1
|
Ortiz M, Esteban MÁ. Biology and functions of fish thrombocytes: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109509. [PMID: 38493985 DOI: 10.1016/j.fsi.2024.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review examines the role of fish thrombocytes, cells considered functionally analogous to platelets in terms of coagulation, but which differ in their origin and morphology. Despite the evolutionary distance between teleosts and mammals, genomic studies reveal conserved patterns in blood coagulation, although there are exceptions such as the absence of factors belonging to the contact system. Beyond coagulation, fish thrombocytes have important immunological functions. These cells express both proinflammatory genes and genes involved in antigen presentation, suggesting a role in both innate and adaptive immune responses. Moreover, having demonstrated their phagocytic abilities, crucial in the fight against pathogenic microorganisms, underscores their multifaceted involvement in immunity. Finally, the need for further research on the functions of these cells is highlighted, in order to better understand their involvement in maintaining the health of aquaculture fish. The use of standardized and automated methods for the analysis of these activities is advocated, emphaiszing their potential to facilitate the early detection of stress or infection, thus minimizing the economic losses that these adverse situations can generate in the field of aquaculture.
Collapse
Affiliation(s)
- María Ortiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Saboor M, Hamali HA, Mobarki AA, Madkhali AM, Dboie G. Exploring antithrombin: insights into its physiological features, clinical implications and analytical techniques. Blood Coagul Fibrinolysis 2024; 35:43-48. [PMID: 38179715 DOI: 10.1097/mbc.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Antithrombin is an essential protein that acts as a natural anticoagulant in the human body. It is synthesized by the liver and belongs to the serine protease inhibitors, which are commonly referred to as the SERPINS superfamily. The antithrombin molecule comprises 432 amino acids and has a molecular weight of approximately 58 200 D. It consists of three domains, including an amino-terminal domain, a carbohydrate-rich domain, and a carboxyl-terminal domain. The amino-terminal domain binds with heparin, whereas the carboxyl-terminal domain binds with serine protease. Antithrombin is a crucial natural anticoagulant that contributes approximately 60-80% of plasma anticoagulant activities in the human body. Moreover, antithrombin has anti-inflammatory effects that can be divided into coagulation-dependent and coagulation-independent effects. Furthermore, it exhibits antitumor activity and possesses a broad range of antiviral properties. Inherited type I antithrombin deficiency is a quantitative disorder that is characterized by low antithrombin activity due to low plasma levels. On the other hand, inherited type II antithrombin deficiency is a qualitative disorder that is characterized by defects in the antithrombin molecule. Acquired antithrombin deficiencies are more common than hereditary deficiencies and are associated with various clinical conditions due to reduced synthesis, increased loss, or enhanced consumption. The purpose of this review was to provide an update on the structure, functions, clinical implications, and methods of detection of antithrombin.
Collapse
Affiliation(s)
- Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aymen M Madkhali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Gasim Dboie
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
A human antithrombin isoform dampens inflammatory responses and protects from organ damage during bacterial infection. Nat Microbiol 2019; 4:2442-2455. [PMID: 31548687 DOI: 10.1038/s41564-019-0559-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022]
Abstract
Severe infectious diseases are often characterized by an overwhelming and unbalanced systemic immune response to microbial infections. Human antithrombin (hAT) is a crucial coagulation inhibitor with anti-inflammatory activities. Here we identify three hAT-binding proteins (CD13, CD300f and LRP-1) on human monocytes that are involved in blocking the activity of nuclear factor-κB. We found that the modulating effect is primarily restricted to the less abundant β-isoform (hβAT) of hAT that lacks N-glycosylation at position 135. Individuals with a mutation at this position have increased production of hβAT and analysis of their blood, which was stimulated ex vivo with lipopolysaccharide, showed a decreased inflammatory response. Similar findings were recorded when heterozygotic mice expressing hAT or hβAT were challenged with lipopolysaccharide or infected with Escherichia coli bacteria. Our results finally demonstrate that in a lethal E. coli infection model, survival rates increased when mice were treated with hβAT one hour and five hours after infection. The treatment also resulted in a reduction of the inflammatory response and less severe organ damage.
