1
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
2
|
Davin-Regli A, Guerin-Faublée V, Pagès JM. Modification of outer membrane permeability and alteration of LPS in veterinary enterotoxigenic Escherichia coli. Res Vet Sci 2019; 124:321-327. [PMID: 31035220 DOI: 10.1016/j.rvsc.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/28/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a worrying cause of diarrhoea in calves and the drug multiresistance phenotype concerning various antibiotic families are of concern. Resistance mechanisms associated with envelope changes (porin expression, efflux pump overexpression, lipolysaccahride (LPS) modification) were studied in 14 ETEC isolates selected for their resistance. We performed determinations of (i) antimicrobials Minimal Inhibitory Concentrations with or without the efflux pump inhibitor phenylalanine arginine β-naphthylamide; (ii) colistin and polymyxin MICs with and without EDTA, (iii) intracellular accumulation of chloramphenicol in presence of an energy uncoupler of pump energy, (iv) and immunodetection of porins and evaluation of porin trimers thermostability. Results indicated that 9 strains presented significant efflux mechanisms overexpression, among them 8 were resistant to colistin and polymyxin B due to a modification of LPS structure as evidenced by EDTA effect and silver staining electrophoresis. The high resistant strains to colistin and polymyxin exhibited identical LPS patterns. Studies of E. coli porins indicated that the majority of strains didn't show modification in their amount, however analysis of porin thermostability showed that porin trimers of some resistant strains were relatively heat-labile, suggesting a misassembly of the functional trimer. The multidrug resistance (MDR) phenotypes detected in these selected ETEC corresponded to association of LPS modifications, abordive assembly of porin trimers and active efflux which drastically alter the antibiotic activity currently used to combat enteric infections caused by this pathogen.
Collapse
Affiliation(s)
- Anne Davin-Regli
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France..
| | - Véronique Guerin-Faublée
- UMR Vet-Agro-Sup Campus Vétérinaire de Lyon, Département de santé publique vétérinaire, Marcy l'Etoile, France..
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
| |
Collapse
|
3
|
Andersen KK, Vad B, Omer S, Otzen DE. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry 2016; 55:7123-7140. [PMID: 27973779 DOI: 10.1021/acs.biochem.6b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein A (OmpA) is the most abundant protein in the outer membrane of Escherichia coli. The N-terminal domain forms an eight-stranded membrane-embedded β-barrel that is widely used as a model protein for in vitro folding into the membrane and into surfactant micelles. Under conditions that include a low surfactant concentration, OmpA can form stable higher-order structures by intermolecular association. Other β-barrel membrane proteins also associate to form noncovalently linked trimers in vivo. This inspired us to test how topological constraints imposed by intramolecular links between individual OmpA molecules affect this process. Here we report on the properties of concatemers consisting of two and three copies of the transmembrane part of OmpA. Both concatemers could be folded to a native state in surfactant micelles according to spectroscopy and electrophoretic band shifts. This native state had the same thermodynamic stability against chemical denaturation as the original OmpA. Above 1.5 M GdmCl, concatemerization increased both refolding and unfolding rates, which we attribute to entropic effects. However, below 1.5 M GdmCl, folding kinetics were 2-3 orders of magnitude slower and more complex, involving a greater degree of parallel folding steps and species that could be classified as off-pathway. Only OmpA2 could quantitatively be folded into vesicles (though to an extent lower than that of OmpA), while OmpA3 formed three species with different levels of folding. Thus, close spatial and sequential proximity of OmpA domains on the same polypeptide chain have a strong tendency to trap the protein in different misfolded states.
