1
|
GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 2019; 54:35-53. [DOI: 10.1016/j.ymben.2019.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
|
2
|
Hawkins JP, Ordonez PA, Oresnik IJ. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti. J Bacteriol 2018; 200:e00436-17. [PMID: 29084855 PMCID: PMC5738737 DOI: 10.1128/jb.00436-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.
Collapse
Affiliation(s)
- Justin P Hawkins
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia A Ordonez
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate. J Bacteriol 2016; 199:JB.00572-16. [PMID: 27795326 DOI: 10.1128/jb.00572-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/01/2016] [Indexed: 12/12/2022] Open
Abstract
Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omega-amino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O2, conditions similar to those experienced by N2-fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O2 and cell death. IMPORTANCE Rhizobium leguminosarum, a soil bacterium that forms N2-fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O2 tensions during growth in soil and N2 fixation in symbiosis with legumes.
Collapse
|
4
|
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Sci Rep 2016; 6:29278. [PMID: 27404346 PMCID: PMC4941405 DOI: 10.1038/srep29278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.
Collapse
Affiliation(s)
- W O Draghi
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - C Hellweg
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S A Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - T F Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Barsch
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - M J Lozano
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - M E Salas
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L López
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - F J Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J F Nilsson
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - G A Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Luna
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L Boiardi
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Pühler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S Weidner
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - K Niehaus
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| |
Collapse
|
5
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
6
|
Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection. mBio 2014; 5:e00085. [PMID: 24757211 PMCID: PMC3994511 DOI: 10.1128/mbio.00085-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Triosephosphate isomerase (TPI) catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). This reaction is required for glycolysis and gluconeogenesis, and tpi has been predicted to be essential for growth of Mycobacterium tuberculosis. However, when studying a conditionally regulated tpi knockdown mutant, we noticed that depletion of TPI reduced growth of M. tuberculosis in media containing a single carbon source but not in media that contained both a glycolytic and a gluconeogenic carbon source. We used such two-carbon-source media to isolate a tpi deletion (Δtpi) mutant. The Δtpi mutant did not survive with single carbon substrates but grew like wild-type (WT) M. tuberculosis in the presence of both a glycolytic and a gluconeogenic carbon source. 13C metabolite tracing revealed the accumulation of TPI substrates in Δtpi and the absence of alternative triosephosphate isomerases and metabolic bypass reactions, which confirmed the requirement of TPI for glycolysis and gluconeogenesis in M. tuberculosis. The Δtpi strain was furthermore severely attenuated in the mouse model of tuberculosis, suggesting that M. tuberculosis cannot simultaneously access sufficient quantities of glycolytic and gluconeogenic carbon substrates to establish infection in mice. The importance of central carbon metabolism for the pathogenesis of M. tuberculosis has recently been recognized, but the consequences of depleting specific metabolic enzymes remain to be identified for many enzymes. We investigated triosephosphate isomerase (TPI) because it is central to both glycolysis and gluconeogenesis and had been predicted to be essential for growth of M. tuberculosis. This work identified metabolic conditions that make TPI dispensable for M. tuberculosis growth in culture and proved that M. tuberculosis relies on a single TPI enzyme and has no metabolic bypass for the TPI-dependent interconversion of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in glycolysis and gluconeogenesis. Finally, we demonstrate that TPI is essential for growth of the pathogen in mouse lungs.
Collapse
|
7
|
Ates O, Arga KY, Oner ET. The stimulatory effect of mannitol on levan biosynthesis: Lessons from metabolic systems analysis ofHalomonas smyrnensisAAD6T. Biotechnol Prog 2013; 29:1386-97. [DOI: 10.1002/btpr.1823] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/02/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Ozlem Ates
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| | - Kazim Y. Arga
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| | - Ebru Toksoy Oner
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| |
Collapse
|
8
|
Revelles O, Millard P, Nougayrède JP, Dobrindt U, Oswald E, Létisse F, Portais JC. The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917. PLoS One 2013; 8:e66386. [PMID: 23840455 PMCID: PMC3688793 DOI: 10.1371/journal.pone.0066386] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/05/2013] [Indexed: 01/25/2023] Open
Abstract
The role of the post-transcriptional carbon storage regulator (Csr) system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations) showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the csrA51 mutant affects the growth efficiency on a broad range of physiologically relevant carbon sources, including compounds utilized by the Entner-Doudoroff (ED) pathway. Detailed investigations of the metabolomes and fluxomes of mutants and wild-type cells grown on carbon sources representative of glycolysis and of the ED pathway (glucose and gluconate, respectively), revealed significant re-adjusting of central carbon metabolism for both compounds in the csrA51 mutant. However, the metabolic re-adjusting observed on gluconate was strikingly different from that observed on glucose, indicating a nutrient-specific control of metabolism by the Csr system.
