1
|
Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:879-911. [PMID: 33796822 PMCID: PMC8011581 DOI: 10.20517/cdr.2020.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Nanotechnology-based drug delivery platforms have been developed over the last two decades because of their favorable features in terms of improved drug bioavailability and stability. Despite recent advancement in nanotechnology platforms, this approach still falls short to meet the complexity of biological systems and diseases, such as avoiding systemic side effects, manipulating biological interactions and overcoming drug resistance, which hinders the therapeutic outcomes of the NP-based drug delivery systems. To address these issues, various strategies have been developed including the use of engineered cells and/or cell membrane-coated nanocarriers. Cell membrane receptor profiles and characteristics are vital in performing therapeutic functions, targeting, and homing of either engineered cells or cell membrane-coated nanocarriers to the sites of interest. In this context, we comprehensively discuss various cell- and cell membrane-based drug delivery approaches towards cancer therapy, the therapeutic potential of these strategies, and the limitations associated with engineered cells as drug carriers and cell membrane-associated drug nanocarriers. Finally, we review various cell types and cell membrane receptors for their potential in targeting, immunomodulation and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Edgar Rodriguez
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Harish Ramachandramoorthy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence Address: Dr. Kytai T. Nguyen, Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd ERB244, Arlington, TX 76010, USA. E-mail:
| |
Collapse
|
2
|
Acosta-Herrera M, González-Gay MA, Martín J, Márquez A. Leveraging Genetic Findings for Precision Medicine in Vasculitis. Front Immunol 2019; 10:1796. [PMID: 31428096 PMCID: PMC6687877 DOI: 10.3389/fimmu.2019.01796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Vasculitides are a heterogeneous group of low frequent disorders, mainly characterized by the inflammation of blood vessels that narrows or occlude the lumen and limits the blood flow, leading eventually to significant tissue and organ damage. These disorders are classified depending on the size of the affected blood vessels in large, medium, and small vessel vasculitis. Currently, it is known that these syndromes show a complex etiology in which both environmental and genetic factors play a major role in their development. So far, these conditions are not curable and the therapeutic approaches are mainly symptomatic. Moreover, a percentage of the patients do not adequately respond to standard treatments. Over the last years, numerous genetic studies have been carried out to identify susceptibility loci and biological pathways involved in vasculitis pathogenesis as well as potential genetic predictors of treatment response. The ultimate goal of these studies is to identify new therapeutic targets and to improve the use of existing drugs to achieve more effective treatments. This review will focus on the main advances made in the field of genetics and pharmacogenetics of vasculitis and their potential application for ameliorating long-term outcomes in patient management and in the development of precision medicine.
Collapse
Affiliation(s)
| | - Miguel A González-Gay
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, Granada, Spain
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, Granada, Spain.,Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
|
4
|
Mkaddem SB, Murua A, Flament H, Titeca-Beauport D, Bounaix C, Danelli L, Launay P, Benhamou M, Blank U, Daugas E, Charles N, Monteiro RC. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat Commun 2017; 8:246. [PMID: 28811476 PMCID: PMC5557797 DOI: 10.1038/s41467-017-00294-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoreceptors can transduce either inhibitory or activatory signals depending on ligand avidity and phosphorylation status, which is modulated by the protein kinases Lyn and Fyn. Here we show that Lyn and Fyn control immune receptor signaling status. SHP-1 tyrosine 536 phosphorylation by Lyn activates the phosphatase promoting inhibitory signaling through the immunoreceptor. By contrast, Fyn-dependent phosphorylation of SHP-1 serine 591 inactivates the phosphatase, enabling activatory immunoreceptor signaling. These SHP-1 signatures are relevant in vivo, as Lyn deficiency exacerbates nephritis and arthritis in mice, whereas Fyn deficiency is protective. Similarly, Fyn-activating signature is detected in patients with lupus nephritis, underlining the importance of this Lyn-Fyn balance. These data show how receptors discriminate negative from positive signals that respectively result in homeostatic or inflammatory conditions.Src-family kinases Fyn and Lyn are signaling components downstream of ITAM-bearing antigen receptors. Here the authors show that by phosphorylating SHP-1 at different residues, Lyn and Fyn can have opposing regulatory effects on ITAM receptors.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.
- CNRS ERL8252, Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
| | - Amaya Murua
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Héloise Flament
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France
| | - Dimitri Titeca-Beauport
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Carine Bounaix
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Luca Danelli
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Pierre Launay
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Marc Benhamou
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Ulrich Blank
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Eric Daugas
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Service de Néphrologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Charles
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Renato C Monteiro
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.