Collapse
|
4
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
5
|
Li Y, Liu S, Qin Z, Yao J, Jiang C, Song L, Dunham R, Liu Z. The serpin superfamily in channel catfish: identification, phylogenetic analysis and expression profiling in mucosal tissues after bacterial infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:267-277. [PMID: 25499033 DOI: 10.1016/j.dci.2014.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The superfamily of serine protease inhibitors (serpins) are broadly distributed in all kingdoms of life. Serpins play critical roles in an array of fundamental biological processes. In this study, we identified a complete set of 25 serpin genes from channel catfish genome by comprehensive data mining of existing genomic resources. Phylogenetic analysis verified their identities and supported the classification of serpins into six families as in mammals. Extensive comparative genomic analyses suggested that most serpins were conserved among vertebrates, while some were lineage-specific. Analysis of serpin gene expression in mucosal tissues after bacterial infections indicated that serpin genes were regulated in a tissue-specific and time-dependent manner. Distinct expression patterns between infections of the two pathogens were observed, indicating that much more rapid host responses of serpin expression were initiated after ESC infection than after columnaris infection. These studies set the foundation for future studies of host-pathogen interactions.
Collapse
Affiliation(s)
- Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
6
|
Chao Y, Fan C, Liang Y, Gao B, Zhang S. A novel serpin with antithrombin-like activity in Branchiostoma japonicum: implications for the presence of a primitive coagulation system. PLoS One 2012; 7:e32392. [PMID: 22427833 PMCID: PMC3299649 DOI: 10.1371/journal.pone.0032392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 01/30/2012] [Indexed: 11/17/2022] Open
Abstract
Serine protease inhibitors, or serpins, are a group of widely distributed proteins with similar structures that use conformational change to inhibit proteases. Antithrombin (AT) is a member of the serine protease inhibitor superfamily and a major coagulation inhibitor in all vertebrates, but its evolutionary origin remains elusive. In this study we isolated for the first time a cDNA encoding an antithrombin homolog, BjATl, from the protochordate Branchiostoma japonicum. The deduced protein BjATl consisted of 338 amino acids sharing 36.7% to 41.1% identity to known vertebrate ATs. BjATl contains a potential N-linked glycosylation site, two potential heparin binding sites and the reactive center loop with the absolutely conserved sequence Gly-Arg-Ser; all of these are features characteristic of ATs. All three phylogenetic trees constructed using Neighbor-Joining, Maximum-Likelihood and Bayesian-Inference methods also placed BjATl together with ATs. Moreover, BjATl expressed in yeast cells was able to inhibit bovine thrombin activity by forming a SDS-stable BjATl-thrombin complex. It also displays a concentration-dependent inhibition of thrombin that is accelerated by heparin. Furthermore, BjATl was predominantly expressed in the hepatic caecum and hind-gut, agreeing with the expression pattern of AT in mammalian species. All these data clearly demonstrate that BjATl is an ortholog of vertebrate ATs, suggesting that a primitive coagulation system emerged in the protochordate.
