1
|
Nnamchi CI, Parkin G, Efimov I, Basran J, Kwon H, Svistunenko DA, Agirre J, Okolo BN, Moneke A, Nwanguma BC, Moody PCE, Raven EL. Structural and spectroscopic characterisation of a heme peroxidase from sorghum. J Biol Inorg Chem 2015; 21:63-70. [PMID: 26666777 PMCID: PMC4771821 DOI: 10.1007/s00775-015-1313-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 10/28/2022]
Abstract
A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV-visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A Fe(III)/Fe(II) reduction potential of -266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na(+) ion) and proximal (assigned as a Ca(2+)) sides of the heme, which is consistent with the Ca(2+)-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.
Collapse
Affiliation(s)
| | - Gary Parkin
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Igor Efimov
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jaswir Basran
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Hanna Kwon
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | | | - Anene Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - Peter C E Moody
- Department of Molecular and Cell Biology, Henry Wellcome Laboratory for Structural Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
2
|
Efimov I, Parkin G, Millett ES, Glenday J, Chan CK, Weedon H, Randhawa H, Basran J, Raven EL. A simple method for the determination of reduction potentials in heme proteins. FEBS Lett 2014; 588:701-4. [PMID: 24440354 PMCID: PMC3999514 DOI: 10.1016/j.febslet.2013.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/28/2022]
Abstract
A simple method for determination of heme protein reduction potentials is described. We use the method to determine reduction potentials for human NPAS2 and human CLOCK. The method can be easily applied to other heme proteins.
We describe a simple method for the determination of heme protein reduction potentials. We use the method to determine the reduction potentials for the PAS-A domains of the regulatory heme proteins human NPAS2 (Em = −115 mV ± 2 mV, pH 7.0) and human CLOCK (Em = −111 mV ± 2 mV, pH 7.0). We suggest that the method can be easily and routinely applied to the determination of reduction potentials across the family of heme proteins.
Collapse
Affiliation(s)
- Igor Efimov
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Gary Parkin
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Elizabeth S Millett
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jennifer Glenday
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Cheuk K Chan
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Holly Weedon
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Harpreet Randhawa
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jaswir Basran
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom
| | - Emma L Raven
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
3
|
Chauhan N, Basran J, Rafice SA, Efimov I, Millett ES, Mowat CG, Moody PCE, Handa S, Raven EL. How is the distal pocket of a heme protein optimized for binding of tryptophan? FEBS J 2012; 279:4501-9. [DOI: 10.1111/febs.12036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Nishma Chauhan
- Department of Chemistry; Henry Wellcome Building; University of Leicester; UK
| | - Jaswir Basran
- Department of Biochemistry; Henry Wellcome Building; University of Leicester; UK
| | - Sara A. Rafice
- Department of Chemistry; Henry Wellcome Building; University of Leicester; UK
| | - Igor Efimov
- Department of Chemistry; Henry Wellcome Building; University of Leicester; UK
| | | | | | | | - Sandeep Handa
- Department of Chemistry; Henry Wellcome Building; University of Leicester; UK
| | - Emma L. Raven
- Department of Chemistry; Henry Wellcome Building; University of Leicester; UK
| |
Collapse
|
4
|
Chauhan N, Basran J, Efimov I, Svistunenko DA, Seward HE, Moody PCE, Raven EL. The role of serine 167 in human indoleamine 2,3-dioxygenase: a comparison with tryptophan 2,3-dioxygenase. Biochemistry 2008; 47:4761-9. [PMID: 18370410 DOI: 10.1021/bi702405a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.
