1
|
Lim JC, Kurihara S, Tamaki R, Mashima Y, Maéno M. Expression and localization of Rdd proteins in Xenopus embryo. Anat Cell Biol 2014; 47:18-27. [PMID: 24693479 PMCID: PMC3968263 DOI: 10.5115/acb.2014.47.1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 02/07/2014] [Indexed: 11/27/2022] Open
Abstract
The previous study has shown that repeated D domain-like (Rdd) proteins, a group of novel secretory proteins consisting of repeated domains of a cysteine-rich sequence, are involved in the process of blood vessel formation in Xenopus embryo. We performed further experiments to examine the localization of Rdd proteins in embryogenesis. Detection of tagged Rdd proteins expressed in blastomeres showed that Rdd proteins formed a high molecular weight complex and existed in the extracellular space. A rabbit antibody against the Rdd synthetic peptide identified a single band of 28 kD in embryonic tissue extract. By whole-mount immunostaining analysis, signal was detected in the regions of inter-somites, vitelline veins, and branchial arches at the tailbud stage. Staining of Rdd was remarkably reduced in the embryos injected with vascular endothelial growth factor Morpholino. We suggest that Rdd proteins interact with a molecule(s) associated with vascular precursor cells.
Collapse
Affiliation(s)
- Jong-Chan Lim
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Sayaka Kurihara
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Rie Tamaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yutaka Mashima
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Mitsugu Maéno
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Maéno M, Komiyama K, Matsuzaki Y, Hosoya J, Kurihara S, Sakata H, Izutsu Y. Distinct mechanisms control the timing of differentiation of two myeloid populations in Xenopus ventral blood islands. Dev Growth Differ 2012; 54:187-201. [PMID: 22470938 DOI: 10.1111/j.1440-169x.2011.01321.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.
Collapse
Affiliation(s)
- Mitsugu Maéno
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|
3
|
Pshennikova E, Voronina A. Expression of the transcription factor Xvent-2 in <i>Xenopus laevis</i> embryogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajmb.2012.22014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Simões FC, Peterkin T, Patient R. Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development 2011; 138:3235-45. [PMID: 21750034 DOI: 10.1242/dev.059634] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.
Collapse
Affiliation(s)
- Filipa Costa Simões
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington OX3 9DS, UK
| | | | | |
Collapse
|
5
|
Cao N, Yao ZX. The hemangioblast: from concept to authentication. Anat Rec (Hoboken) 2011; 294:580-8. [PMID: 21370498 DOI: 10.1002/ar.21360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/13/2011] [Indexed: 11/06/2022]
Abstract
The hemangioblast hypothesis has been hotly debated for over a century. Hemangioblasts are defined as multipotent cells that can give rise to both hematopoietic cells and endothelial cells. The existence of hemangioblasts has now been confirmed and many important molecules and several signaling pathways are involved in their generation and differentiation. Fibroblast growth factor, renin-angiotensin system and runt-related transcription factor 1 (Runx1) direct the formation of hemangioblasts through highly selective gene expression patterns. On the other hand, the hemogenic endothelium theory and a newly discovered pattern of hematopoietic/endothelial differentiation make the genesis of hemangioblasts more complicated. But how hemangioblasts are formed and how hematopoietic cells or endothelial cells are derived from remains largely unknown. Here we summarize the current knowledge of the signaling pathways and molecules involved in hemangioblast development and suggest some future clinical applications.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | |
Collapse
|
6
|
Abstract
Abstract The establishment of efficient methods for promoting stem cell differentiation into target cells is important not only in regenerative medicine, but also in drug discovery. In addition to embryonic stem (ES) cells and various somatic stem cells, such as mesenchymal stem cells derived from bone marrow, adipose tissue, and umbilical cord blood, a novel dedifferentiation technology that allows the generation of induced pluripotent stem (iPS) cells has been recently developed. Although an increasing number of stem cell populations are being described, there remains a lack of protocols for driving the differentiation of these cells. Regeneration of organs from stem cells in vitro requires precise blueprints for each differentiation step. To date, studies using various model organisms, such as zebrafish, Xenopus laevis, and gene-targeted mice, have uncovered several factors that are critical for the development of organs. We have been using X. laevis, the African clawed frog, which has developmental patterns similar to those seen in humans. Moreover, Xenopus embryos are excellent research tools for the development of differentiation protocols, since they are available in high numbers and are sufficiently large and robust for culturing after simple microsurgery. In addition, Xenopus eggs are fertilized externally, and all stages of the embryo are easily accessible, making it relatively easy to study the functions of individual gene products during organogenesis using microinjection into embryonic cells. In the present review, we provide examples of methods for in vitro organ formation that use undifferentiated Xenopus cells. We also describe the application of amphibian differentiation protocols to mammalian stem cells, so as to facilitate the development of efficient methodologies for in vitro differentiation.