Collapse
Affiliation(s)
- Yeqing Chao
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
7
|
Mickowska B. Purification and characterization of alpha(1)-proteinase inhibitor and antithrombin III: major serpins of rainbow trout (Oncorhynchuss mykiss) and carp (Cyprinus carpio) blood plasma. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:231-240. [PMID: 19343519 DOI: 10.1007/s10695-008-9204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/11/2008] [Indexed: 05/27/2023]
Abstract
The main serine proteinase inhibitors of rainbow trout (Oncorhynchuss mykiss) and common carp (Cyprinus carpio) blood plasma were isolated and purified. The investigated inhibitors, alpha(1)-proteinase inhibitor (alpha(1)-PI) and antithrombin III (AT III), act by forming stable complexes with target proteinases. The association rate constants k (on) for the interaction of fish plasma inhibitors with several serine proteinases have been determined: k (on) for both carp and rainbow trout alpha(1)-PI were >10(7) M(-1) s(-1) for human neutrophil elastase, and in the case of bovine trypsin and chymotrypsin k (on) values were 2.0-5.2 x 10(6) M(-1) s(-1). Association rate constants k (on) for the interaction of carp and rainbow trout AT III with bovine trypsin and thrombin were about 1.3 x 10(4)-7.9 x 10(5) M(-1) s(-1) without and >10(7) M(-1) s(-1) in presence of heparin; so antithrombins require the presence of heparin to become effective proteinase inhibitors. The high degree of homology of the estimated amino acid sequences of fish inhibitors reactive site loops confirms their similarity with other proteinase inhibitors from the serpin family.
Collapse
Affiliation(s)
- B Mickowska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
de Morais KB, Vieira CO, Hirata IY, Tanaka-Azevedo AM. Bothrops jararaca antithrombin: Isolation, characterization and comparison with other animal antithrombins. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:171-6. [DOI: 10.1016/j.cbpb.2008.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
9
|
Wojtczak M, Całka J, Glogowski J, Ciereszko A. Isolation and characterization of alpha1-proteinase inhibitor from common carp (Cyprinus carpio) seminal plasma. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:264-76. [PMID: 17681818 DOI: 10.1016/j.cbpb.2007.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 01/22/2023]
Abstract
Using a three-step procedure, we purified (79 and 51.6-fold to homogeneity) and characterized the two isoforms (a and b) of alpha1-proteinase inhibitor-like protein from carp seminal plasma. The isoforms have molecular masses of 55.5 and 54.0 kDa, respectively. These inhibitors formed SDS-stable complexes with cod and bovine trypsin, chymotrypsin and elastase. The thirty-three amino acids within the reactive loop SLPDTVILNRPFLVLIVEDTTKSILFMGKITNP were identified for isoform b. The same first ten amino acids were obtained for isoform a, and this sequence revealed 100% homology to carp alpha1-proteinase inhibitor (alpha1-PI) from perimeningeal fluid. Both isoforms of alpha1-PI are glycoproteins and their carbohydrate content was determined to be 12.6 and 12.1% for a and b, respectively. Our results indicated that alpha1-PI is one of the main proteins of carp seminal plasma. Using polyclonal anti-alpha1-PI antibodies, alpha1-PI was for the first time localized to the carp testis. The presence of alpha1-PI in testis lobules and in the area surrounding spermatides suggests that this inhibitor may be involved in the maintenance of testis connective tissue integrity, control of spermatogenesis or protection of tissue and spermatozoa against unwanted proteolysis. Since similar alpha1-PI has been identified in rainbow trout semen it can be suggested that the presence of alpha1-PI in seminal plasma is a common feature of cyprinid and salmonid fish.
Collapse
Affiliation(s)
- M Wojtczak
- Department of Semen Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Tuwima 10, Poland.
| | | | | | | |
Collapse
|
10
|
Ju YE, Janmey PA, McCormick M, Sawyer ES, Flanagan LA. Enhanced neurite growth from mammalian neurons in three-dimensional salmon fibrin gels. Biomaterials 2007; 28:2097-108. [PMID: 17258313 PMCID: PMC1991290 DOI: 10.1016/j.biomaterials.2007.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 01/01/2007] [Indexed: 11/17/2022]
Abstract
Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels nor to any copurifying plasminogen. Copurified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury.
