1
|
Grönberg DJ, Pinto de Carvalho SL, Dernerova N, Norton P, Wong MMK, Mendoza E. Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Sci Rep 2024; 14:29057. [PMID: 39580495 PMCID: PMC11585544 DOI: 10.1038/s41598-024-75353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.
Collapse
Affiliation(s)
- Dana Jenny Grönberg
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | - Nikola Dernerova
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Phillip Norton
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4 (Ostertaghaus), 10115, Berlin, Germany
| | - Maggie Mei-Ki Wong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500AH, the Netherlands
| | - Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Wang H, Li X, Qi J, Liu H, Chu T, Xu X, Qiu H, Fu C, Tang X, Ruan C, Wu D, Han Y. Prognostic mutations identified by whole-exome sequencing and validation of the Molecular International Prognostic Scoring System in myelodysplastic syndromes after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 205:1899-1909. [PMID: 39138006 DOI: 10.1111/bjh.19707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
In this study, we used the whole-exome sequencing (WES) approach to obtain genomic profiles from 92 marrow samples of myelodysplastic syndrome (MDS) patients before haematopoietic stem cell transplantation. We identified 129 mutations in 45 driver genes. Fifty-five patients (59.8%) carried at least 1 driver mutation. The splicing factor U2AF1 was the most frequently mutated in the cohort (21 cases, 23%), followed by BCOR (9 cases, 10%), ASXL1 (8 cases, 9%), TET2 (6 cases, 7%), NPM1 (5 cases, 5%), RUNX1 (5 cases, 5%), and SETBP1 (5 cases, 5%). WES also identified 49 possible oncogenic variants in six genes (PIEZO1, LOXHD1, MYH13, DNAH5, DPH1, and USH2A) that were associated with overall survival (OS) or relapse-free survival (RFS) in MDS after transplantation. Multivariate analysis showed mutations in DNAH5 and USH2A to be independent risk factors for OS. Mutations in DNAH5 and LOXHD1 were risk factors for worse RFS. The Molecular International Prognostic Scoring System retained its independent prognostic significance for RFS after multivariate analysis.
Collapse
Affiliation(s)
- Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tiantian Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Breccia M. Atypical CML: diagnosis and treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:476-482. [PMID: 38066919 PMCID: PMC10727105 DOI: 10.1182/hematology.2023000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Atypical chronic myeloid leukemia (aCML) is included in the group of myelodysplastic/myeloproliferative neoplasms by the International Consensus Classification and has been renamed as MDS/MPN with neutrophilia by the fifth edition of World Health Organization classification. It is always characterized by morphologic identification of granulocytic dysplasia with >10% circulating immature myeloid cells, 2 distinguished features that differentiate this disease among the others. Somatic mutations may help to diagnose but are not specifically pathognomonic of the disease, with the most detected including ASXL1, SETBP1, NRAS, KRAS, SRSF2, and TET2 and with low-frequency CBL, CSF3R, JAK2, and ETNK1. The genomic landscape of aCML has been recently unravelling, revealing that SETBP1 and ETNK1 are usually not ancestral but secondary events associated with disease progression. Unfortunately, until now, no consensus on risk stratification and treatment has been developed: Mayo Clinic prognostic score identified as adverse events age >67 years, hemoglobin level <10 g/dL, and TET2 mutations. Although some possible genetic markers have been identified, allogeneic transplant remains the only curative strategy.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Mutation
- Prognosis
- Disease Progression
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
5
|
Jain T, Ware AD, Dalton WB, Pasca S, Tsai HL, Gocke CD, Gondek LP, Xian RR, Borowitz MJ, Levis MJ. Co-occurring mutations in ASXL1, SRSF2, and SETBP1 define a subset of myelodysplastic/ myeloproliferative neoplasm with neutrophilia. Leuk Res 2023; 131:107345. [PMID: 37354804 DOI: 10.1016/j.leukres.2023.107345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Identification of genomic signatures with consistent clinicopathological features in myelodysplastic/myeloproliferative neoplasm (MDS/MPN) is critical for improved diagnosis, elucidation of biology, inclusion in clinical trials, and development of therapies. We describe clinical and pathological features with co-existence of mutations in ASXL1 (missense or nonsense), SRSF2, and SKI homologous region of SETBP1, in 18 patients. Median age was 68 years with a male predominance (83%). Leukocytosis and neutrophilia were common at presentation. Marrow features included hypercellularity, granulocytic hyperplasia with megakaryocytic atypia, while the majority had myeloid hyperplasia and/or erythroid hypoplasia, myeloid dysplasia, and aberrant CD7 expression on blasts. Mutations in growth signaling pathways (RAS or JAK2) were noted at diagnosis or acquired during the disease course in 83% of patients. Two patients progressed upon acquisition of FLT3-TKD (acute myeloid leukemia) or KIT (aggressive systemic mastocytosis) mutations. The prognosis is poor with only two long-term survivors, thus far, who underwent blood or marrow transplantation. We propose that the presence of co-occurring ASXL1, SRSF2, and SETBP1 mutations can be diagnostic of a subtype of MDS/MPN with neutrophilia if clinical and morphological findings align. Our report underscores the association between genotype and phenotype within MDS/MPN and that genomic signatures should guide categorization of these entities.
Collapse
Affiliation(s)
- Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| | - Alisha D Ware
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, USA; Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - William Brian Dalton
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Sergiu Pasca
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hua-Ling Tsai
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Lukasz P Gondek
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Rena R Xian
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Mark J Levis
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Wang H, Gao Y, Qin L, Zhang M, Shi W, Feng Z, Guo L, Zhu B, Liao S. Identification of a novel de novo mutation of SETBP1 and new findings of SETBP1 in tumorgenesis. Orphanet J Rare Dis 2023; 18:107. [PMID: 37150818 PMCID: PMC10165755 DOI: 10.1186/s13023-023-02705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND In the past decade, SETBP1 has attracted a lot of interest on that the same gene with different type or level (germline or somatic) of variants could provoke different pathologic consequences such as Schinzel-Giedon syndrome, SETBP1 Haploinsufficiency Disorder (SETBP1-HD) and myeloid malignancies. Whole exome sequencing was conducted to detect the etiology of a pregnant woman with mental retardation. As a new oncogene and potential marker of myeloid malignancies, somatic SETBP1 variants in other cancers were rarely studied. We performed a pan-cancer analysis of SETBP1 gene in different cancers for the first time. RESULTS A novel heterozygous mutation of the SETBP1 gene (c.1724_1727del, p.D575Vfs*4) was found in the patient and the fetus and the mutation was predicted to result in a truncated protein. Reduced SETBP1 expression was associated with SETBP1-HD. The pan-cancer analysis of SETBP1 showed that SETBP1 overexpression should be given special attention in Bladder Urothelial Carcinoma (BLCA) and Stomach adenocarcinoma (STAD). CONCLUSIONS The de novo SETBP1 mutation was the genetic cause of SETBP1-HD in the family. BLCA and STAD might be related to SETBP1 overexpression.