Collapse
Affiliation(s)
- Akira Kurisaki
- Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
7
|
Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS. A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds. Dev Dyn 2009; 238:1179-94. [PMID: 19384961 DOI: 10.1002/dvdy.21953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Zic1 transcription factor plays multiple roles during early development, for example, in patterning the early neural plate and formation of the neural crest, somites, and cerebellum. To identify direct downstream target genes of Zic1, a microarray screen was conducted in Xenopus laevis that identified 85 genes upregulated twofold or more. These include transcription factors, receptors, enzymes, proteins involved in retinoic acid signaling, and an aquaglyceroporin (aqp-3b), but surprisingly no genes known to be involved in cell proliferation. We show that both aqp-3 and aqp-3b were expressed in adult tissues, while during early embryonic development, only aqp-3b was transcribed. During neurula stages, aqp-3b was expressed specifically in the neural folds. This pattern of aqp-3b expression closely resembled that of NF-protocadherin (NFPC), which is involved in cell adhesion and neural tube closure. Aqp-3b may also be involved in neural tube closure, since mammalian Aqp-3 promotes cell migration and proliferation.
Collapse
Affiliation(s)
- E Jean Cornish
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
8
|
Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T. In vitro organogenesis from undifferentiated cells inXenopus. Dev Dyn 2009; 238:1309-20. [DOI: 10.1002/dvdy.21979] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA. odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 2008; 135:3355-67. [PMID: 18787069 DOI: 10.1242/dev.022830] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The kidney and vasculature are intimately linked both functionally and during development, when nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms that underlie the differentiation of kidney versus blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc-finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, an enlarged cardinal vein and expansion of the posterior venous plexus. Altered kidney versus vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm; in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney towards vascular development.
Collapse
Affiliation(s)
- Sudha P Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
10
|
Nagao K, Taniyama Y, Kietzmann T, Doi T, Komuro I, Morishita R. HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus. J Biol Chem 2008; 283:11841-9. [PMID: 18303027 DOI: 10.1074/jbc.m702563200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIF-1alpha is originally identified as a transcription factor that activates gene expression in response to hypoxia. In metazoans, HIF-1alpha functions as a master regulator of oxygen homeostasis and regulates adaptive responses to change in oxygen tension during embryogenesis, tissue ischemia, and tumorigenesis. Because Hif-1alpha-deficient mice exhibit a number of developmental defects, the precise role of HIF-1alpha in early cardiac morphogenesis has been uncertain. Therefore, to clarify the role of HIF-1alpha in heart development, we investigated the effect of knockdown of HIF-1alpha in Xenopus embryos using antisense morpholino oligonucleotide microinjection techniques. Knockdown of HIF-1alpha resulted in defects of cardiogenesis. Whole mount in situ hybridization for cardiac troponin I (cTnI) showed the two separated populations of cardiomyocytes, which is indicative of cardia bifida, in HIF-1alpha-depleted embryos. Furthermore, the depletion of HIF-1alpha led to the reduction in cTnI expression, suggesting the correlation between HIF-1alpha and cardiac differentiation. We further examined the expression of several heart markers, nkx2.5, gata4, tbx5, bmp4, hand1, and hand2 in HIF-1alpha-depleted embryos. Among them, the expression of nkx2.5 was significantly reduced. Luciferase reporter assay using the Nkx2.5 promoter showed that knockdown of HIF-1alpha decreased its promoter activity. The cardiac abnormality in the HIF-1alpha-depleted embryo was restored with co-injection of nkx2.5 mRNA. Collectively, these findings reveal that HIF-1alpha-regulated nkx2.5 expression is required for heart development in Xenopus.
