAi)-mediated Akt silencing was able to mimic the results of rpS6 mutant overexpression in Sertoli cells, further confirming this p-rpS6-Akt-MMP-9 signaling pathway. In conclusion, these data support a new concept of mTORC1-mediated BTB regulation, that is possibly also applicable to other blood-tissue barriers.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
34
|
Knockdown of AKT3 (PKBγ) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768181. [PMID: 24967401 PMCID: PMC4054922 DOI: 10.1155/2014/768181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor that is difficult to treat and has a very poor prognosis. Thus, new therapeutic strategies that target GBM are urgently needed. The PI3K/AKT/PTEN signaling pathway is frequently deregulated in a wide range of cancers. The present study was designed to examine the inhibitory effect of AKT3 or PI3KCA siRNAs on GBM cell growth, viability, and proliferation.T98G cells were transfected with AKT3 and/or PI3KCA siRNAs. AKT3 and PI3KCA protein-positive cells were identified using FC and Western blotting. The influence of specific siRNAs on T98G cell viability, proliferation, cell cycle, and apoptosis was evaluated as well using FC. Alterations in the mRNA expression of AKT3, PI3KCA, and apoptosis-related genes were analyzed using QRT-PCR. Knockdown of AKT3 and/or PI3KCA genes in T98G cells led to a significant reduction in cell viability, the accumulation of subG1-phase cells and, a reduced fraction of cells in the S and G2/M phases. Additionally, statistically significant differences in the BAX/BCL-2 ratio and an increased percentage of apoptotic cells were found. The siRNA-induced AKT3 and PI3KCA mRNA knockdown may offer a novel therapeutic strategy to control the growth of human GBM cells.
Collapse
|
35
|
Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, Cocco L, Blalock WL. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. FASEB J 2014; 28:2009-19. [PMID: 24522204 DOI: 10.1096/fj.13-244368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The AKT/PKB kinase is essential for cell survival, proliferation, and differentiation; however, aberrant AKT activation leads to the aggressiveness and drug resistance of many human neoplasias. In the human acute promyelocytic leukemia cell line NB4, nuclear AKT activity increases during all-trans retinoic acid (ATRA)-mediated differentiation. As nuclear AKT activity is associated with differentiation, we sought to identify the nuclear substrates of AKT that were phosphorylated after ATRA treatment. A proteomics-based search for nuclear substrates of AKT in ATRA-treated NB4 cells was undertaken by using 2D-electrophoresis/mass spectrometry (MS) in combination with an anti-AKT phospho-substrate antibody. Western blot analysis, an in vitro kinase assay, and/or site-directed mutagenesis were performed to further characterize the MS findings. MS analysis revealed prohibitin (PHB)-2, a multifunctional protein involved in cell cycle progression and the suppression of oxidative stress, to be a putative nuclear substrate of AKT. Follow-up studies confirmed that AKT phosphorylates PHB2 on Ser-91 and that forced expression of the PHB2(S91A) mutant results in a rapid loss of viability and apoptotic cell death. Activation of nuclear AKT during ATRA-mediated differentiation results in the phosphorylation of several proteins, including PHB2, which may serve to coordinate nuclear-mitochondrial events during differentiation.
Collapse
Affiliation(s)
- Alberto Bavelloni
- 2IGM-CNR, Bologna, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang JY, Deng W, Chen Y, Fan W, Baldwin KM, Jope RS, Wallace DC, Wang PH. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium. J Mol Cell Cardiol 2013; 59:167-75. [PMID: 23500391 PMCID: PMC3872535 DOI: 10.1016/j.yjmcc.2013.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 02/04/2023]
Abstract
Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Wu Deng
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Yumay Chen
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Weiwei Fan
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA
| | - Kenneth M. Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Richard S. Jope
- Department of Psychiatry, Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | - Douglas C. Wallace
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Ping H. Wang
- Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Rajala A, Dighe R, Agbaga MP, Anderson RE, Rajala RVS. Insulin receptor signaling in cones. J Biol Chem 2013; 288:19503-15. [PMID: 23673657 DOI: 10.1074/jbc.m113.469064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. In retinitis pigmentosa (RP), cone cell death precedes rod cell death. Systemic administration of insulin delays the death of cones in RP mouse models lacking rods. To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl) knock-out mouse retinas compared with wild type rod-dominant retinas. We previously reported that conditional deletion of the p85α subunit of phosphoinositide 3-kinase (PI3K) in cones resulted in age-related cone degeneration, and the phenotype was not rescued by healthy rods, raising the question of