Collapse
Affiliation(s)
- Hongdan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Litao Qin
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Weili Shi
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhanqi Feng
- Department of Urology, The First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Liangjie Guo
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
7
|
Li Y, Liu Y, Gao X, Zhao W, Zhou F, Liu H, Wang W. Identification of novel PIEZO1::CBFA2T3 and INO80C::SETBP1 fusion genes in an acute myeloid leukemia patient by RNA-seq. Mol Biol Rep 2023; 50:1961-1966. [PMID: 36472727 DOI: 10.1007/s11033-022-08138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fusion genes are recurrent molecular aberrations in acute myeloid leukemia, with significant diagnostic and therapeutic value. The identification of novel fusion genes provides advanced biomarkers for diagnosis and facilitates the discovery of drug targets. METHODS Bone marrow sample was extracted from an acute myeloid leukemia patient and RNA-sequencing was performed. Several bioinformatic methods, including differential analysis and Gene Set Enrichment Analysis (GSEA) pathway analyses were conducted based on the expression data. RESULTS Two novel fusion genes, PIEZO1::CBFA2T3 and INO80C::SETBP1, were identified by RNA-seq. Differential analysis found that SETBP1 and CBFA2T3 were overexpressed, and GSEA analysis showed the activation of immune-related pathways. These findings indicate dysfunction of the fusion related- genes and possible pathogenic effect of the fusion genes. CONCLUSION We reported a male AML patient with presence of PIEZO1::CBFA2T3 and INO80C::SETBP1 fusion genes.
Collapse
Affiliation(s)
- Yanling Li
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Gao
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei Zhao
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghui Zhou
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China.
- Beijing Lu Daopei Institute of Hematology, Beijing, 100076, China.
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100076, China.
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Carratt SA, Kong GL, Curtiss BM, Schonrock Z, Maloney L, Maniaci BN, Blaylock HZ, Baris A, Druker BJ, Braun TP, Maxson JE. Mutated SETBP1 activates transcription of Myc programs to accelerate CSF3R-driven myeloproliferative neoplasms. Blood 2022; 140:644-658. [PMID: 35482940 PMCID: PMC9373012 DOI: 10.1182/blood.2021014777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Colony stimulating factor 3 receptor (CSF3R) mutations lead to JAK pathway activation and are the molecular hallmark of chronic neutrophilic leukemia (CNL). Approximately half of patients with CNL also have mutations in SET binding protein 1 (SETBP1). In this study, we developed models of SETBP1-mutated leukemia to understand the role that SETBP1 plays in CNL. SETBP1 mutations promote self-renewal of CSF3R-mutated hematopoietic progenitors in vitro and prevent cells from undergoing terminal differentiation. In vivo, SETBP1 mutations accelerate leukemia progression, leading to the rapid development of hepatosplenomegaly and granulocytosis. Through transcriptomic and epigenomic profiling, we found that SETBP1 enhances progenitor-associated programs, most strongly upregulating Myc and Myc target genes. This upregulation of Myc can be reversed by LSD1 inhibitors. In summary, we found that SETBP1 mutations promote aggressive hematopoietic cell expansion when expressed with mutated CSF3R through the upregulation of Myc-associated gene expression programs.
Collapse
Affiliation(s)
- Sarah A Carratt
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Garth L Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brittany M Curtiss
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Zachary Schonrock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Lauren Maloney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Breanna N Maniaci
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hunter Z Blaylock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Adrian Baris
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
9
|
Fang F, Liu C, Li Q, Xu R, Zhang T, Shen X. The Role of SETBP1 in Gastric Cancer: Friend or Foe. Front Oncol 2022; 12:908943. [PMID: 35898891 PMCID: PMC9309353 DOI: 10.3389/fonc.2022.908943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGastric cancer (GC) remains a common disease with a poor prognosis worldwide. The SET binding protein 1 (SETBP1) has been implicated in the pathogenesis of several cancers and plays a dual role as an oncogene and a tumor suppressor gene. However, the role and underlying mechanism of SETBP1 in GC remain unclear.Materials and MethodsWe used next-generation RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) to explore the correlation between SETBP1 expression and tumor progression. We then quantified SETBP1 expression in GC cells with real-time quantitative polymerase chain reactions (RT-qPCR). The chi-square test and logistic regression were used to assess the correlation between SETBP1 expression and clinicopathological features. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to assess the relationship between SETBP1 expression and survival. Finally, gene set enrichment analyses (GSEA) were used to examine GC-related signaling pathways in low and high SETBP1 expressing samples.ResultsWe found SETBP1 expression levels in GC tissues to be significantly lower than in adjacent non-tumor tissues in the TCGA database. In addition, SETBP1 expression differed significantly between groups classified by tumor differentiation. Furthermore, SETBP1 expression in diffuse-type GC was significantly higher than in intestinal-type GC. However, it did not differ significantly across pathological- or T-stage groups. RT-qPCR and comprehensive meta-analysis showed that SETBP1 expression is downregulated in GC cells and tissues. Interestingly, SETBP1 expression in poorly- or un-differentiated GC cells was higher than in well-differentiated GC cells. Moreover, the chi-square test and logistic regression analyses showed that SETBP1 expression correlates significantly with tumor differentiation. Kaplan–Meier curves indicated that patients with relatively high SETBP1 expression had a poor prognosis. Multivariate analyses indicated that SETBP1 expression might be an important predictor of poor overall survival in GC patients. GSEA indicated that 20 signaling pathways were significantly enriched in samples with high and low SETBP1 expression.ConclusionSETBP1 may play a dual role in GC progression.
Collapse
Affiliation(s)
- Fujin Fang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Chengyou Liu
- Department of Medical Engineering, Nanjing First Hospital, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Tiantian Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Bengbu, Bengbu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
10
|
Antonyan L, Ernst C. Putative Roles of SETBP1 Dosage on the SET Oncogene to Affect Brain Development. Front Neurosci 2022; 16:813430. [PMID: 35685777 PMCID: PMC9173722 DOI: 10.3389/fnins.2022.813430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in SET BINDING PROTEIN 1 (SETBP1) cause two different clinically distinguishable diseases called Schinzel–Giedion syndrome (SGS) or SETBP1 deficiency syndrome (SDD). Both disorders are disorders of protein dosage, where SGS is caused by decreased rate of protein breakdown due to mutations in a proteosome targeting domain, and SDD is caused by heterozygous loss-of-function mutations leading to haploinsufficiency. While phenotypes of affected individuals support a role for SETBP1 in brain development, little is known about the mechanisms that might underlie this. The binding partner which gave SETBP1 its name is SET and there is extensive literature on this important oncogene in non-neural tissues. Here we describe different molecular complexes in which SET is involved as well as the role of these complexes in brain development. Based on this information, we postulate how SETBP1 protein dosage might influence these SET-containing molecular pathways and affect brain development. We examine the roles of SET and SETBP1 in acetylation inhibition, phosphatase activity, DNA repair, and cell cycle control. This work provides testable hypotheses for how altered SETBP1 protein dosage affects brain development.