Collapse
Affiliation(s)
- Kaori Nagao
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Fibroblast growth factor controls the timing of Scl, Lmo2, and Runx1 expression during embryonic blood development. Blood 2008; 111:1157-66. [DOI: 10.1182/blood-2007-03-081323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo program pluripotent cells into blood, a knowledge of the locations of precursors during their journey through the embryo and the signals they experience would be informative. The anterior (a) and posterior (p) ventral blood islands (VBIs) in Xenopus are derived from opposite sides of the pregastrula embryo. The aVBI goes through a “hemangioblast” state, characterized by coexpression of blood and endothelial genes at neurula stages, whereas the pVBI expresses these genes in a nonoverlapping fashion several hours later, after commitment to either a blood or an endothelial fate. We describe a novel role for fibroblast growth factor (FGF) in controlling the timing of Scl, Lmo2, and Runx1 expression in the 2 VBI compartments. Blocking FGF signaling during gastrulation expands expression at neurula stages into posterior regions. We show, by lineage labeling, explant analysis, and targeted blocking of FGF signaling, that this is due to the pVBI prematurely expressing these genes with the timing of the aVBI. In contrast, overexpression of FGF in aVBI precursors eliminates the anterior hemangioblast program. Using this information, we have recapitulated the anterior hemangioblast program in pluripotent cells in vitro by inhibiting FGF signaling in anterior mesoderm induced by activin and exposed to bone morphogenetic protein (BMP) signaling.
Collapse
|
12
|
Shibata T, Takahashi Y, Tasaki J, Saito Y, Izutsu Y, Maéno M. A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. Mech Dev 2007; 125:284-98. [PMID: 18093808 DOI: 10.1016/j.mod.2007.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/09/2007] [Indexed: 11/17/2022]
Abstract
We have characterized a cDNA clone, rdd (repeated D domain-like), that encodes for a secretory protein consisting of repeated domains of cysteine-rich sequence. Whole-mount in situ hybridization analysis revealed that rdd2, rdd3 and rdd4 are transiently expressed in the ventral and lateral mesoderm and the overlying ectoderm at the late gastrula and tailbud stages. Morpholino oligonucleotide (MO) was used to inhibit the translation of endogenous rdd3 and rdd4, and we found that the circulation of red blood cells completely disappears in the MO-injected tadpoles. Histological analysis showed that formation of the ventral aorta, dorsal aorta and posterior cardinal vein in the trunk region was severely disorganized in these animals. Injection of MO affected the expression of alpha-globin, a terminal differentiation marker of red blood cells, but did not affect the expression of scl, flk-1 or tie-2, suggesting that angiopoietic and hematopoietic precursor cells differentiate normally in the rdd-depleted embryo. The transplantation of labeled tissues followed by tracing of the donor cells revealed a role of rdds in migration of the embryonic angioblasts and myeloid cells. These observations first demonstrate the role of the novel cysteine-rich proteins in migration of the embryonic cells.
Collapse
Affiliation(s)
- Tomoko Shibata
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Nagao K, Taniyama Y, Koibuchi N, Morishita R. Constitutive over-expression of VEGF results in reduced expression of Hand-1 during cardiac development in Xenopus. Biochem Biophys Res Commun 2007; 359:431-7. [PMID: 17544370 DOI: 10.1016/j.bbrc.2007.05.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
During heart development, various signaling cascades are tightly regulated in a stage- and region-dependent manner. Vascular endothelial growth factor (VEGF) is one of the important molecules required for both vascular development and cardiac morphogenesis. VEGF receptors are present in the embryonic heart, so we focused on heart formation in VEGF-over-expressing Xenopus embryos. Over-expression of VEGF(170) caused disorganized vessels, while the expression of an endothelial marker, Tie-2, was increased. The embryo's heart was distinctly larger than that of control, and showed abnormal morphology. Histological analysis of these embryos showed failure of heart looping. In situ hybridization with Hand-1, which controls intrinsic morphogenetic pathways, revealed that the expression level of Hand-1 was decreased in the heart region. These results suggest that increased VEGF(170) levels disturb Hand-1 expression in the region required for normal heart morphogenesis. VEGF expression level may be important in heart morphology during embryonic development.