Collapse
Affiliation(s)
- Kell K Andersen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Brian Vad
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Sahar Omer
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|
5
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
6
|
Novikova OD, Vakorina TI, Khomenko VA, Likhatskaya GN, Kim NY, Emelyanenko VI, Kuznetsova SM, Solov’eva TF. Influence of cultivation conditions on spatial structure and functional activity of OmpF-like porin from outer membrane of Yersinia pseudotuberculosis. BIOCHEMISTRY (MOSCOW) 2011; 73:139-48. [DOI: 10.1134/s0006297908020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Corsaro MM, Parrilli E, Lanzetta R, Naldi T, Pieretti G, Lindner B, Carpentieri A, Parrilli M, Tutino ML. The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure. J Biochem 2009; 146:231-40. [PMID: 19364804 DOI: 10.1093/jb/mvp062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of lipopolysaccharides (LPSs) in the biogenesis of outer membrane proteins have been investigated in several studies. Some of these analyses showed that LPS is required for correct and efficient folding of outer membrane proteins; other studies support the idea of independence of outer membrane proteins biogenesis from LPS structure. In this article, we investigated the involvement of LPS structure in the anomalous aggregation of outer membrane proteins in a E. coli mutant strain (S17-1(lambdapir)). To achieve this aim, the LPS structure of the mutant strain was carefully determined and compared with the E. coli K-12 one. It turned out that LPS of these two strains differs in the inner core for the absence of a heptose residue (HepIII). We demonstrated that this difference is due to a mutation in waaQ, a gene encoding the transferase for the branch heptose HepIII residue. The mutation was complemented to find out if the restoration of LPS structure influenced the observed outer membrane proteins aggregation. Data reported in this work demonstrated that, in E. coli S17-1(lambdapir) there is no influence of LPS structure on the outer membrane proteins inclusion bodies formation.
Collapse
Affiliation(s)
- M Michela Corsaro
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 2006; 4:e2. [PMID: 16336047 PMCID: PMC1312014 DOI: 10.1371/journal.pbio.0040002] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022] Open
Abstract
Bacteria often cope with environmental stress by inducing alternative sigma (σ) factors, which direct RNA polymerase to specific promoters, thereby inducing a set of genes called a regulon to combat the stress. To understand the conserved and organism-specific functions of each σ, it is necessary to be able to predict their promoters, so that their regulons can be followed across species. However, the variability of promoter sequences and motif spacing makes their prediction difficult. We developed and validated an accurate promoter prediction model for Escherichia coli σE, which enabled us to predict a total of 89 unique σE-controlled transcription units in E. coli K-12 and eight related genomes. σE controls the envelope stress response in E. coli K-12. The portion of the regulon conserved across genomes is functionally coherent, ensuring the synthesis, assembly, and homeostasis of lipopolysaccharide and outer membrane porins, the key constituents of the outer membrane of Gram-negative bacteria. The larger variable portion is predicted to perform pathogenesis-associated functions, suggesting that σE provides organism-specific functions necessary for optimal host interaction. The success of our promoter prediction model for σE suggests that it will be applicable for the prediction of promoter elements for many alternative σ factors. A model for predicting the variable promoter sequences associated with the bacterial stress response is developed and used to identify constituents of the transcriptional response to σE.
Collapse
Affiliation(s)
- Virgil A Rhodius
- 1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Won Chul Suh
- 1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Gen Nonaka
- 1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Joyce West
- 1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Carol A Gross
- 1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- 2 Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| |
Collapse
|
10
|
Visudtiphole V, Thomas M, Chalton D, Lakey J. Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers. Biochem J 2006; 392:375-81. [PMID: 16153185 PMCID: PMC1316273 DOI: 10.1042/bj20051257] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli OmpF (outer-membrane protein F; matrix porin) is a homotrimeric beta-barrel and a member of the bacterial porin superfamily. It is the best characterized porin protein, but has resisted attempts to refold it efficiently in vitro. In the present paper, we report the discovery of detergent-based folding conditions, including dodecylglucoside, which can create pure samples of trimeric OmpF. Whereas outer membrane LPS (lipopolysaccharide) is clearly required for in vivo folding, the artificially refolded and LPS-free trimer has properties identical with those of the outer-membrane-derived form. Thus LPS is not required either for in vitro folding or for structural integrity. Dimeric forms of OmpF have been observed in vivo and are proposed to be folding intermediates. In vitro, dimers occur transiently in refolding of trimeric OmpF and, in the presence of dodecylmaltoside, pure dimer can be prepared. This form has less beta-structure by CD and shows lower thermal stability than the trimer. Study of these proteins at the single-molecule level is possible because each OmpF subunit forms a distinct ion channel. Whereas each trimer contains three channels of equal conductance, each dimer always contains two distinct channel sizes. This provides clear evidence that the two otherwise identical monomers adopt different structures in the dimer and indicates that the asymmetric interaction, characteristic of C3 symmetry, is formed at the dimer stage. This asymmetric dimer may be generally relevant to the folding of oligomeric proteins with odd numbers of subunits such as aspartate transcarbamoylase.