Collapse
|
11
|
Nguyen N, Gudmundsson KO, Soltis AR, Oakley K, Roy KR, Han Y, Gurnari C, Maciejewski JP, Crouch G, Ernst P, Dalgard CL, Du Y. Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation. iScience 2022; 25:103679. [PMID: 35036869 PMCID: PMC8749219 DOI: 10.1016/j.isci.2021.103679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal activation of SETBP1 due to overexpression or missense mutations occurs frequently in various myeloid neoplasms and associates with poor prognosis. Direct activation of Hoxa9/Hoxa10/Myb transcription by SETBP1 and its missense mutants is essential for their transforming capability; however, the underlying epigenetic mechanisms remain elusive. We found that both SETBP1 and its missense mutant SETBP1(D/N) directly interact with histone methyltransferase MLL1. Using a combination of ChIP-seq and RNA-seq analysis in primary hematopoietic stem and progenitor cells, we uncovered extensive overlap in their genomic occupancy and their cooperation in activating many oncogenic transcription factor genes including Hoxa9/Hoxa10/Myb and a large group of ribosomal protein genes. Genetic ablation of Mll1 as well as treatment with an inhibitor of the MLL1 complex OICR-9429 abrogated Setbp1/Setbp1(D/N)-induced transcriptional activation and transformation. Thus, the MLL1 complex plays a critical role in Setbp1-induced transcriptional activation and transformation and represents a promising target for treating myeloid neoplasms with SETBP1 activation.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kristbjorn O. Gudmundsson
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anthony R. Soltis
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kartik R. Roy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary Crouch
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Carratt SA, Braun TP, Coblentz C, Schonrock Z, Callahan R, Curtiss BM, Maloney L, Foley AC, Maxson JE. Mutant SETBP1 enhances NRAS-driven MAPK pathway activation to promote aggressive leukemia. Leukemia 2021; 35:3594-3599. [PMID: 34002029 PMCID: PMC8595361 DOI: 10.1038/s41375-021-01278-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023]
Abstract
Mutations in SET-binding protein 1 (SETBP1) are associated with poor outcomes in myeloid leukemias. In the Ras-driven leukemia, juvenile myelomonocytic leukemia, SETBP1 mutations are enriched in relapsed disease. While some mechanisms for SETBP1-driven oncogenesis have been established, it remains unclear how SETBP1 specifically modulates the biology of Ras-driven leukemias. In this study, we found that when co-expressed with Ras pathway mutations, SETBP1 promoted oncogenic transformation of murine bone marrow in vitro and aggressive myeloid leukemia in vivo. We demonstrate that SETBP1 enhances the NRAS gene expression signature, driving upregulation of mitogen-activated protein kinase (MAPK) signaling and downregulation of differentiation pathways. SETBP1 also enhances NRAS-driven phosphorylation of MAPK proteins. Cells expressing NRAS and SETBP1 are sensitive to inhibitors of the MAPK pathway, and treatment with the MEK inhibitor trametinib conferred a survival benefit in a mouse model of NRAS/SETBP1-mutant disease. Our data demonstrate that despite driving enhanced MAPK signaling, SETBP1-mutant cells remain susceptible to trametinib in vitro and in vivo, providing encouraging preclinical data for the use of trametinib in SETBP1-mutant disease.
Collapse
MESH Headings
- Animals
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Humans
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- MAP Kinase Signaling System
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyridones/pharmacology
- Pyrimidinones/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
| | | | - Cody Coblentz
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | - Amy C Foley
- Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
14
|
Castellino A, Santambrogio E, Rapezzi D, Massaia M. Atypical Chronic Myeloid Leukemia: New Developments from Molecular Diagnosis to Treatment. MEDICINA-LITHUANIA 2021; 57:medicina57101104. [PMID: 34684141 PMCID: PMC8540192 DOI: 10.3390/medicina57101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Atypical Chronic Myeloid Leukemia, BCR-ABL1 negative (aCML) is a rare hematological entity, included in the group of myelodysplastic (MDS)/myeloproliferative (MPN) overlap syndromes. It is characterized by an aggressive course, a high rate of acute myeloid leukemia (AML) transformation, and a dismal outcome. The clinical presentation includes splenomegaly and leukocytosis with neutrophilia and left-shifted granulocytosis accompanied by granulocytic dysplasia and sometimes multilineage dysplasia. In past years, the disease incidence was likely underestimated, as diagnosis was only based on morphological features. Recently, the improving knowledge in the molecular biology of MDS/MPN neoplasms has made it possible to distinguish aCML from other overlapping syndromes, basing on next generation sequencing. Among the most commonly mutated genes, several involve the Jak-STAT, MAPK, and ROCK signaling pathways, which could be actionable with targeted therapies that are already used in clinical practice, opening the way to tailored treatment in aCML. However, currently, there are few data available for small samples, and allogeneic transplant remains the only curative option for eligible patients.
Collapse
|
15
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
16
|
Speech and language deficits are central to SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1216-1225. [PMID: 33907317 PMCID: PMC8384874 DOI: 10.1038/s41431-021-00894-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Expressive communication impairment is associated with haploinsufficiency of SETBP1, as reported in small case series. Heterozygous pathogenic loss-of-function (LoF) variants in SETBP1 have also been identified in independent cohorts ascertained for childhood apraxia of speech (CAS), warranting further investigation of the roles of this gene in speech development. Thirty-one participants (12 males, aged 0; 8-23; 2 years, 28 with pathogenic SETBP1 LoF variants, 3 with 18q12.3 deletions) were assessed for speech, language and literacy abilities. Broader development was examined with standardised motor, social and daily life skills assessments. Gross and fine motor deficits (94%) and intellectual impairments (68%) were common. Protracted and aberrant speech development was consistently seen, regardless of motor or intellectual ability. We expand the linguistic phenotype associated with SETBP1 LoF syndrome (SETBP1 haploinsufficiency disorder), revealing a striking speech presentation that implicates both motor (CAS, dysarthria) and language (phonological errors) systems, with CAS (80%) being the most common diagnosis. In contrast to past reports, the understanding of language was rarely better preserved than language expression (29%). Language was typically low, to moderately impaired, with commensurate expression and comprehension ability. Children were sociable with a strong desire to communicate. Minimally verbal children (32%) augmented speech with sign language, gestures or digital devices. Overall, relative to general development, spoken language and literacy were poorer than social, daily living, motor and adaptive behaviour skills. Our findings show that poor communication is a central feature of SETBP1 haploinsufficiency disorder, confirming this gene as a strong candidate for speech and language disorders.