Collapse
Affiliation(s)
- Kaori Nagao
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
14
|
Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brändli AW. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 2007; 305:599-614. [PMID: 17412318 DOI: 10.1016/j.ydbio.2007.03.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 01/13/2023]
Abstract
Apelin and its G protein-coupled receptor APJ play important roles in blood pressure regulation, body fluid homeostasis, and possibly the modulation of immune responses. Here, we report that apelin-APJ signaling is essential for embryonic angiogenesis and upregulated during tumor angiogenesis. A detailed expression analysis demonstrates that both paracrine and autocrine mechanisms mark areas of embryonic and tumor angiogenesis. Knockdown studies in Xenopus reveal that apelin-APJ signaling is required for intersomitic vessel angiogenesis. Moreover, ectopic expression of apelin but not vascular endothelial growth factor A (VEGFA) is sufficient to trigger premature angiogenesis. In vitro, apelin is non-mitogenic for primary human endothelial cells but promotes chemotaxis. Epistasis studies in Xenopus embryos suggest that apelin-APJ signaling functions downstream of VEGFA. Finally, we show that apelin and APJ expression is highly upregulated in microvascular proliferations of brain tumors such as malignant gliomas. Thus, our results define apelin and APJ as genes of potential diagnostic value and promising targets for the development of a new generation of anti-tumor angiogenic drugs.
Collapse
Affiliation(s)
- Roland E Kälin
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Recent findings strongly suggest that the molecular pathways involved in the development and function of blood cells are highly conserved among vertebrates and various invertebrate phyla. This has led to a renewed interest regarding homologies between blood cell types and their developmental origin among different animals. One way to address these areas of inquiry is to shed more light on the biology of blood cells in extant invertebrate taxa that have branched off the bilaterian tree in between insects and vertebrates. This review attempts, in a broadly comparative manner, to update the existing literature that deals with early blood cell development. I begin by providing a brief survey of the different types of blood cell lineages among metazoa. There is now good reason to believe that, in vertebrates and invertebrates alike, blood cell lineages diverge from a common type of progenitor cell, the hemocytoblast. I give a synopsis of the origin and determination of the hematocytoblast, beginning with a look at the hematopoietic organs that house hemocytoblasts in adult animals, followed by a more detailed overview of the embryonic development of the hematopoietic organ. Finally, I compare the process of blood lineage diversification in vertebrates and Drosophila.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
16
|
Inui M, Fukui A, Ito Y, Asashima M. Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev Biol 2006; 298:188-200. [PMID: 16876154 DOI: 10.1016/j.ydbio.2006.06.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 06/11/2006] [Accepted: 06/15/2006] [Indexed: 11/25/2022]
Abstract
The cardiovascular development is the elaborate process, and despite the extensive studies, the mechanisms underlying endothelial, hematopoietic, and cardiac developments, as well as the interrelation between these processes, are not fully understood. In this study, we demonstrated that Xenopus apelin and Xmsr play pivotal roles in cardiovascular development. Apelin is a recently identified ligand for an orphan G-protein-coupled receptor APJ and is involved in fluid homeostasis in mammals. Xenopus preproapelin (Xpreproapelin) was isolated and its mRNA localized to the region around the presumptive blood vessels, which are overlapping or adjacent to those expressing Xmsr, the Xenopus homologue of APJ. Overexpression of Xpreproapelin disorganized the expression of the endothelial precursor cell marker XlFli and the hematopoietic precursor cell marker SCL at the neurula, whereas embryos injected with morpholino antisense oligonucleotides for Xapelin and Xmsr displayed attenuated expression of Tie2, alpha-globin, XPOX2, and cTnI, markers of endothelium, erythrocytes, myeloid cells, and cardiomyocytes, respectively. XlFli morpholino had similar effects to Xapelin and Xmsr morpholinos on cardiac differentiation, suggesting an unexpected potential relationship between the endothelium and cardiac differentiation. Forced expression of constitutive active G alpha i rescued the phenotypes of Xmsr morpholino-injected embryos, indicating that the i/o type of G protein alpha subunit acts downstream of Xmsr.
Collapse
Affiliation(s)
- Masafumi Inui
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | |
Collapse
|
17
|
Koibuchi N, Taniyama Y, Nagao K, Ogihara T, Kaneda Y, Morishita R. The effect of VEGF on blood vessels and blood cells during Xenopus development. Biochem Biophys Res Commun 2006; 344:339-45. [PMID: 16630570 DOI: 10.1016/j.bbrc.2006.03.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/16/2006] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is known to play an essential role in vascular development. We have overexpressed VEGF122 or VEGF170, which are equivalent to mouse VEGF120 and VEGF164, in developing Xenopus embryos. Overexpression of VEGF170 but not VEGF122 demonstrated an absence of expression of hematopoietic markers alpha-globin and GATA-1 but only in the posterior portion of the blood island. Interestingly, strong signals of endothelial markers, msr, fli-1, and tie-2, were detectable in those regions, instead of hematopoietic markers. These results suggested both that injection of VEGF170 resulted in disturbance of vasculogenesis in the posterior portion of the blood island, with excessive production of endothelial cells at the expense of blood cells, and that the anterior and posterior portions of the VBI may have distinct characteristics.