Collapse
Affiliation(s)
- Virak Visudtiphole
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Matthew B. Thomas
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - David A. Chalton
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Jeremy H. Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Abstract
The outer membrane is the first line of contact between Gram-negative bacteria and their external environment. Embedded in the outer membrane are integral outer membrane proteins (OMPs) that perform a diverse range of tasks. OMPs are synthesized in the cytoplasm and are translocated across the inner membrane and probably diffuse through the periplasm before they are inserted into the outer membrane in a folded and biologically active form. Passage through the periplasm presents a number of challenges, due to the hydrophobic nature of the OMPs and the choice of membranes into which they can insert. Recently, a number of periplasmic proteins and one OMP have been shown to play a role in OMP biogenesis. In this review, we describe what is known about these folding factors and how they function in a biological context. In particular, we focus on how they interact with the OMPs at the molecular level and present a comprehensive overview of data relating to a possible effect on OMP folding yield and kinetics. Furthermore, we discuss the role of lipo-chaperones, i.e. lipopolysaccharide and phospholipids, in OMP folding. Important advances have clearly been made in the field, but much work remains to be done, particularly in terms of describing the biophysical basis for the chaperone-OMP interactions which so intricately regulate OMP biogenesis.
Collapse
Affiliation(s)
- Jesper E Mogensen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| | | |
Collapse
|
12
|
Pocanschi CL, Apell HJ, Puntervoll P, Høgh B, Jensen HB, Welte W, Kleinschmidt JH. The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J Mol Biol 2005; 355:548-61. [PMID: 16310217 DOI: 10.1016/j.jmb.2005.10.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/21/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Membrane protein insertion and folding was studied for the major outer membrane protein of Fusobacterium nucleatum (FomA), which is a voltage-dependent general diffusion porin. The transmembrane domain of FomA forms a beta-barrel that is predicted to consist of 14 beta-strands. Here, unfolded FomA is shown to insert and fold spontaneously and quantitatively into phospholipid bilayers upon dilution of the denaturant urea, which was shown previously only for outer membrane protein A (OmpA) of Escherichia coli. Folding of FomA is demonstrated by circular dichroism and fluorescence spectroscopy, by SDS-polyacrylamide gel electrophoresis, and by single-channel recordings. Refolded FomA had a single-channel conductance of 1.1 nS at 1 M KCl, in agreement with the conductance of FomA isolated from membranes in native form. In contrast to OmpA, which forms a smaller eight-stranded beta-barrel domain, folding kinetics of the larger FomA were slower and provided evidence for parallel folding pathways of FomA into lipid bilayers. Two pathways were observed independent of membrane thickness with two different lipid bilayers, which were either composed of dicapryl phosphatidylcholine or dioleoyl phosphatidylcholine. This is the first observation of parallel membrane insertion and folding pathways of a beta-barrel membrane protein from an unfolded state in urea into lipid bilayers. The kinetics of both folding pathways depended on the chain length of the lipid and on temperature with estimated activation energies of 19 kJ/mol (dicapryl phosphatidylcholine) and 70 kJ/mol (dioleoyl phosphatidylcholine) for the faster pathways.
Collapse
|
13
|
Kumar PD, Krishnaswamy S. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 2005; 40:126-33. [PMID: 15721780 DOI: 10.1016/j.pep.2004.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 12/11/2004] [Indexed: 10/25/2022]
Abstract
The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination.