Collapse
Affiliation(s)
- Yo-El Ju
- Division of Experimental Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Paul A. Janmey
- Division of Experimental Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Margaret McCormick
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Lisa A. Flanagan
- Division of Experimental Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pathology, School of Medicine, University of California at Irvine, Irvine, CA 92697
- Address correspondence to: Lisa A. Flanagan, Ph.D., Department of Pathology, School of Medicine, University of California at Irvine, D440 Medical Sciences I, Irvine, CA 92697-4800, Tel: (949) 824-5786, Fax: (949) 824-2160,
| |
Collapse
|
11
|
Loncar R, Kalina U, Stoldt V, Thomas V, Scharf RE, Vodovnik A. Antithrombin significantly influences platelet adhesion onto immobilized fibrinogen in an in-vitro system simulating low flow. Thromb J 2006; 4:19. [PMID: 17040572 PMCID: PMC1618384 DOI: 10.1186/1477-9560-4-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 10/13/2006] [Indexed: 11/12/2022] Open
Abstract
Background Adhesion of platelets onto immobilized fibrinogen is of importance in initiation and development of thrombosis. According to a recent increase in evidence of a multiple biological property of antithrombin, we evaluated the influence of antithrombin on platelet adhesion onto immobilized fibrinogen using an in-vitro flow system. Methods Platelets in anticoagulated whole blood (29 healthy blood donors) were labelled with fluorescence dye and perfused through a rectangular flow chamber (shear rates of 13 s-1 to 1500 s-1). Platelet adhesion onto fibrinogen-coated slips was assessed using a fluorescence laser-scan microscope and compared to the plasma antithrombin activity. Additionally the effect of supraphysiological AT supplementation on platelets adhesion rate was evaluated. Results Within a first minute of perfusion, an inverse correlation between platelet adhesion and plasma antithrombin were observed at 13 s-1 and 50 s-1 (r = -0.48 and r = -0.7, p < 0.05, respectively). Significant differences in platelet adhesion related to low (92 ± 3.3%) and high (117 ± 4.1%) antithrombin activity (1786 ± 516 U vs. 823 ± 331 U, p < 0.05) at low flow rate (13 s-1, within first minute) have been found. An in-vitro supplementation of whole blood with antithrombin increased the antithrombin activity up to 280% and platelet adhesion rate reached about 65% related to the adhesion rate in a non-supplemented blood (1.25 ± 0.17 vs. 1.95 ± 0.4 p = 0.008, respectively). Conclusion It appears that antithrombin in a low flow system suppresses platelet adhesion onto immobilized fibrinogen independently from its antithrombin activity. A supraphysiological substitution of blood with antithrombin significantly reduces platelet adhesion rate. This inhibitory effect might be of clinical relevance.
Collapse
Affiliation(s)
- Robert Loncar
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Uwe Kalina
- Research ZLB Behring, Emil von Behring Strasse 76, 35041 Marburg, Germany
| | - Volker Stoldt
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Volker Thomas
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Rüdiger E Scharf
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Aleksandar Vodovnik
- Department of Histopathology, The Calderdale Royal Hospital, HX3 0PA Halifax, UK
| |
Collapse
|
12
|
Liang Y, Zhang S, Lun L, Han L. Presence and localization of antithrombin and its regulation after acute lipopolysaccharide exposure in amphioxus, with implications for the origin of vertebrate liver. Cell Tissue Res 2005; 323:537-41. [PMID: 16283390 DOI: 10.1007/s00441-005-0088-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 09/22/2005] [Indexed: 11/26/2022]
Abstract
Antithrombin (AT), which is mainly synthesized in the liver, is an acute-phase plasma protein in mammalian species. Here, we demonstrated that sheep anti-human AT antibody cross-reacted with the humoral fluids in amphioxus Branchiostoma belcheri tsingtauense as well as human serum. The concentration of AT in the humoral fluids in amphioxus decreased slightly at first and then increased after the acute challenge with lipopolysaccharide, while the level of total proteins remained unchanged. These suggest the presence of the same acute-phase response pattern in amphioxus, as observed in some mammalian species. Immunohistochemically, AT was localized in the hepatic diverticulum. It is clear that the hepatic diverticulum in amphioxus is homologous to the vertebrate liver with respect to AT synthesis. This lends support to the hypothesis originally suggested by Müller that the vertebrate liver evolved from the hepatic diverticulum of an amphioxus-like ancestor during early chordate evolution.