Collapse
|
17
|
Banfi F, Rubio A, Zaghi M, Massimino L, Fagnocchi G, Bellini E, Luoni M, Cancellieri C, Bagliani A, Di Resta C, Maffezzini C, Ianielli A, Ferrari M, Piazza R, Mologni L, Broccoli V, Sessa A. SETBP1 accumulation induces P53 inhibition and genotoxic stress in neural progenitors underlying neurodegeneration in Schinzel-Giedion syndrome. Nat Commun 2021; 12:4050. [PMID: 34193871 PMCID: PMC8245514 DOI: 10.1038/s41467-021-24391-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The investigation of genetic forms of juvenile neurodegeneration could shed light on the causative mechanisms of neuronal loss. Schinzel-Giedion syndrome (SGS) is a fatal developmental syndrome caused by mutations in the SETBP1 gene, inducing the accumulation of its protein product. SGS features multi-organ involvement with severe intellectual and physical deficits due, at least in part, to early neurodegeneration. Here we introduce a human SGS model that displays disease-relevant phenotypes. We show that SGS neural progenitors exhibit aberrant proliferation, deregulation of oncogenes and suppressors, unresolved DNA damage, and resistance to apoptosis. Mechanistically, we demonstrate that high SETBP1 levels inhibit P53 function through the stabilization of SET, which in turn hinders P53 acetylation. We find that the inheritance of unresolved DNA damage in SGS neurons triggers the neurodegenerative process that can be alleviated either by PARP-1 inhibition or by NAD + supplementation. These results implicate that neuronal death in SGS originates from developmental alterations mainly in safeguarding cell identity and homeostasis.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Craniofacial Abnormalities/genetics
- Craniofacial Abnormalities/metabolism
- Craniofacial Abnormalities/pathology
- DNA Damage
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/pathology
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/metabolism
- Heredodegenerative Disorders, Nervous System/pathology
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/metabolism
- Nails, Malformed/pathology
- Neural Stem Cells/metabolism
- Neural Stem Cells/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Organoids
- Tumor Suppressor Protein p53/antagonists & inhibitors
Collapse
Affiliation(s)
- Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
| | - Alicia Rubio
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Fagnocchi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Cancellieri
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Human Induced Pluripotent Stem Cells service, Istituto Italiano di Oncologia Molecolare (IFOM), Milan, Italy
| | - Anna Bagliani
- Medical Oncology Unit, ASST Ovest Milanese, Legnano Hospital, Legnano, Italy
| | - Chiara Di Resta
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Genomics for human disease diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Maffezzini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Ianielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
| | | | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Vrkić Boban I, Sekiguchi F, Lozić M, Miyake N, Matsumoto N, Lozić B. A Novel SETBP1 Gene Disruption by a De Novo Balanced Translocation in a Patient with Speech Impairment, Intellectual, and Behavioral Disorder. J Pediatr Genet 2020; 11:135-138. [DOI: 10.1055/s-0040-1715639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
AbstractBalanced chromosomal abnormalities (BCAs) can disrupt gene function resulting in disease. To date, BCA disrupting the SET binding protein 1 (SETBP1) gene has not been reported. On the other hand, de novo heterozygous variants in the highly conserved 11-bp region in SETBP1 can result in the Schinzel–Giedion syndrome. This condition is characterized by severe intellectual disability, a characteristic face, and multiple-system anomalies. Further other types of mutations involving SETBP1 are associated with a different phenotype, mental retardation, autosomal dominant 29 (MRD29), which has mild dysmorphic features, developmental delay, and behavioral disorders. Here we report a male patient who has moderate intellectual disability, mild behavioral difficulties, and severe expressive speech impairment resulting from a de novo balanced chromosome translocation, t(12;18)(q22;q12.3). By whole genome sequencing, we determined the breakpoints at the nucleotide level. The 18q12.3 breakpoint was located between exons 2 and 3 of SETBP1. Phenotypic features of our patient are compatible with those with MRD29. This is the first reported BCA disrupting SETBP1.
Collapse
Affiliation(s)
- Ivona Vrkić Boban
- Department of Pediatrics, University Hospital of Split, Split, Croatia
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mirela Lozić
- School of Medicine, University of Split, Split, Croatia
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Bernarda Lozić
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
19
|
Gao T, Yu C, Xia S, Liang T, Gu X, Liu Z. A rare atypical chronic myeloid leukemia BCR-ABL1 negative with concomitant JAK2 V617F and SETBP1 mutations: a case report and literature review. Ther Adv Hematol 2020; 11:2040620720927105. [PMID: 32782768 PMCID: PMC7388081 DOI: 10.1177/2040620720927105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Atypical chronic myeloid leukemia (aCML) BCR-ABL1 negative is a rare
myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) for which no
standard treatment currently exists. The advent of next-generation sequencing
has allowed our understanding of the molecular pathogenesis of aCML to be
expanded and has made it possible for clinicians to more accurately
differentiate aCML from similar MDS/MPN overlap syndrome and MPN counterparts,
as MPN-associated driver mutations in JAK2, CALR, or
MPL are typically absent in aCML. A 55-year old male with
main complaints of weight loss and fatigue for more than half a year and night
sweats for more than 2 months was admitted to our hospital. Further examination
revealed increased white blood cells, splenomegaly, and grade 1 bone marrow
fibrosis with JAK2 V617F, which supported a preliminary
diagnosis of pre-primary marrow fibrosis. However, in addition to
JAK2 V617F (51.00%), next-generation sequencing also
detected SETBP1 D868N (46.00%), ASXL1 G645fs
(36.09%), and SRSF2 P95_R102del (33.56%) mutations. According
to the 2016 World Health Organization diagnostic criteria, the patient was
ultimately diagnosed with rare aCML with concomitant JAK2 V617F
and SETBP1 mutations. The patient received targeted therapy of
ruxolitinib for 5 months and subsequently an additional four courses of combined
hypomethylating therapy. The patient exhibited an optimal response, with
decreased spleen volume by approximately 35% after therapy and improved symptom
scores after therapy. In diagnosing primary bone marrow fibrosis, attention
should be paid to the identification of MDS/MPN. In addition to basic cell
morphology, mutational analysis using next-generation sequencing plays an
increasingly important role in the differential diagnosis. aCML with concomitant
JAK2 V617F and SETBP1 mutations has been
rarely reported, and targeted therapy for mutated JAK2 may
benefit patients, especially those not suitable recipients of hematopoietic stem
cell transplants.
Collapse
Affiliation(s)
- Tianqi Gao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Yu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Xia
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuekui Gu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No 16, Jichang Road, Guangzhou, Guangdong Province 510405, PR China
| |
Collapse
|
20
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
21
|
Yin B, Chen X, Gao F, Li J, Wang HW. Analysis of gene mutation characteristics in patients with chronic neutrophilic leukaemia. ACTA ACUST UNITED AC 2019; 24:538-543. [PMID: 31315541 DOI: 10.1080/16078454.2019.1642554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: This study aims to investigate the gene mutation characteristics of chronic neutrophilic leukaemia (CNL). Method: This study retrospectively analyses the molecular biological characteristics, laboratory characteristics and clinical data of four patients with CNL that were admitted in the second Hospital of Shanxi Medical University from May 2014 to October 2016. On the basis of the molecular biological data of 22 patients with CNL and 4 patients with CNL, we further analysed the characteristics of CNL molecular mutation. Results: Two out of the four patients with CNL were carriers of colony-stimulating factor 3 receptor (CSF3R) mutation, among which two were carriers of CSF3R T618I mutation combined with ASXL1 mutation and SETBP1 mutation, and two were only carriers of JAK2 V617F mutation. According to the molecular biological data of 22 patients with CNL, 20 patients were positive for CSF3R mutation. Two patients were positive for JAK2 V617F mutation. A total of 10 patients were positive for SETBP1 mutation which was correlated with the CSF3R T618I gene mutation (P = 0.03). A total of 13 patients were positive for ASXL1 mutation. No patients carried mutations in ASXL2 and MPL genes. Conclusion and Discussion: CSF3R mutation is the main tumorigenic mutation in CNL, in which CSF3R T618I mutation is the main mutation, and an extremely small number of CNL patients may be caused by JAK2 V617F mutation. SETBP1 and ASXL1 are the most common concomitant mutations in CNL with CSF3R mutation, and SETBP1 and CSF3R T618Imutations may have a certain correlation.