Collapse
Affiliation(s)
- P D Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
14
|
Edwards MT, Rison SCG, Stoker NG, Wernisch L. A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucleic Acids Res 2005; 33:3253-62. [PMID: 15942028 PMCID: PMC1143694 DOI: 10.1093/nar/gki634] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/27/2004] [Accepted: 05/16/2005] [Indexed: 11/15/2022] Open
Abstract
An important step in understanding the regulation of a prokaryotic genome is the generation of its transcription unit map. The current strongest operon predictor depends on the distributions of intergenic distances (IGD) separating adjacent genes within and between operons. Unfortunately, experimental data on these distance distributions are limited to Escherichia coli and Bacillus subtilis. We suggest a new graph algorithmic approach based on comparative genomics to identify clusters of conserved genes independent of IGD and conservation of gene order. As a consequence, distance distributions of operon pairs for any arbitrary prokaryotic genome can be inferred. For E.coli, the algorithm predicts 854 conserved adjacent pairs with a precision of 85%. The IGD distribution for these pairs is virtually identical to the E.coli operon pair distribution. Statistical analysis of the predicted pair IGD distribution allows estimation of a genome-specific operon IGD cut-off, obviating the requirement for a training set in IGD-based operon prediction. We apply the method to a representative set of eight genomes, and show that these genome-specific IGD distributions differ considerably from each other and from the distribution in E.coli.
Collapse
Affiliation(s)
- Martin T Edwards
- School of Crystallography, Birkbeck College London WC1E 7HX, UK.
| | | | | | | |
Collapse
|
15
|
Herlax V, de Alaniz MJT, Bakás L. Role of lipopolysaccharide on the structure and function of alpha-hemolysin from Escherichia coli. Chem Phys Lipids 2005; 135:107-15. [PMID: 15921972 DOI: 10.1016/j.chemphyslip.2005.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/01/2005] [Accepted: 02/07/2005] [Indexed: 11/23/2022]
Abstract
alpha-Hemolysin (HlyA) is a protein toxin (107 kDa) secreted by some pathogenic strains of E. coli. Several studies suggested the relationship between HlyA and lipopolysaccharide (LPS). We have studied experimentally the role of LPS on the stability and function of this toxin. The HlyA conformation in both, LPS-free and LPS-bound forms was investigated by tryptophan fluorescence. Studies about HlyA thermal and chemical denaturation indicated that its stability increased in the presence of LPS. On the other hand, the presence of negative and polar residues on the LPS reduced the tendency of HlyA to self-aggregation, and they may be the reservoir of calcium, cation essential for the lytic action of this toxin on red blood cells. These results suggest that HlyA and LPS are combined mainly via hydrophobic force to form an active toxin which stability is favored by the LPS.
Collapse
Affiliation(s)
- V Herlax
- Instituto de Investigaciones Bioquímicas La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | | | | |
Collapse
|
16
|
Ramakrishnan M, Pocanschi CL, Kleinschmidt JH, Marsh D. Association of Spin-Labeled Lipids with β-Barrel Proteins from the Outer Membrane ofEscherichia coli†. Biochemistry 2004; 43:11630-6. [PMID: 15362847 DOI: 10.1021/bi048858e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of spin-labeled lipids with beta-barrel transmembrane proteins has been studied by the electron spin resonance (ESR) methods developed for alpha-helical integral proteins. The outer membrane protein OmpA and the ferrichrome-iron receptor FhuA from the outer membrane of Escherichia coli were reconstituted in bilayers of dimyristoylphosphatidylglycerol. The ESR spectra from phosphatidylglycerol spin labeled on the 14-C atom of the sn-2 chain contain a second component from motionally restricted lipids contacting the intramembranous surface of the beta-barrel, in addition to that from the fluid bilayer lipids. The stoichiometry of motionally restricted lipids, 11 and 32 lipids/monomer for OmpA and FhuA, respectively, is constant irrespective of the total lipid/protein ratio. It is proportional to the number of transmembrane beta-strands, eight for OmpA and 22 for FhuA, and correlates reasonably well with the intramembranous perimeter of the protein. Spin-labeled lipids with different polar headgroups display a differential selectivity of interaction with the two proteins. The more pronounced pattern of lipid selectivity for FhuA than for OmpA correlates with the preponderance of positively charged residues facing the lipids in the extensions of the beta-sheet and shorter interconnecting loops on the extracellular side of FhuA.