Collapse
Affiliation(s)
- Nishma Chauhan
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester, England
| | | | | | | | | | | | | |
Collapse
|
5
|
Basran J, Rafice SA, Chauhan N, Efimov I, Cheesman MR, Ghamsari L, Raven EL. A Kinetic, Spectroscopic, and Redox Study of Human Tryptophan 2,3-Dioxygenase. Biochemistry 2008; 47:4752-60. [DOI: 10.1021/bi702393b] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaswir Basran
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Sara A. Rafice
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Nishma Chauhan
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Igor Efimov
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Myles R. Cheesman
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Lila Ghamsari
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| | - Emma Lloyd Raven
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, England, Department of Chemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, England
| |
Collapse
|
6
|
Kato Y, Ng CA, Brownlee RTC, Tanokura M. PinA from Aspergillus nidulans binds to pS/pT-P motifs using the same Loop I and XP groove as mammalian Pin1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1208-12. [PMID: 17693144 DOI: 10.1016/j.bbapap.2007.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/19/2007] [Accepted: 06/19/2007] [Indexed: 11/19/2022]
Abstract
Binding of the Cdc25c-T48 ligand to PinA from Aspergillus nidulans has been characterised by the identification of 15N and 1H resonances from 1H-15N HSQC NMR titration experiments using previous backbone assignments. It is shown that the binding site for the Cdc25c-T48 ligand with PinA is the same as in the mammalian protein Pin1, although with a reduced binding affinity. It had previously been proposed that the arginine residue (R17) in the loop I region of the Pin1 WW domain is essential for binding to the pSer/pThr-Pro motifs of phosphorylated ligands such as Cdc25c. In PinA, a fungal homologue of Pin1, the arginine residue (R17) is replaced with an asparagine residue (N17). The effect of substitution of R17 by N17 in Pin1 has been investigated via a computational study, which predicted that changing R17 to N17 in Pin1 lowers the ligand binding affinity as a result of reduced hydrogen bonding between the protein and the phosphate group of the ligand.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraqi 305-8566, Japan
| | | | | | | |
Collapse
|
7
|
Papadopoulou ND, Mewies M, McLean KJ, Seward HE, Svistunenko DA, Munro AW, Raven EL. Redox and spectroscopic properties of human indoleamine 2,3-dioxygenase and a His303Ala variant: implications for catalysis. Biochemistry 2005; 44:14318-28. [PMID: 16245948 DOI: 10.1021/bi0513958] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indoleamine 2,3-dioxygenase is an important mammalian target that catalyses the oxidative cleavage of l-tryptophan to N-formylkynurenine. In this work, the redox properties of recombinant human indoleamine 2,3-dioxygenase (rhIDO) and its H303A variant have been examined for the first time and the spectroscopic and substrate-binding properties of rhIDO and H303A in the presence and absence of substrate are reported. The Fe(3+)/Fe(2+) reduction potential of H303A was found to be -30 +/- 4 mV; in the presence of l-Trp, this value increases to +16 +/- 3 mV. A variety of spectroscopies indicate that ferric rhIDO at pH 6.6 exists as a mixture of six-coordinate, high-spin, water-bound heme and a low-spin species that contains a second nitrogenous ligand; parallel experiments on H303A are consistent either with His303 as the sixth ligand or with His303 linked to a conformational change that affects this transition. There is an increase in the low-spin component at alkaline pH for rhIDO, but this is not due to hydroxide-bound heme. Substrate binding induces a conformational rearrangement and formation of low-spin, hydroxide-bound heme; analysis of the H303A variant indicates that His303 is not required for this conversion and is not essential for substrate binding. The Fe(3+)/Fe(2+) reduction potential of H303A variant is approximately 70 mV lower than that of rhIDO, leading to a destabilization of the ferrous-oxy complex, which is an obligate intermediate in the catalytic process. In comparison with the properties of other heme enzymes, the data can be used to build a more detailed picture of substrate binding and catalysis in indoleamine 2,3-dioxygenase. The wider implications of these results are discussed in the context of our current understanding of the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Nektaria D Papadopoulou
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Kundu S, Blouin GC, Premer SA, Sarath G, Olson JS, Hargrove MS. Tyrosine B10 inhibits stabilization of bound carbon monoxide and oxygen in soybean leghemoglobin. Biochemistry 2004; 43:6241-52. [PMID: 15147208 DOI: 10.1021/bi049848g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed comparisons of the carbon monoxide FTIR spectra and ligand-binding properties of a library of E7, E11, and B10 mutants indicate significant differences in the role of electrostatic interactions in the distal pockets of wild-type sperm whale myoglobin and soybean leghemoglobin. In myoglobin, strong hydrogen bonds from several closely related conformations of the distal histidine (His(E7)) side chain preferentially stabilize bound oxygen. In leghemoglobin, the imidazole side chain of His(E7) is confined to a single conformation, which only weakly hydrogen bonds to bound ligands. The phenol side chain of Tyr(B10) appears to "fix" the position of His(E7), probably by donating a hydrogen bond to the Ndelta atom of the imidazole side chain. The proximal pocket of leghemoglobin is designed to favor strong coordination bonds between the heme iron and axial ligands. Thus, high oxygen affinity in leghemoglobin is established by a favorable staggered geometry of the proximal histidine. The interaction between His(E7) and Tyr(B10) prevents overstabilization of bound oxygen. If hydrogen bonding from His(E7) were as strong as it is in mammalian myoglobin, the resultant ultrahigh affinity of leghemoglobin would prevent oxygen transport in root nodules.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
9
|
Patel N, Seward HE, Svensson A, Gurman SJ, Thomson AJ, Raven EL. Exploiting the conformational flexibility of leghemoglobin: a framework for examination of heme protein axial ligation. Arch Biochem Biophys 2003; 418:197-204. [PMID: 14522591 DOI: 10.1016/s0003-9861(03)00403-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have exploited the intrinsic conformational flexibility of leghemoglobin to reengineer the heme active site architecture of the molecule by replacement of the mobile His61 residue with tyrosine (H61Y variant). The electronic absorption spectrum of the ferric derivative of H61Y is similar to that observed for the phenolate derivative of the recombinant wild-type protein (rLb), consistent with coordination of Tyr61 to (high-spin) iron. EXAFS data clearly indicate a 6-coordinate heme geometry and a Fe-O bond length of 185pm. MCD and EPR spectroscopies are consistent with this assignment and support ligation by an anionic (tyrosinate) group. The alteration in heme ligation leads to a 148mV decrease in the reduction potential for H61Y (-127+/-5mV) compared to rLb and destabilisation of the functional oxy-derivative. The results are discussed in terms of our wider understanding of other heme proteins with His-Tyr ligation.