- CNRS ERL8252, Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
- Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France.
| |
Collapse
|
5
|
Abstract
Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Paul Renauer
- University of Michigan, department of internal medicine, division of rheumatology, Ann Arbor, MI, USA
| | - Amr H Sawalha
- University of Michigan, department of internal medicine, division of rheumatology, Ann Arbor, MI, USA; University of Michigan, center for computational medicine and bioinformatics, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Kuo HC, Chang JC, Kuo HC, Yu HR, Wang CL, Lee CP, Huang LT, Yang KD. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array. Arthritis Rheumatol 2015; 67:828-36. [PMID: 25470559 DOI: 10.1002/art.38976] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/25/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Kawasaki disease (KD) is characterized by systemic vasculitis, and it is the most common acquired heart disease in children. However, the etiology and immunopathogenesis of KD are still unclear. A genome-wide association study (GWAS) identified polymorphisms in CD40, BLK, and FCGR2A as the susceptibility genes for KD. No epigenetic array studies of KD have previously been published. This study was undertaken to investigate differences in DNA methylation in patients with KD as compared to controls. METHODS The HumanMethylation27 BeadChip (Illumina) was used to survey the differences in DNA methylation between KD patients and controls. DNA methylation array validation was performed in a separate cohort by pyrosequencing assay and reporter gene assays. Messenger RNA (mRNA) expression was determined, and the association of methylation with response to intravenous immunoglobulin (IVIG) treatment was analyzed. RESULTS HumanMethylation27 BeadChip assay showed a 15% difference in methylation of 10 genes between KD patients and controls. The FCGR2A cg24422489 group, which was recently reported to be associated with KD susceptibility in a GWAS, had significant hypomethylation of 15.54% less in the KD group than in the control group. Validation of FCGR2A methylation in another cohort also showed significant hypomethylation in the KD group (5 of 5 CpG sites [P < 0.01]; n = 43 in the KD group and n = 55 in the control group). KD patients with IVIG resistance showed hypomethylation of 5 CpG sites (P < 0.05). FCGR2A mRNA expression was significantly increased in patients in the acute stage of KD compared to controls. Reporter gene assays indicated that the CpG sites of the FCGR2A promoter region were sufficient to modulate gene expression. CONCLUSION This is the first study to examine the DNA methylation array in KD and identify a role of hypomethylation of FCGR2A in susceptibility to KD and IVIG resistance.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Microbiol Immunol 2014; 382:321-52. [PMID: 25116107 DOI: 10.1007/978-3-319-07911-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.
Collapse
|
8
|
Abstract
Acute lung injury is a complex clinical syndrome involving acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure culminating in often-fatal acute respiratory distress syndrome. Interleukin 8 (IL-8), a potent neutrophil attractant and activator, plays a significant role in acute lung injury via the formation of anti-IL-8 autoantibody:IL-8 complexes and those complexes' interaction with FcγRIIa receptors, leading to the development of acute lung injury by, among other possible mechanisms, effecting neutrophil apoptosis. These complexes may also interact with lung endothelial cells in patients with acute respiratory distress syndrome. Continuing research of the role of neutrophils, IL-8, anti-IL-8 autoantibody:IL-8 complexes, and FcγRIIa receptors may ultimately provide molecular therapies that could lower acute respiratory distress syndrome mortality, as well as reduce or even prevent the development of acute lung injury altogether.
Collapse
Affiliation(s)
- Timothy Craig Allen
- From the Departments of Pathology (Dr Allen) and Biochemistry (Dr Kurdowska), University of Texas Health Science Center at Tyler. Dr Allen is now located at the University of Texas Medical Branch at Galveston, Texas
| | | |
Collapse
|
9
|
Lux A, Nimmerjahn F. Of mice and men: the need for humanized mouse models to study human IgG activity in vivo. J Clin Immunol 2012; 33 Suppl 1:S4-8. [PMID: 22948744 DOI: 10.1007/s10875-012-9782-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/23/2012] [Indexed: 11/25/2022]
Abstract
Antibodies of the IgG isotype have a variety of pro- and anti-inflammatory effector functions, making them attractive platforms for the development of novel therapeutic approaches. Animal model systems have been invaluable to the understanding of the underlying mechanisms of IgG activity. However, differences in the IgG subclasses and Fc receptors responsible for mediating IgG-dependent effector functions, even between such closely related species as humans and monkeys, make it difficult to predict the activity of human IgG in vivo. This review will focus on currently available animal model systems used to study human IgG activity and will propose novel model systems that might enable us to obtain a closer look at the molecular and cellular mechanisms underlying human IgG activity in vivo.