Collapse
Affiliation(s)
- Bin Yin
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China.,b Clinical Medical Laboratory Center , Children's Hospital of Shanxi , Taiyuan , People's Republic of China
| | - XiuHua Chen
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Feng Gao
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Juan Li
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| | - Hong Wei Wang
- a Institute of Hematology , the Second Hospital of Shanxi Medical University , Taiyuan , People's Republic of China
| |
Collapse
|
22
|
Nguyen N, Oakley K, Han Y, Kwok M, Crouch G, Du Y. Interaction with XPO1 is essential for SETBP1 to induce myeloid transformation. Leukemia 2019; 33:2758-2762. [PMID: 31337858 DOI: 10.1038/s41375-019-0521-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mary Kwok
- Hematology-Oncology Service, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gary Crouch
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
23
|
Venugopal S, Mascarenhas J. Chronic Neutrophilic Leukemia: Current and Future Perspectives. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:129-134. [DOI: 10.1016/j.clml.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023]
|
24
|
Pati H, Kundil Veetil K. Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes: Molecular Pathogenetic Mechanisms and Their Implications. Indian J Hematol Blood Transfus 2019; 35:3-11. [DOI: 10.1007/s12288-019-01084-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
|
25
|
Schwartz LC, Mascarenhas J. Current and evolving understanding of atypical chronic myeloid leukemia. Blood Rev 2019; 33:74-81. [DOI: 10.1016/j.blre.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
26
|
Stevens SJ, van der Schoot V, Leduc MS, Rinne T, Lalani SR, Weiss MM, van Hagen JM, Lachmeijer AM, Stockler-Ipsiroglu SG, Lehman A, Brunner HG. De novo mutations in the SET
nuclear proto-oncogene, encoding a component of the inhibitor of histone acetyltransferases (INHAT) complex in patients with nonsyndromic intellectual disability. Hum Mutat 2018; 39:1014-1023. [DOI: 10.1002/humu.23541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Servi J.C. Stevens
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - Vyne van der Schoot
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
| | - Magalie S. Leduc
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Baylor Genetics; Houston Texas USA
| | - Tuula Rinne
- Department of Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Seema R. Lalani
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Marjan M. Weiss
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam the Netherlands
| | - Johanna M. van Hagen
- Department of Clinical Genetics; VU University Medical Centre; Amsterdam the Netherlands
| | | | | | - Anna Lehman
- Department of Medical Genetics; British Columbia Children's Hospital; Vancouver Canada
| | - Han G Brunner
- Department of Clinical Genetics; Maastricht University Medical Centre; Maastricht the Netherlands
- Department of Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | | |
Collapse
|
27
|
Bayarkhangai B, Noureldin S, Yu L, Zhao N, Gu Y, Xu H, Guo C. A comprehensive and perspective view of oncoprotein SET in cancer. Cancer Med 2018; 7:3084-3094. [PMID: 29749127 PMCID: PMC6051184 DOI: 10.1002/cam4.1526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
SET is a multifunctional oncoprotein which is ubiquitously expressed in all kinds of cells. The SET protein participates in many cellular processes including cell cycle, cell migration, apoptosis, transcription, and DNA repair. Accumulating evidence demonstrates that the expression and activity of SET correlate with cancer occurrence, metastasis, and prognosis. Therefore, the SET protein is regarded as a potential target for cancer therapy and several inhibitors are being developed for clinical use. Herein, we comprehensively review the physiological and pathological functions of SET as well as its structure-function relationship. Additionally, the regulatory mechanisms of SET at both transcriptional and posttranslational levels are also discussed.
Collapse
Affiliation(s)
- Buuvee Bayarkhangai
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Suzan Noureldin
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Liting Yu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Na Zhao
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yaru Gu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Changying Guo
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Liu WL, He ZX, Li F, Ai R, Ma HW. Schinzel–Giedion syndrome: a novel case, review and revised diagnostic criteria. J Genet 2018. [DOI: 10.1007/s12041-017-0877-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia: a report from the Italian AIEOP study group. Oncotarget 2018; 7:28914-9. [PMID: 26980750 PMCID: PMC5045366 DOI: 10.18632/oncotarget.8016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare aggressive disease of early childhood. Driver mutations in the Ras signaling pathways are a key feature of JMML patients. Mutations in SETBP1 and JAK3 were recently identified in a subset of JMML patients characterized by poor prognosis and progression of disease. In this study, we report the results of a screening for mutations in SETBP1 and JAK3 of a cohort of seventy Italian patients with JMML, identifying 11.4% of them harboring secondary mutations in these two genes and discovering two new mutations in the SKI domain of SETBP1. JMML xenotransplantation and colony assay provide an initial understanding of the secondary nature of these events occurring in early precursor cells and suggest a different propagating capacity of clones harboring particular mutations.
Collapse
|
30
|
Levinson KB, Bagg A. Atypical Chronic Myeloid Leukemia, BCR/ABL1 Negative. MOLECULAR PATHOLOGY LIBRARY 2018. [DOI: 10.1007/978-3-319-62146-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
Linder K, Iragavarapu C, Liu D. SETBP1 mutations as a biomarker for myelodysplasia /myeloproliferative neoplasm overlap syndrome. Biomark Res 2017; 5:33. [PMID: 29225884 PMCID: PMC5718013 DOI: 10.1186/s40364-017-0113-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Myelodysplasia (MDS) /myeloproliferative neoplasm (MPN) overlap syndrome has been described since the 2001 WHO classification as disorders that have both proliferative and dysplastic changes simultaneously. Specific disorders include chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), BCR-ABL negative atypical chronic myeloid leukemia (aCML) and unclassifiable MDS/MPN (MPN/MDS-U). Recurrent gene mutations in these conditions have been described. Among them, SETBP1 mutations have been identified in up to 32% of aCML, 24% of JMML, 18% of CMML and 10% of MDS/MPN-U patients. The mutation hotspot lies in the amino acid residues 858–871 in the SETBP1 protein. SETBP1 mutations in MDS/MPN overlap syndrome is associated with accelerated transformation to leukemia and poor prognosis. In this review, we summarized the latest data on the role of SETBP1 mutations in the overlap syndrome. SETBP1 mutations may serve as a biomarker for the diagnosis and poor prognosis of the overlap syndrome.
Collapse
Affiliation(s)
- Katherine Linder
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Chaitanya Iragavarapu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| |
Collapse
|
32
|
Lu T, Wang Y. [Unusual facies with delayed development and multiple malformations in a 14-month-old boy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:921-925. [PMID: 28774369 PMCID: PMC7390051 DOI: 10.7499/j.issn.1008-8830.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Schinzel-Giedion syndrome is a rare autosomal dominant genetic disease and has the clinical features of severe delayed development, unusual facies, and multiple congenital malformations. In this case report, a 14-month-old boy had the clinical manifestations of delayed development, unusual facies (prominent forehead, midface retraction, hypertelorism, low-set ears, upturned nose, and micrognathia), and multiple congenital malformations (including cerebral dysplasia, dislocation of the hip joint, and cryptorchidism). The karyotype analysis and copy number variations showed no abnormalities, and whole exon sequencing showed a de novo heterozygous missense mutation, c.2602G > A (p. D868N), in SETBP1 gene. Therefore, the boy was diagnosed with Schinzel-Giedion syndrome. Myoclonic seizures in this boy were well controlled by sodium valproate treatment, and his language development was also improved after rehabilitation treatment. Clinical physicians should improve their ability to recognize such rare diseases, and Schinzel-Giedion syndrome should be considered for children with unusual facies, delayed development, and multiple malformations. Gene detection may help with the diagnosis of this disease.