why cones are not protected by the rod-derived cone survival factors. Interestingly, systemic administration of insulin has been shown to delay the death of cones in mouse models of RP lacking rods. These observations led to the hypothesis that cones may have their own endogenous neuroprotective pathway, or rod-derived cone survival factors may be signaled through cone PI3K. To test this hypothesis we generated p85α(-/-)/Nrl(-/-) double knock-out mice and also rhodopsin mutant mice lacking p85α and examined the effect of the p85α subunit of PI3K on cone survival. We found that the rate of cone degeneration is significantly faster in both of these models compared with respective mice with competent p85α. These studies suggest that cones may have their own endogenous PI3K-mediated neuroprotective pathway in addition to the cone viability survival signals derived from rods.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean A McGee Eye Institute, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
38
|
Diabetes mellitus associated cardiovascular signalling alteration: A need for the revisit. Cell Signal 2013; 25:1149-55. [DOI: 10.1016/j.cellsig.2013.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/25/2013] [Indexed: 01/25/2023]
|
39
|
Horman SR, Janas MM, Litterst C, Wang B, MacRae IJ, Sever MJ, Morrissey DV, Graves P, Luo B, Umesalma S, Qi HH, Miraglia LJ, Novina CD, Orth AP. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol Cell 2013; 50:356-67. [PMID: 23603119 DOI: 10.1016/j.molcel.2013.03.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Abstract
A high-throughput RNA interference (RNAi) screen targeting 542 genes of the human kinome was used to discover regulators of RNAi. Here we report that the proto-oncogene Akt-3/PKBγ (Akt3) phosphorylates Argonaute 2 (Ago2) at S387, which downregulates cleavage and upregulates translational repression of endogenous microRNA (miRNA)-targeted messenger RNAs (mRNAs). We further demonstrate that Akt3 coimmunoprecipitates with Ago2 and phosphorylation of Ago2 at S387 facilitates its interaction with GW182 and localization to cytoplasmic processing bodies (P bodies), where miRNA-targeted mRNAs are thought to be stored and degraded. Therefore, Akt3-mediated phosphorylation of Ago2 is a molecular switch between target mRNA cleavage and translational repression activities of Ago2.
Collapse
Affiliation(s)
- Shane R Horman
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Haslinger P, Haider S, Sonderegger S, Otten JV, Pollheimer J, Whitley G, Knöfler M. AKT Isoforms 1 and 3 Regulate Basal and Epidermal Growth Factor-Stimulated SGHPL-5 Trophoblast Cell Migration in Humans1. Biol Reprod 2013; 88:54. [DOI: 10.1095/biolreprod.112.104778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
41
|
Kunuthur SP, Mocanu MM, Hemmings BA, Hausenloy DJ, Yellon DM. The Akt1 isoform is an essential mediator of ischaemic preconditioning. J Cell Mol Med 2012; 16:1739-49. [PMID: 22117619 PMCID: PMC3822687 DOI: 10.1111/j.1582-4934.2011.01491.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1−/− mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2−/− mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1−/− mice. The rise in threshold for protection in Akt2−/− mice might be due to their diabetic phenotype.
Collapse
Affiliation(s)
- Suma P Kunuthur
- The Hatter Cardiovascular Institute, The Institute of Cardiovascular Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
42
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
43
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|
44
|
Krishnamurthy S, Basu A. Regulation of IKKε Expression by Akt2 Isoform. Genes Cancer 2012; 2:1044-50. [PMID: 22737270 DOI: 10.1177/1947601912444604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/13/2012] [Indexed: 01/12/2023] Open
Abstract
The inhibitor of κ B kinase-ε (IKKε), a breast cancer oncogene, functions as a transforming kinase by activating NF-κB. IKKε is often elevated in breast cancers in the absence of any gene amplification. Because Akt-mediated transformation was shown to require IKKε, we examined if Akt regulates IKKε level in breast cancer cells. Knockdown of Akt2, but not other Akt isoforms, decreased the basal and TNF-induced IKKε protein and mRNA level, and overexpression of Akt2 in MDA-MB-231 cells increased IKKε level. The decrease in IKKε level by Akt2 knockdown was not only restricted to MDA-MB-231 cells but was also observed in several other breast cancer cells, including HCC1937 and MCF-10CA1a cells. Knockdown of p65/RelA subunit of NF-κB decreased IKKε level and attenuated the increase in IKKε caused by Akt2 overexpression, suggesting that Akt2-mediated induction of IKKε involves NF-κB activation. Silencing of IKKε also decreased long-term clonogenic survival of Akt2-overexpressing MDA-MB-231 cells. Taken together, these results demonstrate for the first time that IKKε functions downstream of Akt2 to promote breast cancer cell survival.
Collapse
|
45
|
Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol Cell Proteomics 2012; 11:187-201. [PMID: 22322096 DOI: 10.1074/mcp.m111.015883] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.