Collapse
Affiliation(s)
- Neesha Patel
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, England, Leicester, UK
| | | | | | | | | | | |
Collapse
|
10
|
Kundu S, Hargrove MS. Distal heme pocket regulation of ligand binding and stability in soybean leghemoglobin. Proteins 2003; 50:239-48. [PMID: 12486718 DOI: 10.1002/prot.10277] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leghemoglobins facilitate diffusion of oxygen through root tissue to a bacterial terminal oxidase in much the same way that myoglobin transports oxygen from blood to muscle cell mitochondria. Leghemoglobin serves an additional role as an oxygen scavenger to prevent inhibition of nitrogen fixation. For this purpose, the oxygen affinity of soybean leghemoglobin is 20-fold greater than myoglobin, resulting from an 8-fold faster association rate constant combined with a 3-fold slower dissociation rate constant. Although the biochemical mechanism used by myoglobin to bind oxygen has been described in elegant detail, an explanation for the difference in affinity between these two structurally similar proteins is not obvious. The present work demonstrates that, despite their similar structures, leghemoglobin uses methods different from myoglobin to regulate ligand affinity. Oxygen and carbon monoxide binding to a comprehensive set of leghemoglobin distal heme pocket mutant proteins in comparison to their myoglobin counterparts has revealed some of these mechanisms. The "distal histidine" provides a crucial hydrogen bond to stabilize oxygen in myoglobin but has little effect on bound oxygen in leghemoglobin and is retained mainly for reasons of protein stability and prevention of heme loss. Furthermore, soybean leghemoglobin uses an unusual combination of HisE7 and TyrB10 to sustain a weak stabilizing interaction with bound oxygen. Thus, the leghemoglobin distal heme pocket provides a much lower barrier to oxygen association than occurs in myoglobin and oxygen dissociation is regulated from the proximal heme pocket.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
11
|
Raven EL. Designer haem proteins: What can we learn from protein engineering? HETEROATOM CHEMISTRY 2002. [DOI: 10.1002/hc.10094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Jones DK, Patel N, Raven EL. Redox control in heme proteins: electrostatic substitution in the active site of leghemoglobin. Arch Biochem Biophys 2002; 400:111-7. [PMID: 11913977 DOI: 10.1006/abbi.2002.2771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of electrostatic substitutions on the spectroscopic, ligand binding, and redox properties of the heme in leghemoglobin have been examined by replacement of the proximal leucine 88 residue with an aspartic acid residue (Leu88Asp). Electronic and resonance Raman spectra of the ferric derivative of Leu88Asp indicate a mixture of 6-coordinate, high-spin and 6-coordinate, low-spin hemes, analogous to that observed in the recombinant wild-type protein (rLb). At alkaline pH, formation of hydroxide-bound heme is indicated for Leu88Asp; the pK(a) for this transition (8.7 +/- 0.2, micro = 0.10 M, 25.0 degrees C) is 0.4 pH units higher than for rLb. Equilibrium dissociation constants (sodium phosphate, pH 7.0, micro = 0.10 M, 25.0 +/- 0.1 degrees C) for binding of anionic ligands (N(-)(3), nicotinate) to Leu88Asp are higher (K(d,nicotinate) = 6.8 +/- 0.2 microM; K(d,azide) = 33 +/- 0.6 microM) than the corresponding values for rLb (K(d,nicotinate) = 1.4 +/- 0.3 microM (pH 5.5, micro = 0.10 M, 25.0 +/- 0.1 degrees C); K(d,azide) = 4.8 +/- 0.2 microM). Resonance Raman spectra (sodium phosphate, pH 7.0, micro = 0.10 M) for the ferrous derivatives of Leu88Asp and rLb exhibit a strong nu(Fe-His) stretching frequency at 223 cm(-1) in both cases, indicating that the hydrogen bonding structure on the proximal side is not substantially altered in the variant. The reduction potential of Leu88Asp is -14 +/- 2 mV vs standard hydrogen electrode (SHE) (25.0 degrees C, micro = 0.10 M, pH 7.0), a decrease of 35 mV over the corresponding value for the wild-type protein under the same conditions (21 +/- 3 mV vs SHE). An assessment of these data in terms of electrostatic and hydrogen bonding considerations is presented.
Collapse
Affiliation(s)
- Deborah K Jones
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England, United Kingdom
| | | | | |
Collapse
|
13
|
Jones DK, Patel N, Cheesman MR, Thomson AJ, Raven EL. Leghaemoglobin: a model for the investigation of haem protein axial ligation. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00689-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|