Collapse
Affiliation(s)
- Tong Lu
- Department of Pediatric Neurology, Children's Hospital of Fudan University, Shanghai 201102, China.
| | | |
Collapse
|
33
|
Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 2017; 105:732-742. [PMID: 28447248 DOI: 10.1007/s12185-017-2241-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
SETBP1 is a SET-binding protein regulating self-renewal potential through HOXA-protein activation. Somatic SETBP1 mutations were identified by whole exome sequencing in several phenotypes of myelodysplastic/myeloproliferative neoplasms (MDS/MPN), including atypical chronic myeloid leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic leukemia as well as in secondary acute myeloid leukemia (sAML). Surprisingly, its recurrent somatic activated mutations are located at the identical positions of germline mutations reported in congenital Schinzel-Giedion syndrome. In general, somatic SETBP1 mutations have a significant clinical impact on the outcome as poor prognostic factor, due to downstream HOXA-pathway as well as associated aggressive types of chromosomal defects (-7/del(7q) and i(17q)), which is consistent with wild-type SETBP1 activation in aggressive types of acute myeloid leukemia and leukemic evolution. Biologically, mutant SETBP1 attenuates RUNX1 and activates MYB. The studies of mouse models confirmed biological significance of SETBP1 mutations in myeloid leukemogenesis, particularly associated with ASXL1 mutations. SETBP1 is a major oncogene in myeloid neoplasms, which cooperates with various genetic events and causes distinct phenotypes of MDS/MPN and sAML.
Collapse
MESH Headings
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/mortality
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Juvenile
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
34
|
Coccaro N, Tota G, Zagaria A, Anelli L, Specchia G, Albano F. SETBP1 dysregulation in congenital disorders and myeloid neoplasms. Oncotarget 2017; 8:51920-51935. [PMID: 28881700 PMCID: PMC5584301 DOI: 10.18632/oncotarget.17231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
Myeloid malignancies are characterized by an extreme molecular heterogeneity, and many efforts have been made in the past decades to clarify the mechanisms underlying their pathogenesis. In this scenario SET binding protein 1 (SETBP1) has attracted a lot of interest as a new oncogene and potential marker, in addition to its involvement in the Schinzel-Giedon syndrome (SGS). Our review starts with the analysis of the structural characteristics of SETBP1, and extends to its corresponding physiological and pathological functions. Next, we describe the prevalence of SETBP1 mutations in congenital diseases and in hematologic malignancies, exploring how its alterations might contribute to tumor development and provoke clinical effects. Finally, we consider to understand how SETBP1 activation could be exploited in molecular medicine to enhance the cure rate.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
35
|
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm with a high prevalence (>80%) of mutations in the colony-stimulating factor 3 receptor (CSF3R). These mutations activate the receptor, leading to the proliferation of neutrophils that are a hallmark of CNL. Recently, the World Health Organization guidelines have been updated to include CSF3R mutations as part of the diagnostic criteria for CNL. Because of the high prevalence of CSF3R mutations in CNL, it is tempting to think of this disease as being solely driven by this genetic lesion. However, recent additional genomic characterization demonstrates that CNL has much in common with other chronic myeloid malignancies at the genetic level, such as the clinically related diagnosis atypical chronic myeloid leukemia. These commonalities include mutations in SETBP1, spliceosome proteins (SRSF2, U2AF1), and epigenetic modifiers (TET2, ASXL1). Some of these same mutations also have been characterized as frequent events in clonal hematopoiesis of indeterminate potential, suggesting a more complex disease evolution than was previously understood and raising the possibility that an age-related clonal process of preleukemic cells could precede the development of CNL. The order of acquisition of CSF3R mutations relative to mutations in SETBP1, epigenetic modifiers, or the spliceosome has been determined only in isolated case reports; thus, further work is needed to understand the impact of mutation chronology on the clonal evolution and progression of CNL. Understanding the complete landscape and chronology of genomic events in CNL will help in the development of improved therapeutic strategies for this patient population.
Collapse
|
36
|
How I treat atypical chronic myeloid leukemia. Blood 2016; 129:838-845. [PMID: 27899359 DOI: 10.1182/blood-2016-08-693630] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
Atypical chronic myeloid leukemia, BCR-ABL1 negative (aCML) is a rare myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) for which no current standard of care exists. The challenges of aCML relate to its heterogeneous clinical and genetic features, high rate of transformation to acute myeloid leukemia, and historically poor survival. Therefore, allogeneic hematopoietic stem cell transplantation should always be an initial consideration for eligible patients with a suitable donor. Nontransplant approaches for treating aCML have otherwise largely relied on adopting treatment strategies used for MDS and MPN. However, such therapies, including hypomethylating agents, are based on a paucity of data. With an eye toward making a more meaningful impact on response rates and modification of the natural history of the disease, progress will rely on enrollment of patients into clinical trials and molecular profiling of individuals so that opportunities for targeted therapy can be exploited.
Collapse
|
37
|
Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumour Biol 2016; 37:11691-11700. [PMID: 27444275 DOI: 10.1007/s13277-016-5145-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938-947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta.
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Maria Pia Grixti
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Robert Gauci
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Vanessa Petroni
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Anthony G Fenech
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta.,Molecular Genetics Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
38
|
Abstract
Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) that includes only 150 patients described to date meeting the latest World Health Organization (WHO) criteria and the recently reported CSF3R mutations. The diagnosis is based on morphological criteria of granulocytic cells and the exclusion of genetic drivers that are known to occur in others MPNs, such as BCR-ABL1, PDGFRA/B, or FGFR1 rearrangements. However, this scenario changed with the identification of oncogenic mutations in the CSF3R gene in approximately 83% of WHO-defined and no monoclonal gammopathy-associated CNL patients. CSF3R T618I is a highly specific molecular marker for CNL that is sensitive to inhibition in vitro and in vivo by currently approved protein kinase inhibitors. In addition to CSF3R mutations, other genetic alterations have been found, notably mutations in SETBP1, which may be used as prognostic markers to guide therapeutic decisions. These findings will help to understand the pathogenesis of CNL and greatly impact the clinical management of this disease. In this review, we discuss the new genetic alterations recently found in CNL and the clinical perspectives in its diagnosis and treatment. Fortunately, since the diagnosis of CNL is not based on exclusion anymore, the molecular characterization of the CSF3R gene must be included in the WHO criteria for CNL diagnosis.
Collapse
Affiliation(s)
- Juliane Menezes
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
| | - Juan Cruz Cigudosa
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
| |
Collapse
|
39
|
Abstract
Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation.