Collapse
Affiliation(s)
- Anja Lux
- Department of Biology, University of Erlangen-Nuernberg, Staudtstr 5, Erlangen 91058, Germany
| | | |
Collapse
|
10
|
Tada M, Ishii-Watabe A, Maekawa K, Fukushima-Uesaka H, Kurose K, Suzuki T, Kaniwa N, Sawada JI, Kawasaki N, Nakajima TE, Kato K, Yamada Y, Shimada Y, Yoshida T, Ura T, Saito M, Muro K, Doi T, Fuse N, Yoshino T, Ohtsu A, Saijo N, Okuda H, Hamaguchi T, Saito Y, Matsumura Y. Genetic polymorphisms of FCGR2A encoding Fcγ receptor IIa in a Japanese population and functional analysis of the L273P variant. Immunogenetics 2012; 64:869-77. [DOI: 10.1007/s00251-012-0646-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/06/2012] [Indexed: 01/21/2023]
|
11
|
Zhang CY, Booth JW. Differences in endocytosis mediated by FcγRIIA and FcγRIIB2. Mol Immunol 2011; 49:329-37. [PMID: 21945020 DOI: 10.1016/j.molimm.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 08/15/2011] [Accepted: 09/05/2011] [Indexed: 01/04/2023]
Abstract
An important function of Fcγ receptors is the removal of IgG-containing immune complexes from the circulation. The activating receptor FcγRIIA and inhibitory receptor FcγRIIB2 are both expressed on human myeloid cells, and are both capable of mediating endocytosis of immune complexes. We studied endocytosis of these two receptors expressed by transfection in ts20 Chinese hamster fibroblasts. We find that while FcγRIIA-mediated endocytosis requires the participation of the ubiquitin-conjugating system, the endocytosis of FcγRIIB2 does not. Little if any ubiquitylation of FcγRIIB2 was observed in response to immune complex binding. FcγRIIB2 mediates internalization of immune complexes at a faster rate than FcγRIIA, and facilitates the endocytosis of FcγRIIA upon co-engagement of both receptors. This may represent a novel mechanism by which the inhibitory receptor can reduce signalling from the activating Fcγ receptor.
Collapse
Affiliation(s)
- Christine Y Zhang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
12
|
Ramsland PA, Farrugia W, Bradford TM, Tan Sardjono C, Esparon S, Trist HM, Powell MS, Szee Tan P, Cendron AC, Wines BD, Scott AM, Hogarth PM. Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3208-17. [PMID: 21856937 PMCID: PMC3282893 DOI: 10.4049/jimmunol.1101467] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.
Collapse
Affiliation(s)
- Paul A. Ramsland
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Surgery, Austin Hospital, University of Melbourne, Heidelberg, Victoria 3084, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - William Farrugia
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Tessa M. Bradford
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Sandra Esparon
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Halina M. Trist
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Maree S. Powell
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| | - Peck Szee Tan
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Angela C. Cendron
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Bruce D. Wines
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| | - Andrew M. Scott
- Tumour Targeting Program, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Victoria 3084, Australia
| | - P. Mark Hogarth
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| |
Collapse
|
13
|
Marois L, Vaillancourt M, Paré G, Gagné V, Fernandes MJG, Rollet-Labelle E, Naccache PH. CIN85 modulates the down-regulation of Fc gammaRIIa expression and function by c-Cbl in a PKC-dependent manner in human neutrophils. J Biol Chem 2011; 286:15073-84. [PMID: 21372129 PMCID: PMC3083175 DOI: 10.1074/jbc.m110.213660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Indexed: 01/04/2023] Open
Abstract
We previously described a non-classical mechanism that arrests FcγRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. The engagement of FcγRIIa leads to its ubiquitination by the ubiquitin ligase c-Cbl and degradation by the proteasome. Herein, we further examined some of the events regulating this novel pathway. The adaptor protein CIN85 was described in other systems to be involved in the regulation of the c-Cbl-dependent pathway. We found that CIN85 is expressed in human neutrophils and that it translocates like c-Cbl from the cytosol to the plasma membrane following receptor cross-linking. CIN85 was also recruited to the same subset of high density detergent-resistant membrane fractions in which stimulated FcγRIIa partitioned with c-Cbl. The integrity of these microdomains is essential to the FcγRIIa degradation process because the cholesterol-depleting agent methyl-β-cyclodextrin inhibits this event. Silencing the expression of CIN85 by siRNA in dibutyryl cyclic AMP-differentiated PLB 985 cells prevented FcγRIIa degradation and increased IgG-mediated phagocytosis. Confocal microscopy revealed that the presence of CIN85 is essential to the proper sorting of FcγRIIa during endocytosis. We also provide direct evidence that CIN85 is a substrate of serine/threonine kinase PKCs. Classical PKCs positively regulate FcγRIIa ubiquitination and degradation because these events were inhibited by Gö6976, a classical PKC inhibitor. We conclude that the ubiquitination and degradation of stimulated FcγRIIa mediated by c-Cbl are positively regulated by the adaptor protein CIN85 in a PKC-dependent manner and that these events contribute to the termination of FcγRIIa signaling.