Collapse
Affiliation(s)
- Olga Revelles
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, LISBP, Université de Toulouse, INSA, UPS, INP, Toulouse, France
- Laboratoire Ingénierie des Systèmes Biologiques et des Procédés, INRA UMR792, Toulouse, France
- UMR5504, CNRS, Toulouse, France
| | - Pierre Millard
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, LISBP, Université de Toulouse, INSA, UPS, INP, Toulouse, France
- Laboratoire Ingénierie des Systèmes Biologiques et des Procédés, INRA UMR792, Toulouse, France
- UMR5504, CNRS, Toulouse, France
| | - Jean-Philippe Nougayrède
- USC1360, INRA, Toulouse, France
- U1043, Inserm, Toulouse, France
- UMR5282, CNRS, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Toulouse, France
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Eric Oswald
- USC1360, INRA, Toulouse, France
- U1043, Inserm, Toulouse, France
- UMR5282, CNRS, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Toulouse, France
| | - Fabien Létisse
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, LISBP, Université de Toulouse, INSA, UPS, INP, Toulouse, France
- Laboratoire Ingénierie des Systèmes Biologiques et des Procédés, INRA UMR792, Toulouse, France
- UMR5504, CNRS, Toulouse, France
| | - Jean-Charles Portais
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, LISBP, Université de Toulouse, INSA, UPS, INP, Toulouse, France
- Laboratoire Ingénierie des Systèmes Biologiques et des Procédés, INRA UMR792, Toulouse, France
- UMR5504, CNRS, Toulouse, France
- * E-mail:
| |
Collapse
|
9
|
Tang JKH, You L, Blankenship RE, Tang YJ. Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints. J R Soc Interface 2012; 9:2767-80. [PMID: 22896564 DOI: 10.1098/rsif.2012.0396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After feeding microbes with a defined (13)C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of (13)C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner-Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO(2) fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of (13)C substrates and the isotopic effect). Although (13)C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health.
Collapse
Affiliation(s)
- Joseph Kuo-Hsiang Tang
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | | | | |
Collapse
|
10
|
Lemos PC, Dai Y, Yuan Z, Keller J, Santos H, Reis MAM. Elucidation of metabolic pathways in glycogen-accumulating organisms with in vivo 13C nuclear magnetic resonance. Environ Microbiol 2008; 9:2694-706. [PMID: 17922754 DOI: 10.1111/j.1462-2920.2007.01382.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycogen-accumulating organisms (GAOs) are found in enhanced biological phosphorus removal systems where they compete with polyphosphate-accumulating organisms for external carbon substrates. (13)C nuclear magnetic resonance ((13)C-NMR) was used to elucidate the metabolic pathways operating in an enriched GAO culture dominated by two known GAOs (81.2%). The experiments consisted of adding (13)C-acetate (labelled on position 1 or 2) to the culture under anaerobic conditions, and operating the culture through a cycle consisting of an anaerobic, an aerobic and a further anaerobic phase. The carbon transformations over the cycle were monitored using in vivo(13)C-NMR. The two-carbon moieties in hydroxybutyrate and hydroxyvalerate were derived from acetate, while the propionyl precursor of hydroxyvalerate was primarily derived from glycogen, with only a small fraction originating from acetate. Comparison of the labelling patterns in hydroxyvalerate at the end of the first and the second anaerobic periods in pulse experiments with 2-(13)C-acetate showed that the Entner-Doudoroff (ED) pathway was used for the breakdown of glycogen. This conclusion was further supported by the labelling pattern on glycogen observed in the pulse experiments with 1-(13)C-acetate, which can only be explained by the operation of ED with recycling of pyruvate and glyceraldehyde 3-phosphate via gluconeogenesis. The activity of the ED pathway for glycogen degradation by GAOs is demonstrated here for the first time. In addition, the decarboxylating part of the tricarboxylic acid cycle was confirmed to operate also under anaerobic conditions.