Collapse
|
40
|
Panagopoulos I, Gorunova L, Bjerkehagen B, Lobmaier I, Heim S. The recurrent chromosomal translocation t(12;18)(q14~15;q12~21) causes the fusion gene HMGA2-SETBP1 and HMGA2 expression in lipoma and osteochondrolipoma. Int J Oncol 2015. [PMID: 26202160 PMCID: PMC4532193 DOI: 10.3892/ijo.2015.3099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipomas are the most common soft tissue tumors in adults. They often carry chromosome aberrations involving 12q13~15 leading to rearrangements of the HMGA2 gene in 12q14.3, with breakpoints occurring within or outside of the gene. Here, we present eleven lipomas and one osteochondrolipoma with a novel recurrent chromosome aberration, t(12;18) (q14~15;q12~21). Molecular studies on eight of the tumors showed that full-length HMGA2 transcript was expressed in three and a chimeric HMGA2 transcript in five of them. In three lipomas and in the osteochondrolipoma, exons 1–3 of HMGA2 were fused to a sequence of SETBP1 on 18q12.3 or an intragenic sequence from 18q12.3 circa 10 kbp distal to SETBP1. In another lipoma, exons 1–4 of HMGA2 were fused to an intronic sequence of GRIP1 which maps to chromosome band 12q14.3, distal to HMGA2. The ensuing HMGA2 fusion transcripts code for putative proteins which contain amino acid residues of HMGA2 corresponding to exons 1–3 (or exons 1–4 in one case) followed by amino acid residues corresponding to the fused sequences. Thus, the pattern is similar to the rearrangements of HMGA2 found in other lipomas, i.e., disruption of the HMGA2 locus leaves intact exons 1–3 which encode the AT-hooks domains and separates them from the 3′-terminal part of the gene. The fact that the examined osteochondrolipoma had a t(12;18) and a HMGA2-SETBP1 fusion identical to the findings in the much more common ordinary lipomas, underscores the close developmental relationship between the two tumor types.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Cui Y, Tong H, Du X, Li B, Gale RP, Qin T, Liu J, Xu Z, Zhang Y, Huang G, Jin J, Fang L, Zhang H, Pan L, Hu N, Qu S, Xiao Z. Impact of TET2, SRSF2, ASXL1 and SETBP1 mutations on survival of patients with chronic myelomonocytic leukemia. Exp Hematol Oncol 2015; 4:14. [PMID: 26019984 PMCID: PMC4445804 DOI: 10.1186/s40164-015-0009-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm classified in the myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) category. Molecular abnormalities are reported in about 90 % of patients with CMML. ASXL1 and SETBP1 mutations, but not TET2 or SFRS2 mutations are reported to be associated with prognosis. METHODS We studied frequency of TET2, SRSF2, ASXL1 and SETBP1 mutations in 145 patients with CMML using Sanger sequencing, and determined the prognostic factors for OS. We also identified the predictive value of ASXL1 mutations (frameshift and nonsense mutations) through comparing the Mayo Prognostic Model with the Mayo Molecular Model. RESULTS Forty-seven (32 %) had a mutation in TET2, 42 (29 %), a mutation in SRSF2, 65 (45 %), a mutation (nonsense and frame-shift) in ASXL1 and 26 (18 %), a mutation in SETBP1. Significant variables in multivariable analysis of survival included ASXL1 (HR = 1.99 [1.20-3.28]; P = 0.007), hemoglobin <100 g/L (HR = 2.42 [1.40-4.19]; P = 0.002) and blood immature myeloid cells (IMCs) (HR = 2.08 [1.25-3.46]; P = 0.005). When our patients were analyzed using the Mayo Prognostic Model median OS were not reached, 26 months and 15 months (P = 0.014). An analysis using the Mayo Molecular Model identified 4 cohorts with median OS of not reached, 70 months, 26 months and 11 months (P < 0.001). Data fitting using our patients suggest the Molecular Mayo Model has significantly higher survival predictive power compared with Mayo Prognostic Model (P < 0.001, -2 log-likelihood ratios of 538.070 and 552.260). CONCLUSIONS There were high frequencies of mutations in TET2, SRSF2, ASXL1 and SETBP1 in patients with CMML. With the addition of ASXL1 frameshift and nonsense mutations, the Mayo Molecular Model fitted better than Mayo Prognostic Model of our patients.
Collapse
Affiliation(s)
- Yajuan Cui
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, ZheJiang University College of Medicine, Zhejiang, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Bing Li
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Robert Peter Gale
- Hematology Research Center, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Tiejun Qin
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Zefeng Xu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yue Zhang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Gang Huang
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, ZheJiang University College of Medicine, Zhejiang, China
| | - Liwei Fang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Hongli Zhang
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Lijuan Pan
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Naibo Hu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Shiqiang Qu
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China
| | - Zhijian Xiao
- MDS and MPN Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
42
|
Ciccone M, Calin GA, Perrotti D. From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies. Front Oncol 2015; 5:21. [PMID: 25763353 PMCID: PMC4329809 DOI: 10.3389/fonc.2015.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/16/2015] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, an emerging role of phosphatases in the pathogenesis of hematologic malignancies and solid tumors has been established. The tumor-suppressor protein phosphatase 2A (PP2A) belongs to the serine-threonine phosphatases family and accounts for the majority of serine-threonine phosphatase activity in eukaryotic cells. Numerous studies have shown that inhibition of PP2A expression and/or function may contribute to leukemogenesis in several hematological malignancies. Likewise, overexpression or aberrant expression of physiologic PP2A inhibitory molecules (e.g., SET and its associated SETBP1 and CIP2A) may turn off PP2A function and participate to leukemic progression. The discovery of PP2A as tumor suppressor has prompted the evaluation of the safety and the efficacy of new compounds, which can restore PP2A activity in leukemic cells. Although further studies are needed to better understand how PP2A acts in the intricate phosphatases/kinases cancer network, the results reviewed herein strongly support the development on new PP2A-activating drugs and the immediate introduction of those available into clinical protocols for leukemia patients refractory or resistant to current available therapies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - Danilo Perrotti
- Department of Medicine, The Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
43
|
Verma PK, El-Harouni AA. Review of literature: genes related to postaxial polydactyly. Front Pediatr 2015; 3:8. [PMID: 25717468 PMCID: PMC4324078 DOI: 10.3389/fped.2015.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Postaxial polydactyly (PAP) is one of the commonest congenital malformations and usually is associated to several syndromes. There is no primary investigational strategy for PAP cases with single gene disorder in literature. PAP cases with single gene disorder can be classified according to common pathways and molecular basis. Molecular classification may help in diagnostic approach. MATERIALS AND METHODS All single gene disorders associated with PAP reported on PubMed and OMIM are analyzed and classified according to molecular basis. RESULTS Majority of genes related to cilia structure and functions are associated with PAP, so we classified them as ciliopathies and non-ciliopathies groups. Genes related to Shh-Gli3 pathway was the commonest group in non-ciliopathies. CONCLUSION Genes related to cilia are most commonly related to PAP due to their indirect relationship to Shh-Gli3 signaling pathway. Initially, PAP may be the only clinical finding with ciliopathies so those cases need follow up. Proper diagnosis is helpful for management and genetic counseling. Molecular approach may help to define pleiotropy.