Collapse
|
46
|
Mijouin L, Rosselin M, Bottreau E, Pizarro-Cerda J, Cossart P, Velge P, Wiedemann A. Salmonella enteritidis Rck-mediated invasion requires activation of Rac1, which is dependent on the class I PI 3-kinases-Akt signaling pathway. FASEB J 2011; 26:1569-81. [PMID: 22210834 DOI: 10.1096/fj.11-189647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Salmonella outer membrane protein Rck mediates a Zipper-like entry mechanism controlled by Rac, the Arp2/3 complex, and actin polymerization. However, little is known about the early steps leading to Rac activation and Rck-mediated internalization. The use of pharmacological inhibitors or PI 3-kinase dominant-negative mutant induced more than 80% less invasion without affecting attachment. Moreover, Rck-mediated internalization caused an increase in the association of p85 with at least one tyrosine-phosphorylated protein, indicating that class I PI 3-kinase activity was stimulated. We also report that this PI 3-kinase activity is essential for Rac1 activation. However, Rac recruitment at the Rck-mediated entry site was independent of its activation. Using a pharmacological approach or Akt-knockout cells, we also demonstrated that Akt was phosphorylated in response to Rck-mediated internalization as demonstrated by immunoblotting analysis and that all three Akt isoforms were required during this process. Overall, our results describe a signaling pathway involving tyrosine phosphorylation, class I PI 3-kinase, Akt activation, and Rac activation, leading to Rck-dependent Zipper entry. The specificity of this signaling pathway with regard to that of the type 3 secretion system, which is the other invasion process of Salmonella, is discussed.
Collapse
Affiliation(s)
- Lily Mijouin
- UR1282 Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Dong X, Zhou X, Jing H, Chen J, Liu T, Yang B, He Q, Hu Y. Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur J Med Chem 2011; 46:5949-58. [DOI: 10.1016/j.ejmech.2011.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/25/2011] [Accepted: 10/02/2011] [Indexed: 11/25/2022]
|
48
|
New thiazole carboxamides as potent inhibitors of Akt kinases. Bioorg Med Chem Lett 2011; 22:1208-12. [PMID: 22172705 DOI: 10.1016/j.bmcl.2011.11.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/31/2011] [Accepted: 11/19/2011] [Indexed: 01/10/2023]
Abstract
A new series of 2-substituted thiazole carboxamides were identified as potent pan inhibitors against all three isoforms of Akt (Akt1, Akt2 and Akt3) by systematic optimization of weak screening hit N-(1-amino-3-phenylpropan-2-yl)-2-phenylthiazole-5-carboxamide (1). One of the most potent compounds, 5m, inhibited the kinase activities of Akt1, Akt2 and Akt3 with IC(50) values of 25, 196 and 24nM, respectively. The compound also potently inhibited the phosphorylation of downstream MDM2 and GSK3β proteins, and displayed strongly antiproliferative activity in prostate cancer cells. The inhibitors might serve as lead compounds for further development of novel effective anticancer agents.
Collapse
|
49
|
Meuillet EJ. Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain. Curr Med Chem 2011; 18:2727-42. [PMID: 21649580 DOI: 10.2174/092986711796011292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/13/2011] [Indexed: 12/21/2022]
Abstract
Protein kinase B/AKT plays a central role in cancer. The serine/threonine kinase is overexpressed or constitutively active in many cancers and has been validated as a therapeutic target for cancer treatment. However, targeting the kinase activity has revealed itself to be a challenge due to non-selectivity of the compounds towards other kinases. This review summarizes other approaches scientists have developed to inhibit the activity and function of AKT. They consist in targeting the pleckstrin homology (PH) domain of AKT. Indeed, upon the generation of 3-phosphorylated phosphatidylinositol phosphates (PI3Ps) by PI3-kinase (PI3K), AKT translocates from the cytosol to the plasma membrane and binds to the PI3Ps via its PH domain. Thus, several analogs of PI3Ps (PI Analogs or PIAs), alkylphospholipids (APLs), such as edelfosine or inositol phophates (IPs) have been described that inhibit the binding of the PH domain to PI3Ps. Recent allostertic inhibitors and small molecules that do not bind the kinase domain but affect the kinase activity of AKT, presumably by interacting with the PH domain, have been also identified. Finally, several drug screening studies spawned novel chemical scaffolds that bind the PH domain of AKT. Together, these approaches have been more or less sucessfull in vitro and to some extent translated in preclinical studies. Several of these new AKT PH domain inhibitors exhibit promising anti-tumor activity in mouse models and some of them show synergy with ionizing radiation and chemotherapy. Early clinical trials have started and results will attest to the validity and efficacy of such approaches in the near future.
Collapse
Affiliation(s)
- E J Meuillet
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
50
|
Discovery of novel anticancer therapeutics targeting the PI3K/Akt/mTOR pathway. Future Med Chem 2011; 1:137-55. [PMID: 21426073 DOI: 10.4155/fmc.09.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Among promising targeted therapies for cancer treatment, phosphatidylinositol 3-kinase pathway inhibitors have in the last 3 years continued to retain the attention of both academic institutions and pharmaceutical companies. The large amount of published clinical and preclinical data has indeed confirmed the preponderant role of this so-called survival pathway for tumor maintenance. DISCUSSION Global efforts have, therefore, been deployed that have led to the genesis of a panoply of small molecule inhibitors. This review will focus on updating the reader on the current medicinal chemistry efforts targeting this pathway. CONCLUSIONS Recent discoveries important for patient stratification, quantification of target modulation in humans and combination therapies will be presented and discussed.
Collapse
|