Collapse
Affiliation(s)
- Paulo C Lemos
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, UNL, 2829-516 Caparica, Portugal.
| | | | | | | | | | | |
Collapse
|
11
|
Poysti NJ, Oresnik IJ. Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol 2007; 189:3445-51. [PMID: 17337584 PMCID: PMC1855893 DOI: 10.1128/jb.01707-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Nathan J Poysti
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | | |
Collapse
|
12
|
Fuhrer T, Fischer E, Sauer U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 2005; 187:1581-90. [PMID: 15716428 PMCID: PMC1064017 DOI: 10.1128/jb.187.5.1581-1590.2005] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structurally conserved and ubiquitous pathways of central carbon metabolism provide building blocks and cofactors for the biosynthesis of cellular macromolecules. The relative uses of pathways and reactions, however, vary widely among species and depend upon conditions, and some are not used at all. Here we identify the network topology of glucose metabolism and its in vivo operation by quantification of intracellular carbon fluxes from 13C tracer experiments. Specifically, we investigated Agrobacterium tumefaciens, two pseudomonads, Sinorhizobium meliloti, Rhodobacter sphaeroides, Zymomonas mobilis, and Paracoccus versutus, which grow on glucose as the sole carbon source, represent fundamentally different metabolic lifestyles (aerobic, anaerobic, photoheterotrophic, and chemoheterotrophic), and are phylogenetically distinct (firmicutes, gamma-proteobacteria, and alpha-proteobacteria). Compared to those of the model bacteria Escherichia coli and Bacillus subtilis, metabolisms of the investigated species differed significantly in several respects: (i) the Entner-Doudoroff pathway was the almost exclusive catabolic route; (ii) the pentose phosphate pathway exhibited exclusively biosynthetic functions, in many cases also requiring flux through the nonoxidative branch; (iii) all aerobes exhibited fully respiratory metabolism without significant overflow metabolism; and (iv) all aerobes used the pyruvate bypass of the malate dehydrogenase reaction to a significant extent. Exclusively, Pseudomonas fluorescens converted most glucose extracellularly to gluconate and 2-ketogluconate. Overall, the results suggest that metabolic data from model species with extensive industrial and laboratory history are not representative of microbial metabolism, at least not quantitatively.
Collapse
Affiliation(s)
- Tobias Fuhrer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
13
|
Wu JR, Son JH, Seo HJ, Kim KH, Nam YK, Lee JW, Kim SK. Metabolic flux analysis ofBeijerinckia indica for PS-7 production. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02931189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Abstract
The extension of (13)C-nuclear magnetic resonance (NMR) techniques to study cellular metabolism over recent years has provided valuable data supporting the occurrence, diversity and extent of carbon cycling in the carbohydrate metabolism of micro-organisms. The occurrence of such cycles, resulting from the simultaneous operation of different and sometimes opposite individual steps, is inherently related to the network organisation of cellular metabolism. These cycles are tentatively classified here as 'reversibility', 'metabolic' and 'substrate' cycles on the basis of their balance in carbon and cofactors. Current hypotheses concerning the physiological relevance of carbohydrate cycles are discussed in light of the (13)C-NMR data. They most likely represent system-level mechanisms for coherent and timely partitioning of carbon resources to fit with the various biosynthetic, energetic or redox needs of cells and/or additional strategies in the adaptive capacity of micro-organisms to face variation in environmental conditions.
Collapse
Affiliation(s)
- Jean-Charles Portais
- Laboratoire de Génie Cellulaire, UMR CNRS 6022, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France.
| | | |
Collapse
|
15
|
Tsvetanova BC, Kiemle DJ, Price NPJ. Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine. J Biol Chem 2002; 277:35289-96. [PMID: 12093793 DOI: 10.1074/jbc.m201345200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tunicamycin is a reversible inhibitor of polyprenol-phosphate: N-acetylhexosamine-1-phosphate translocases and is produced by several Streptomyces species. We have examined tunicamycin biosynthesis, an important but poorly characterized biosynthetic pathway. Biosynthetic precursors have been identified by incorporating radioactive and stable isotopes, and by determining the labeling pattern using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS), and proton, deuterium, and C-13 nuclear magnetic resonance (NMR) spectroscopy. Preparation and analysis of [uracil-5-(2)H]-labeled tunicamycin established the complete ESI-CID-MS fragmentation pathway for the major components of the tunicamycin complex. Competitive metabolic experiments indicate that 7 deuteriums incorporate into tunicamycin from [6,6'-(2)H,(2)H]-labeled D-glucose, 6 of which arise from D-GlcNAc and 1 from uridine and/or D-ribose. Inverse correlation NMR experiments (heteronuclear single-quantum coherence (HSQC)) of (13)C-labeled tunicamycin enriched from D-[1-(13)C]glucose suggest that the unique tunicamine 11-carbon dialdose sugar backbone arises from a 5-carbon furanose precursor derived from uridine and a 6-carbon N-acetylamino-pyranose precursor derived from UDP-D-N-acetylglucosamine. The equivalent incorporation of (13)C into both the alpha-1" and beta-11' anomeric carbons of tunicamycin supports a direct biosynthesis via 6-carbon metabolism. It also indicates that the tunicamine motif and the alpha-1"-linked GlcNAc residue are both derived from the same metabolic pool of UDP-GlcNAc, without significant differential metabolic processing. A biosynthetic pathway is therefore proposed for tunicamycin for the first time: an initial formation of the 11-carbon tunicamine sugar motif from uridine and UDP-GlcNAc via uridine-5'-aldehyde and UDP-4-keto-6-ene-N-acetylhexosamine, respectively, and subsequent formation of the anomeric-to-anomeric alpha, beta-1",11'-glycosidic bond.