Collapse
Affiliation(s)
- Yujun Liang
- Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
13
|
Mak M, Mak P, Olczak M, Szalewicz A, Glogowski J, Dubin A, Watorek W, Ciereszko A. Isolation, characterization, and cDNA sequencing of α-1-antiproteinase-like protein from rainbow trout seminal plasma. Biochim Biophys Acta Gen Subj 2004; 1671:93-105. [PMID: 15026150 DOI: 10.1016/j.bbagen.2004.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 02/03/2004] [Indexed: 01/02/2023]
Abstract
Seminal plasma of teleost fish contains serine proteinase inhibitors related to those present in blood. These inhibitors can be bound to Q-Sepharose and sequentially eluted with a NaCl gradient. In the present study, using a two-step procedure, we purified (73-fold to homogeneity) and characterized the inhibitor eluted as the second fraction of antitrypsin activity (inhibitor II) from Q-Sepharose. The molecular weight of this inhibitor was estimated to be 56 kDa with an isoelectric point of 5.4. It effectively inhibited trypsin and chymotrypsin but was less effective against elastase. It formed SDS-stable complexes with cod and bovine trypsin. Inhibitor II appeared to be a glycoprotein. Carbohydrate content was determined to be 16%. N-terminal Edman sequencing allowed identification of the first 30 N-terminal amino acids HDGDHAGHTEDHHHHLHHIAGEAHPQHSHG and 25 amino acids within the reactive loop IMPMSLPDTIMLNRPFLLFILEDST. The N-terminal sequence did not match any known sequence, however, the sequence within the reactive loop was significantly similar to carp and mammalian alpha1-antiproteinases. Both sequences were used to construct primers and obtain a cDNA sequence from liver. The mRNA coding the protein is 1675 nt in length including a single open reading frame of 1281 nt that encodes 426 amino acid residues. Analysis of this sequence indicated the presence of putative conserved serpin domains and confirmed the similarity to carp alpha1-antiproteinase and mammalian alpha1-antiproteinase. Our results indicate that inhibitor II belongs to the serpin superfamily and is similar to alpha1-antiproteinase.
Collapse
Affiliation(s)
- Monika Mak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Manseth E, Skjervold P, Flera S, Brosstad F, Odegaard O, Flengsrud R. Developing a Fish Meat-binding Agent: Purification of Salmon Thrombin. J Food Sci 2003. [DOI: 10.1111/j.1365-2621.2003.tb12307.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, M/C 536, 1819-53 West Polk Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
16
|
Hanumanthaiah R, Day K, Jagadeeswaran P. Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor VIIi. Blood Cells Mol Dis 2002; 29:57-68. [PMID: 12482404 DOI: 10.1006/bcmd.2002.0534] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is not clear how the complex mammalian coagulation pathways evolved from an entirely dissimilar invertebrate coagulation cascade. Comprehensive analysis of pro-coagulant factors and their regulators is lacking in early vertebrates to discern the mechanism of evolution of these genes from the invertebrates. To elucidate the coagulation pathways found in early vertebrates, zebrafish cDNAs/gene orthologues for major coagulant, anticoagulant, and fibrinolytic proteins were identified and characterized by homology to mammalian sequences. We found that zebrafish carry all hemostatic genes present in mammals, providing evidence that the coagulation system of teleosts is nearly identical to mammals. Zebrafish factor VII and X genes were identified and analyzed to reveal a novel factor VII-like gene flanked by the factor VII and factor X genes. This gene encodes a protein homologous to factor VII, but lacks critical residues for factor VII activity. Expression of the factor VII-like protein (named factor VIIi) demonstrated that it functions as an inhibitor of blood coagulation in biochemical assays using zebrafish or human plasmas. Analysis of intergenic DNA between the zebrafish VII/VIIi/X gene cluster and a Drosophila trypsin gene cluster revealed significant homology, and based upon these data, we propose a model for a rapid evolution of coagulation factors from the invertebrates.