Collapse
Affiliation(s)
- Louis Marois
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Myriam Vaillancourt
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Guillaume Paré
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Valérie Gagné
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Maria J. G. Fernandes
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Emmanuelle Rollet-Labelle
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Paul H. Naccache
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
14
|
Lux A, Nimmerjahn F. Impact of Differential Glycosylation on IgG Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:113-24. [DOI: 10.1007/978-1-4419-5632-3_10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Marois L, Paré G, Vaillancourt M, Rollet-Labelle E, Naccache PH. Fc gammaRIIIb triggers raft-dependent calcium influx in IgG-mediated responses in human neutrophils. J Biol Chem 2010; 286:3509-19. [PMID: 21123174 DOI: 10.1074/jbc.m110.169516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neutrophils constitutively express a unique combination of FcγRs, namely FcγRIIa and FcγRIIIb. Numerous lines of evidence support the concept that these FcγRs generate only partially characterized intracellular signals. However, despite the fact that both receptors are likely to be engaged simultaneously in a physiological setting, no recent publications have investigated the distinct, although partially convergent, results of their joint activation in IgG-dependent responses. To examine the significance of the co-expression of FcγRIIa and FcγRIIIb on human neutrophils, we analyzed the neutrophil responses to stimuli that engage these FcγRs, namely the phagocytosis of human IgG-opsonized zymosan and the responses to heat-aggregated IgGs. Blocking antibodies to either FcγR significantly decreased the phagocytic index and the stimulated production of superoxide anions. Both receptors are required for optimal IgG-dependent responses by human neutrophils. On the other hand, only blocking antibodies to FcγRIIIb, but not to FcγRIIa, inhibited the mobilization of calcium in response to heat-aggregated IgGs. Furthermore, phagocytosis of IgG-opsonized zymosan by human neutrophils required an extracellular influx of calcium that was blocked only by antibodies against FcγRIIIb. We also observed that this calcium influx as well as the IgG-dependent phagocytosis were dependent on the integrity of the plasma membrane detergent-resistant microdomains to which both isoforms were recruited following stimulation by heat-aggregated IgGs. These data clarify the mechanisms that regulate the FcγRs constitutively expressed on human neutrophils, describe a specific contribution of FcγRIIIb at the level of the mobilization of calcium, and provide evidence for a crucial role of detergent-resistant microdomains in this process.
Collapse
Affiliation(s)
- Louis Marois
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Québec City, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
16
|
Zhang CY, Booth JW. Divergent intracellular sorting of Fc{gamma}RIIA and Fc{gamma}RIIB2. J Biol Chem 2010; 285:34250-8. [PMID: 20736173 DOI: 10.1074/jbc.m110.143834] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human low affinity FcγRII family includes both the activating receptor FcγRIIA and the inhibitory receptor FcγRIIB2. These receptors have opposing signaling functions but are both capable of internalizing IgG-containing immune complexes through clathrin-mediated endocytosis. We demonstrate that upon engagement by multivalent aggregated human IgG, FcγRIIA expressed in ts20 Chinese hamster fibroblasts is delivered along with its ligand to lysosomal compartments for degradation, while FcγRIIB2 dissociates from the ligand and is routed separately into the recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase activity or ubiquitylation of receptor lysine residues. The sorting of FcγRIIB2 away from a degradative fate is not due to its lower affinity for IgG and occurs even upon persistent receptor aggregation. Upon co-engagement of FcγRIIA and FcγRIIB2, the receptors are sorted independently to distinct final fates after dissociation of co-clustering ligand. These results reveal fundamental differences in the trafficking behavior of different Fcγ receptors.