Collapse
Affiliation(s)
- Billyana C Tsvetanova
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
16
|
López-García SL, Vázquez TE, Favelukes G, Lodeiro AR. Improved soybean root association of N-starved Bradyrhizobium japonicum. J Bacteriol 2001; 183:7241-52. [PMID: 11717284 PMCID: PMC95574 DOI: 10.1128/jb.183.24.7241-7252.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 09/18/2001] [Indexed: 11/20/2022] Open
Abstract
In this study, we addressed the effects of N limitation in Bradyrhizobium japonicum for its association with soybean roots. The wild-type strain LP 3001 grew for six generations with a growth rate of 1.2 day(-1) in a minimal medium with 28 mM mannitol as the carbon source and with the N source [(NH(4))(2)SO(4)] limited to only 20 microM. Under these conditions, the glutamine synthetase (GS) activity was five to six times higher than in similar cultures grown with 1 or 0.1 mM (NH(4))(2)SO(4). The NtrBC-inducible GSII form of this enzyme accounted for 60% of the specific activity in N-starved rhizobia, being negligible in the other two cultures. The exopolysaccharide (EPS) and capsular polysaccharide (CPS) contents relative to cell protein were significantly higher in the N-starved cultures, but on the other hand, the poly-3-hydroxybutyrate level did not rise in comparison with N-sufficient cultures. In agreement with the accumulation of CPS in N-starved cultures, soybean lectin (SBL) binding as well as stimulation of rhizobial adsorption to soybean roots by SBL pretreatment were higher. The last effect was evident only in cultures that had not entered stationary phase. We also studied nodC gene induction in relation to N starvation. In the chromosomal nodC::lacZ fusion Bj110-573, nodC gene expression was induced by genistein 2.7-fold more in N-starved young cultures than in nonstarved ones. In stationary-phase cultures, nodC gene expression was similarly induced in N-limited cultures, but induction was negligible in cultures limited by another nutrient. Nodulation profiles obtained with strain LP 3001 grown under N starvation indicated that these cultures nodulated faster. In addition, as culture age increased, the nodulation efficiency decreased for two reasons: fewer nodules were formed, and nodulation was delayed. However, their relative importance was different according to the nutrient condition: in older cultures the overall decrease in the number of nodules was the main effect in N-starved cultures, whereas a delay in nodulation was more responsible for a loss in efficiency of N-sufficient cultures. Competition for nodulation was studied with young cultures of two wild-type strains differing only in their antibiotic resistance, the N-starved cultures being the most competitive.
Collapse
Affiliation(s)
- S L López-García
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
17
|
Gosselin I, Wattraint O, Riboul D, Barbotin J, Portais J. A deeper investigation on carbohydrate cycling in Sinorhizobium meliloti. FEBS Lett 2001; 499:45-9. [PMID: 11418109 DOI: 10.1016/s0014-5793(01)02518-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycling of triose-phosphate and pentose-phosphate was previously reported on glucose in Sinorhizobium meliloti, a polysaccharide-synthesizing bacterium, but the metabolic basis of such processes remained unclear. In this work, we have used (13)C-labelling strategies to demonstrate that carbohydrate cycling in this organism is independent of the gluconate bypass, the alternative pathway for glucose assimilation involving its periplasmic oxidation into gluconate. Furthermore, carbohydrate cycling in S. meliloti is also observed on fructose, making the situation in this bacterium significantly different from that depicted for alginate-synthesizing species.
Collapse
Affiliation(s)
- I Gosselin
- Laboratoire de Génie Cellulaire, UMR CNRS 6022, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Cedex, Amiens, France
| | | | | | | | | |
Collapse
|