Collapse
Affiliation(s)
- Prashant Kumar Verma
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ashraf A El-Harouni
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia ; Department of Clinical Genetics, National Research Center , Cairo , Egypt
| |
Collapse
|
44
|
Choi HW, Kim HR, Baek HJ, Kook H, Cho D, Shin JH, Suh SP, Ryang DW, Shin MG. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia. Ann Lab Med 2014; 35:118-22. [PMID: 25553291 PMCID: PMC4272941 DOI: 10.3343/alm.2015.35.1.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022] Open
Abstract
Background Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Methods Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Results Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Conclusions Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hye-Ran Kim
- Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea. ; Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hee-Jo Baek
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hoon Kook
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Duck Cho
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Soon-Pal Suh
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Dong-Wook Ryang
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea. ; Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
45
|
Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, Henrion E, Dionne-Laporte A, Fougerat A, Pshezhetsky AV, Venkateswaran S, Rouleau GA, Michaud JL. De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10:e1004772. [PMID: 25356899 PMCID: PMC4214635 DOI: 10.1371/journal.pgen.1004772] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023] Open
Abstract
Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.
Collapse
Affiliation(s)
| | - Myriam Srour
- CHU Sainte-Justine Research Center, Montreal, Canada
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, Canada
| | | | - Hussein Daoud
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lysanne Patry
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ousmane Diallo
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edouard Henrion
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne Fougerat
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pediatrics and Department of Neurosciences, University of Montreal, Montreal, Canada
| |
Collapse
|
46
|
Zoi K, Cross NCP. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 2014; 101:229-42. [PMID: 25212680 DOI: 10.1007/s12185-014-1670-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
According to the 2008 WHO classification, the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) includes atypical chronic myeloid leukaemia (aCML), chronic myelomonocytic leukaemia (CMML), MDS/MPN-unclassifiable (MDS/MPN-U), juvenile myelomonocytic leukaemia (JMML) and a "provisional" entity, refractory anaemia with ring sideroblasts and thrombocytosis (RARS-T). The remarkable progress in our understanding of the somatic pathogenesis of MDS/MPN has made it clear that there is considerable overlap among these diseases at the molecular level, as well as layers of unexpected complexity. Deregulation of signalling plays an important role in many cases, and is clearly linked to more highly proliferative disease. Other mutations affect a range of other essential, interrelated cellular mechanisms, including epigenetic regulation, RNA splicing, transcription, and DNA damage response. The various combinations of mutations indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. The delineation of complex clonal architectures may serve as the cornerstone for the identification of novel therapeutic targets and lead to better patient outcomes. This review summarizes some of the current knowledge of molecular pathogenetic lesions in the MDS/MPN subtypes that are seen in adults: atypical CML, CMML and MDS/MPN-U.
Collapse
Affiliation(s)
- Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | |
Collapse
|
47
|
Hou HA, Kuo YY, Tang JL, Chou WC, Yao M, Lai YJ, Lin CC, Chen CY, Liu CY, Tseng MH, Huang CF, Chiang YC, Lee FY, Liu MC, Liu CW, Huang SY, Ko BS, Wu SJ, Tsay W, Chen YC, Tien HF. Clinical implications of the SETBP1 mutation in patients with primary myelodysplastic syndrome and its stability during disease progression. Am J Hematol 2014; 89:181-6. [PMID: 24127063 DOI: 10.1002/ajh.23611] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/21/2022]
Abstract
Mutations of the SET binding protein 1 (SETBP1) gene have been identified in patients with myeloid neoplasms, but the clinical relevance of this mutation and its association with other gene mutations in myelodysplastic syndrome (MDS) and the stability during disease progression remains unclear. Mutations in SETBP1 gene at exon 4 were analyzed by polymerase chain reaction and direct sequencing in 430 MDS patients. The results were correlated with clinical features, cytogenetics, gene mutations and treatment outcomes. SETBP1 mutations were identified in 14 (3.3%) of the 430 patients with primary MDS based on the FAB classification and 8 (2.4%) of the 333 patients based on the WHO classification. The SETBP1 mutation was closely associated with higher white blood cell counts, isochromosome of 17q, monosomy 7, and mutations of ASXL1, EZH2 and SRSF2. With a median follow-up of 43.9 months, MDS patients, based on either the FAB or WHO classification, had a significantly poorer overall survival (OS) if they harbored SETBP1 mutation. Further, SETBP1 mutation was an independent poor prognostic factor for OS (HR = 1.842, CI 95%, 1.1018-3.332, P = 0.043) irrespective of age, sex, and the International Prognostic Scoring System. Sequential analysis showed that the original SETBP1 mutations in the eight SETBP1-mutated patients studied were retained while two of the 101 SETBP1-wild patients acquired novel SETBP1 mutations during follow-ups. The SETBP1 mutation is associated with poor prognosis in MDS. The mutation can be acquired during the clinical course suggesting it may play a role in disease progression.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
- Graduate Institute of Clinical Medicine; College of Medicine, National Taiwan University; Taipei Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institute of Oncology; College of Medicine, National Taiwan University; Taipei Taiwan
| | - Jih-Luh Tang
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Wen-Chien Chou
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
- Department of Laboratory Medicine; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Ming Yao
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Yan-Jun Lai
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Chien-Chin Lin
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Chien-Yuan Chen
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Chieh-Yu Liu
- Biostatistics Consulting Laboratory; School of Nursing and Center of General Education; National Taipei University of Nursing and Health Sciences; Taipei Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Chi-Fei Huang
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Ying-Chieh Chiang
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Fen-Yu Lee
- Department of Pathology; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Ming-Chih Liu
- Department of Pathology; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Chia-Wen Liu
- Department of Pathology; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Shang-Yi Huang
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Bor-Sheng Ko
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Shang-Ju Wu
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Woei Tsay
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| | - Yao-Chang Chen
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
- Department of Laboratory Medicine; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei Taiwan
| | - Hwei-Fang Tien
- Division of Hematology; Department of Internal Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
48
|
Abstract
Recent studies have identified recurrent mutations in SETBP1, the gene that encodes SET-binding protein 1, in several types of myeloid malignancies, including chronic myeloid and acute myeloid leukemias. The identified mutations frequently target the SKI-homologous domain, although the exact pathogenic mechanisms remain unknown.
Collapse
|
49
|
The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood 2013; 122:1707-11. [PMID: 23896413 DOI: 10.1182/blood-2013-05-500959] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although activation of tyrosine kinase pathways is a shared theme among myeloproliferative neoplasms, the pathogenetic basis of chronic neutrophilic leukemia (CNL) has remained elusive. Recently, we identified high-frequency oncogenic mutations in the granulocyte-colony stimulating factor receptor (CSF3R) in CNL and in some patients with atypical chronic myeloid leukemia. Inhibition of Janus kinase 2 or SRC kinase signaling downstream of mutated CSF3R is feasible and should be explored therapeutically. Herein, we discuss the potential impact of these findings for the classification and treatment of these disorders.
Collapse
|
50
|
Somatic SETBP1 mutations in myeloid malignancies. Nat Genet 2013; 45:942-6. [PMID: 23832012 PMCID: PMC3729750 DOI: 10.1038/ng.2696] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
|