Collapse
Affiliation(s)
- Muthu Ramakrishnan
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Goulhen F, Dé E, Pagès JM, Bolla JM. Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochem J 2004; 378:851-6. [PMID: 14662009 PMCID: PMC1224022 DOI: 10.1042/bj20031239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/05/2003] [Accepted: 12/08/2003] [Indexed: 11/17/2022]
Abstract
Functional and structural studies of outer membrane proteins from Gram-negative bacteria are frequently carried out using refolded proteins. Recombinant proteins are produced in Escherichia coli as inclusion bodies and then tediously refolded by dilution in buffered detergent solutions. In the present work, we obtained the refolding of MOMP (major outer membrane protein) from Campylobacter assisted by the molecular chaperone GroEL. Refolded MOMP recovered its native pore-forming activity when reconstituted in planar lipid bilayers. Both proteins were purified from the Campylobacter jejuni strain 85H. The purity of GroEL was assessed by silver staining and MS. Its native ultrastructure was observed by the use of transmission electron microscopy. Denaturation of MOMP was performed in urea at 65 degrees C followed by dialysis against 100 mM acetic acid, and was assessed by CD analysis. MOMP refolding reached a maximum efficiency in the presence of GroEL (at a MOMP/GroEL molar ratio of 9:1) and ATP. Under these conditions, 95% of denatured MOMP was refolded after a 15 min incubation. This approach represents an alternative method in studies of membrane protein refolding.
Collapse
Affiliation(s)
- Florence Goulhen
- EA 2197, IFR 48, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | |
Collapse
|
18
|
Abstract
Signal transduction pathways that communicate information from the cell envelope to the cytoplasm of bacteria are crucial to maintain cell envelope homeostasis. In Escherichia coli, one of the key pathways that ensures the integrity of the cell envelope during stress and normal growth is controlled by the alternative sigma factor sigmaE. Recent studies have elucidated the signal transduction pathway that activates sigmaE in response to misfolded outer membrane porins. Unfolded porins trigger the degradation of the sigmaE-specific antisigma factor RseA by the sequential action of two inner membrane proteases, leading to release of sigmaE from RseA, and induction of the stress response. This mechanism of signal transduction, regulated intramembrane proteolysis, is used in transmembrane signaling pathways from bacteria to humans.
Collapse
Affiliation(s)
- Sarah E Ades
- Department of Biochemistry and Molecular Biology, 303 S. Frear Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Cascales E, Lloubès R. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol 2003; 51:873-85. [PMID: 14731286 DOI: 10.1046/j.1365-2958.2003.03881.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tol-Pal system of the Escherichia coli cell envelope is composed of five proteins. TolQ, TolR and TolA form a complex in the inner membrane, whereas TolB is a periplasmic protein interacting with Pal, the peptidoglycan-associated lipoprotein anchored to the outer membrane. This system is required for outer membrane integrity and has been shown to form a trans-envelope bridge linking inner and outer membranes. The TolA-Pal interaction plays an important role in the function of this system and has been found to depend on the proton motive force and the TolQ and TolR proteins. The Pal lipoprotein interacts with many components, such as TolA, TolB, OmpA, the major lipoprotein and the murein layer. In this study, six pal deletions were constructed. The analyses of the resulting Pal protein functions and interactions defined an N-terminal region of 40 residues, which can be deleted without any cell-damaging effect, and three independent regions required for its interaction with TolA, OmpA and TolB or the peptidoglycan. The analyses of the integrity of the cells producing the various Pal lipoproteins revealed strong outer membrane destabilization only when binding regions were deleted. Furthermore, a conserved polypeptide sequence located downstream of the peptidoglycan binding motif of Pal was required for the TolA-Pal interaction and for the maintenance of outer membrane stability.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et de Microbiologie, CNRS, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | |
Collapse
|
20
|