Collapse
Affiliation(s)
- Ravikumar Hanumanthaiah
- Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
17
|
Heger A, Grunert T, Schulz P, Josic D, Buchacher A. Separation of active and inactive forms of human antithrombin by heparin affinity chromatography. Thromb Res 2002; 106:157-64. [PMID: 12182916 DOI: 10.1016/s0049-3848(02)00097-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the manufacturing of an antithrombin preparation, it is necessary to define all steps that may damage or alter the target molecule, and thus decrease the biological activity of the inhibitor in blood coagulation. Pasteurization, commonly used procedure for viral inactivation of plasma derived antithrombin concentrates, was shown to partially alter the conformation of the active native antithrombin to an inactive latent form. To study intensively the different forms of inactive antithrombin that are formed upon heat treatment, human alpha-antithrombin, human beta-antithrombin and an equimolar mixture of the two isoforms were incubated at 60 degrees C for 15 h in the presence of citrate as stabilizing agent. Using two subsequent heparin affinity chromatography steps, three different inactive fractions were separated. By comparison of the heparin binding capacities, isoelectric points and unfolding characteristics of these inactive forms, the alpha-latent and beta-latent antithrombin isoforms could be identified. It was also shown that additional inactive forms such as proteinase cleaved and/or oxidized forms of antithrombin are formed during the heat treatment process. In four commercially available antithrombin preparations, all produced by pasteurization, the amount of inactive protein varied between 0.5% and 9.5%.
Collapse
Affiliation(s)
- Andrea Heger
- Research and Development, Octapharma Pharmazeutika Produktionsges m b H, Oberlaaer Strasse 235, A-1100 Vienna, Austria.
| | | | | | | | | |
Collapse
|
18
|
Ylönen A, Kalkkinen N, Saarinen J, Bøgwald J, Helin J. Glycosylation analysis of two cysteine proteinase inhibitors from Atlantic salmon skin: di-O-acetylated sialic acids are the major sialic acid species on N-glycans. Glycobiology 2001; 11:523-31. [PMID: 11447131 DOI: 10.1093/glycob/11.7.523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have recently identified two novel cysteine proteinase inhibitors from the skin of Atlantic salmon (Salmo salar L.), named salmon kininogen and salarin. In preliminary experiments, the proteins were found to be both N- as well as O-glycosylated. In the present study we show that both proteins carry biantennary alpha2,3-sialylated N-glycans. A very high amount of O-acetylated Neu5Ac units are present in the N-glycans, comprising about 60% di-O-acetylated species. Non-O-acetylated Neu5Ac make up less than 5% of the sialic acids in the N-glycans. A small number of Neu5Acalpha2-8Neu5Ac structures were observed in the N-glycans as well. O-glycans from both proteins were recovered by reductive beta-elimination and were identified by mass spectrometric methods as mono- and disialylated core type 1 tri- and tetrasaccharides. The method used for O-glycan isolation prevented the identification of possible O-acetylation in the O-glycan-bound sialic acids, but O-acetylation was observed in one O-glycosylated peptide isolated from trypsin digest of salarin. The chemical nature of the sialic acid modifications was further studied by liquid chromatography tandem mass spectrometry of 1,2-diamino-4,5-methylenedioxybenzene-derivatized sialic acids, revealing 7-, 8-, and 9- but no 4-O-acetylation. To our knowledge, these are the first observations of sialic acid O-acetylation in N-glycans on fish species and represent clearly the most extensive N-glycan O-acetylation described on any species.
Collapse
Affiliation(s)
- A Ylönen
- Institute of Biotechnology, Protein Chemistry Laboratory, P.O. Box 56 (Viikinkaari 9), University of Helsinki, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|