Collapse
Affiliation(s)
- Christine Y Zhang
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
17
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
18
|
Van de Velde NC, Mottram PL, Powell MS, Lim B, Holmdahl R, Hogarth PM. Transgenic mice expressing human FcgammaRIIa have enhanced sensitivity to induced autoimmune arthritis as well as elevated Th17 cells. Immunol Lett 2010; 130:82-8. [PMID: 20005897 DOI: 10.1016/j.imlet.2009.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
The major human Fc receptor, huFcgammaRIIa, is implicated in the development of autoimmune arthritis in humans but until recently has not been studied in mouse models. We evaluated potential roles of FcgammaRIIa by using transgenic mice expressing the receptor. We examined two models of induced autoimmune arthritis pristane-induced arthritis (PIA) and collagen-induced arthritis (CIA) as well as the anti-collagen-II antibody-induced arthritis (CAIA) model. In the induced arthritis models PIA and CIA, the transgenic mice developed a more severe arthritis than the other arthritis-prone SJL or DBA1 mice. Interestingly, anti-collagen-II antibodies were elevated in PIA in the susceptible mice. In the CIA model, the highly susceptible transgenic mouse had IgG subclass levels equivalent to the unaffected and disease resistant C57BL/6 mouse strain implying that the FcgammaRIIa lowers the threshold of IgG dependent leukocyte activation. This is consistent with the greatly enhanced sensitivity of the FcgammaRIIa transgenic mice to CAIA which clearly indicates a role for the receptor at least at the inflammatory effector cell level. Other roles for huFcgammaRIIa or other gene products in the development of autoimmunity cannot be ruled out however, especially as the mice exhibited elevated Th1 or Th17 CD4 T cells in the draining lymph nodes.
Collapse
|
19
|
Clark AJ, Petty HR. A cell permeant peptide containing the cytoplasmic tail sequence of Fc receptor type IIA reduces calcium signaling and phagolysosome formation in neutrophils. Cell Immunol 2009; 261:153-8. [PMID: 20038460 DOI: 10.1016/j.cellimm.2009.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/29/2022]
Abstract
Receptors for the Fc domain of IgG mediate target recognition, signal transduction, and effector functions including antibody-dependent cytolysis, phagocytosis, and phagolysosome formation. To better understand FcR-mediated functions and to identify potential therapeutic strategies, we employed cell-penetrating ("Trojan") peptides to deliver "wild-type" (LTL) or modified (AAA) FcgammaRIIA tail sequences to the neutrophil's cytoplasm. The Trojan-LTL peptide appeared to label the endoplasmic reticulum whereas the Trojan-AAA peptide distributed throughout the cytoplasm. The Trojan-LTL peptide, but not the Trojan-AAA peptide, decreased Ca(2+) signaling at the phagosome and reduced phagolysosome formation. These studies suggest that FcgammaRIIA's tail can act as a peptide decoy thereby blunting FcgammaRIIA-mediated processes, which, in turn, suggests a possible route in managing inflammatory tissue damage.
Collapse
Affiliation(s)
- Andrea J Clark
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, 48105, USA
| | | |
Collapse
|
20
|
Masuda A, Yoshida M, Shiomi H, Morita Y, Kutsumi H, Inokuchi H, Mizuno S, Nakamura A, Takai T, Blumberg RS, Azuma T. Role of Fc Receptors as a therapeutic target. ACTA ACUST UNITED AC 2009; 8:80-6. [PMID: 19275696 DOI: 10.2174/187152809787582525] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been forty years since the discovery of Fc Receptors and their function. Fc Receptors include the IgG receptors (FcgammaR), high-affinity IgE receptor (FcepsilonRI), IgA and IgA/IgM receptors, and neonatal Fc receptor for IgG (FcRn). In particular, the FcgammaRs have been well known to play an important role in many biologic processes including those associated with the response to infection and cancer as well as in the pathogenesis of immune-mediated diseases. Both positive and negative regulatory function has ascribed to Fc receptors and FcgammaRs in particular which serve to establish a threshold for immune cell activation. In other cases, Fc receptors such as FcRn possess a novel structure and function by playing a major role in the transport of IgG across polarized epithelial barriers at mucosal surfaces and in the regulation of IgG half-life. These diverse functions highlight the potential effectiveness of targeting Fc receptors for therapeutic purposes. This review summarizes new information available in the therapeutic applications of this biology.