Llamas MA, Rodríguez-Herva JJ, Hancock REW, Bitter W, Tommassen J, Ramos JL. Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 2003; 185:4707-16. [PMID: 12896989 PMCID: PMC166457 DOI: 10.1128/jb.185.16.4707-4716.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the Tol-Pal (Tol-OprL) system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. Here we describe an additional role for this system in the transport of various carbon sources across the cytoplasmic membrane. Growth of Pseudomonas putida tol-oprL mutant strains in minimal medium with glycerol, fructose, or arginine was impaired, and the growth rate with succinate, proline, or sucrose as the carbon source was lower than the growth rate of the parental strain. Assays with radiolabeled substrates revealed that the rates of uptake of these compounds by mutant cells were lower than the rates of uptake by the wild-type strain. The pattern and amount of outer membrane protein in the P. putida tol-oprL mutants were not changed, suggesting that the transport defect was not in the outer membrane. Consistently, the uptake of radiolabeled glucose and glycerol in spheroplasts was defective in the P. putida tol-oprL mutant strains, suggesting that there was a defect at the cytoplasmic membrane level. Generation of a proton motive force appeared to be unaffected in these mutants. To rule out the possibility that the uptake defect was due to a lack of specific transporter proteins, the PutP symporter was overproduced, but this overproduction did not enhance proline uptake in the tol-oprL mutants. These results suggest that the Tol-OprL system is necessary for appropriate functioning of certain uptake systems at the level of the cytoplasmic membrane.
Collapse
Affiliation(s)
- María A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
DiGiuseppe PA, Silhavy TJ. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 2003; 185:2432-40. [PMID: 12670966 PMCID: PMC152615 DOI: 10.1128/jb.185.8.2432-2440.2003] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cpx pathway is a two-component signal transduction system that senses a variety of envelope stresses, including misfolded proteins, and responds by upregulating periplasmic folding and trafficking factors. CpxA resides in the inner membrane and has both kinase and phosphatase activities. CpxR, the response regulator, mediates a response by activating transcription of stress-combative genes. Signal transduction is subject to feedback inhibition via regulon member CpxP and autoamplification. Recently, it was shown that the Cpx pathway is also upregulated when cells adhere to hydrophobic surfaces and that this response is dependent on the outer membrane lipoprotein NlpE. Here we show that while NlpE is required for induction of the Cpx pathway by adhesion, induction by envelope stress and during growth is NlpE independent. We show that while all of the envelope stresses tested induce the Cpx pathway in a manner that is dependent on the periplasmic domain of CpxA, induction during growth is independent of CpxA. Therefore, we propose that the Cpx pathway can sense inducing cues that enter the signaling pathway at three distinct points. Although CpxP is not required for induction of the Cpx pathway, we show that its activity as a negative regulator of CpxA is inactivated by envelope stress. Moreover, the cpxP promoter is more inducible than any other regulon member tested. Consistent with these results, we suggest that CpxP performs a second function, most likely that of a chaperone. Finally, we show that two Cpx-regulated genes are differentially upregulated in response to different envelope stresses, suggesting the existence of three stress-responsive systems.
Collapse
Affiliation(s)
- Patricia A DiGiuseppe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
22
|
Opekarová M, Tanner W. Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:11-22. [PMID: 12586375 DOI: 10.1016/s0005-2736(02)00708-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane proteins are mostly protein-lipid complexes. For more than 30 examples of membrane proteins from prokaryotes, yeast, plant and mammals, the importance of phospholipids and sterols for optimal activity is documented. All crystallized membrane protein complexes show defined lipid-protein contacts. In addition, lipid requirements may also be transitory and necessary only for correct folding and intercellular transport. With respect to specific lipid requirements of membrane proteins, the phospholipid and glycolipid as well as the sterol content of the host cell chosen for heterologous expression should be carefully considered. The lipid composition of bacteria, archaea, yeasts, insects,Xenopus oocytes, and typical plant and mammalian cells are given in this review. A few examples of heterologous expression of membrane proteins, where problems of specific lipid requirements have been noticed or should be thought of, have been chosen.