Collapse
Affiliation(s)
- Nobutaka Koibuchi
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Nagamine K, Furue M, Fukui A, Asashima M. Induction of Cells Expressing Vascular Endothelium Markers from Undifferentiated Xenopus Presumptive Ectoderm by Co-treatment with Activin and Angiopoietin-2. Zoolog Sci 2005; 22:755-61. [PMID: 16082164 DOI: 10.2108/zsj.22.755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activin is a potent inducer of mesoderm in amphibian embryos. We previously reported that low concentrations of activin could induce the formation of blood cells from Xenopus explants (animal caps). Both hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblasts. In this study, we tried to induce differentiation of vascular endothelial cells in aggregates derived from Xenopus animal caps. Aggregates formed from cells that were co-treated with activin and angiopoietin-2 expressed the vascular endothelial markers, X-msr, Xtie2 and Xegfl7. However, none of these aggregates expressed the hematopoietic marker genes, globin alpha T3, alpha T5, alpha A or GATA-1. We used microarray analysis to compare the gene expression profiles of aggregates treated with activin alone or with activin and angiopoietin. The combination, but not activin alone, induced expression of vascular-related genes such as Xl-fli and VEGF. These results demonstrate that treatment of dissociated animal cap cells with activin and angiopoietin-2 can induce differentiation of endothelial cells, and provides a promising model system for the in vitro study of blood vessel induction in vertebrates.
Collapse
|
19
|
Yoshida S, Furue M, Nagamine K, Abe T, Fukui Y, Myoishi Y, Fujii T, Okamoto T, Taketani Y, Asashima M. MODULATION OF ACTIVIN A–INDUCED DIFFERENTIATION IN VITRO BY VASCULAR ENDOTHELIAL GROWTH FACTOR IN XENOPUS PRESUMPTIVE ECTODERMAL CELLS. ACTA ACUST UNITED AC 2005; 41:104-10. [PMID: 16029071 DOI: 10.1290/040801.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that activin A at low concentrations induced ventral mesoderm including blood-like cells from Xenopus animal caps and that beating heart could be also induced from animal caps treated with 100 ng/ml activin A, suggesting that activin A might be involved in cardiac vasculogenesis. A vascular endothelial growth factor (VEGF) is a powerful mitogen for endothelial cells and is an inducer and regulator of angiogenesis. However, VEGF function in Xenopus development is not clearly identified. In this study, we determined the effect of VEGF on activin A-induced differentiation of animal cap. The VEGF induced duct-like structure composed of Flk-1-positive cells together with the induction of nonvascular tissues, such as neural tissues. This histological result was coincident with our reverse transcriptase-polymerase chain reaction analysis that VEGF together with activin A promoted the expression of Xenopus N-CAM and Xenopus brachyury. This study suggests that VEGF has additional biological activities besides angiogenesis, and arises a different function that VEGF induces stroma cell migration or recruitment that are required for blood vessel formation. This differentiation system will aid in the understanding of angiogenesis during early development.
Collapse
Affiliation(s)
- Shiro Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Drake CJ. Embryonic and adult vasculogenesis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:73-82. [PMID: 12768659 DOI: 10.1002/bdrc.10003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two mechanisms account for the formation of blood vessels, vasculogenesis and angiogenesis. Unfortunately, the terms vasculogenesis and angiogenesis literally have the same meaning, i.e., the genesis of blood vessels, and thus do little to distinguish between the two processes. Despite the nomenclature, the two processes are clearly distinct. Vasculogenesis, the de novo formation of blood vessels from mesoderm, is driven by the recruitment of undifferentiated mesodermal cells to the endothelial lineage and the de novo assembly of such cells into blood vessels. Angiogenesis is the generation of new blood vessels from endothelial cells of existing blood vessels, a process driven by endothelial cell proliferation. Recent years have seen dramatic changes in our understanding of the process of vasculogenesis, expanding the scope of its occurrence beyond the earliest stages of development to include involvement in neovascular processes throughout development as well as in the adult. In this review, emphasis is placed on discussion of emerging perspectives on the process of vasculogenesis in both the embryo and the adult.
Collapse
Affiliation(s)
- Christopher J Drake
- Cardiovascular Developmental Biology Center, Department of Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|