Collapse
Affiliation(s)
- M Opekarová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 4 Prague, Czech Republic
| | | |
Collapse
|
23
|
van Dalen A, Hegger S, Killian JA, de Kruijff B. Influence of lipids on membrane assembly and stability of the potassium channel KcsA. FEBS Lett 2002; 525:33-8. [PMID: 12163157 DOI: 10.1016/s0014-5793(02)03061-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently we observed in an in vitro system that newly synthesized KcsA assembles efficiently into a tetramer in lipid vesicles [van Dalen et al. (2002) FEBS Lett. 511, 51-58]. Here we used this system to get insight into the importance of the lipid composition for KcsA membrane association and tetramerization and we compared this to the lipid dependency of the thermo-stability of the KcsA tetramer. It was found that a large amount of phosphatidylethanolamine (>40 mol%) and a lower amount of phosphatidylglycerol (approximately 20-30 mol%) were optimal for efficient KcsA membrane association and tetramerization. Strikingly, vesicles of the abundant and commonly used membrane lipid phosphatidylcholine did not support assembly, further demonstrating the importance of membrane lipid composition for KcsA assembly. The in vitro assembled KcsA tetramer showed similar thermo-stability in biological and pure lipid membranes, demonstrating that both tetramers are alike. In addition, we show that solubilization of the membrane with detergent reduces the thermo-stability of the tetramer. The highest KcsA tetramer stability was observed in intact bilayers in the presence of anionic lipids.
Collapse
Affiliation(s)
- Annemieke van Dalen
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan). J Bacteriol 2002; 184:4114-23. [PMID: 12107128 PMCID: PMC135195 DOI: 10.1128/jb.184.15.4114-4123.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.
Collapse
Affiliation(s)
- Tara Karnezis
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
25
|
Müller A, Rassow J, Grimm J, Machuy N, Meyer TF, Rudel T. VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO J 2002; 21:1916-29. [PMID: 11953311 PMCID: PMC125974 DOI: 10.1093/emboj/21.8.1916] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human pathogen Neisseria gonorrhoeae induces host cell apoptosis during infection by delivering the outer membrane protein PorB to the host cell's mitochondria. PorB is a pore-forming beta-barrel protein sharing several features with the mitochondrial voltage-dependent anion channel (VDAC), which is involved in the regulation of apoptosis. Here we show that PorB of pathogenic Neisseria species produced by host cells is efficiently targeted to mitochondria. Imported PorB resides in the mitochondrial outer membrane and forms multimers with similar sizes as in the outer bacterial membrane. The mitochondria completely lose their membrane potential, a characteristic previously observed in cells infected with gonococci or treated with purified PorB. Closely related bacterial porins of non-pathogenic Neisseria mucosa or Escherichia coli remain in the cytosol. Import of PorB into mitochondria in vivo is independent of a linear signal sequence. Insertion of PorB into the mitochondrial outer membrane in vitro depends on the activity of Tom5, Tom20 and Tom40, but is independent of Tom70. Our data show that human VDAC and bacterial PorB are imported into mitochondria by a similar mechanism.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstrasse 21/22, D-10117 Berlin,
University of Hohenheim, Department of Microbiology, Garbenstrasse 30, D-70593 Stuttgart-Hohenheim and Max Delbrück Centrum für Molekulare Medizin, Abteilung Zellbiologie, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany Corresponding author e-mail:
| | - Jan Grimm
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstrasse 21/22, D-10117 Berlin,
University of Hohenheim, Department of Microbiology, Garbenstrasse 30, D-70593 Stuttgart-Hohenheim and Max Delbrück Centrum für Molekulare Medizin, Abteilung Zellbiologie, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany Corresponding author e-mail:
| | | | - Thomas F. Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstrasse 21/22, D-10117 Berlin,
University of Hohenheim, Department of Microbiology, Garbenstrasse 30, D-70593 Stuttgart-Hohenheim and Max Delbrück Centrum für Molekulare Medizin, Abteilung Zellbiologie, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany Corresponding author e-mail:
| | | |
Collapse
|