Collapse
Affiliation(s)
- Atsuhiro Masuda
- Department of Gastroenterology, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marois L, Vaillancourt M, Marois S, Proulx S, Paré G, Rollet-Labelle E, Naccache PH. The ubiquitin ligase c-Cbl down-regulates FcgammaRIIa activation in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2009; 182:2374-84. [PMID: 19201892 DOI: 10.4049/jimmunol.0801420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the mechanisms that arrest FcgammaRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. In our previous studies, we observed a loss of immunoreactivity of Abs directed against FcgammaRIIa following its cross-linking. In this study, we report on the mechanisms involved in this event. A stimulated internalization of FcgammaRIIa leading to the down-regulation of its surface expression was observed by flow cytometry and confocal microscopy. Immunoprecipitation of the receptor showed that FcgammaRIIa is ubiquitinated after stimulation. MG132 and clasto-lactacystin beta-lactone inhibited the loss of immunoreactivity of FcgammaRIIa, suggesting that this receptor was down-regulated via the proteasomal pathway. The E3 ubiquitin ligase c-Cbl was found to translocate from the cytosol to the plasma membrane following receptor cross-linking. Furthermore, c-Cbl was recruited to the same subset of high-density, detergent-resistant membrane fractions as stimulated FcgammaRIIa itself. Silencing the expression of c-Cbl by small interfering RNA decreased FcgammaRIIa ubiquitination and prevented its degradation without affecting the internalisation process. It also prolonged the stimulation of the tyrosine phosphorylation response to the cross-linking of the receptor. We conclude that c-Cbl mediates the ubiquitination of stimulated FcgammaRIIa and thereby contributes to the termination of FcgammaRIIa signaling via its proteasomal degradation, thus leading to the down-regulation of neutrophil signalisation and function (phagocytosis) through this receptor.
Collapse
Affiliation(s)
- Louis Marois
- Centre de recherche en rhumatologie et immunologie, Centre de recherche du Centre hospitalier universitaire de Québec, Department of Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Inhibition of destructive autoimmune arthritis in FcgammaRIIa transgenic mice by small chemical entities. Immunol Cell Biol 2008; 87:3-12. [PMID: 19030019 DOI: 10.1038/icb.2008.82] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction of immune complexes with the human Fc receptor, FcgammaRIIa, initiates the release of inflammatory mediators and is implicated in the pathogenesis of human autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, so this FcR is a potential target for therapy. We have used the three-dimensional structure of an FcgammaRIIa dimer to design small molecule inhibitors, modeled on a distinct groove and pocket created by receptor dimerization, adjacent to the ligand-binding sites. These small chemical entities (SCEs) blocked immune complex-induced platelet activation and aggregation and tumor necrosis factor secretion from macrophages in a human cell line and transgenic mouse macrophages. The SCE appeared specific for FcgammaRIIa, as they inhibited only immune complex-induced responses and had no effect on responses to stimuli unrelated to FcR, for example platelet stimulation with arachidonic acid. In vivo testing of the SCE in FcgammaRIIa transgenic mice showed that they inhibited the development and stopped the progression of collagen-induced arthritis (CIA). The SCEs were more potent than methotrexate and anti-CD3 in sustained suppression of CIA. Thus, in vitro and in vivo activity of these SCE FcgammaRIIa receptor antagonists demonstrated their potential as anti-inflammatory agents for autoimmune diseases involving immune complexes.
Collapse
|
23
|
Anti-interleukin-8 autoantibody:interleukin-8 immune complexes in acute lung injury/acute respiratory distress syndrome. Clin Sci (Lond) 2008; 114:403-12. [DOI: 10.1042/cs20070272] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ALI/ARDS (acute lung injury/acute respiratory distress syndrome) is a severe inflammatory lung disease associated with very high mortality. Importantly, no effective therapy has been developed to date for ALI/ARDS. Neutrophils have been implicated in the pathogenesis of ALI/ARDS, and IL-8 (interleukin-8) has been identified as the main chemotactic factor for neutrophils in lung fluids of patients with ALI/ARDS. Significantly, studies from our laboratory have revealed the presence of anti-IL-8 autoantibody:IL-8 immune complexes in lung fluids from patients with ALI/ARDS. Autoantibodies to several cytokines, including IL-8, have been found in human plasma and other tissues. The function of anticytokine autoantibodies is far from clear; however, in some instances, it has been suggested that such autoantibodies may contribute to the pathogenesis of variety of human diseases. In addition, many of these autoantibodies can form immune complexes with target cytokines. Furthermore, immune complexes consisting of anti-IL-8 autoantibodies and IL-8 are very stable due to the high affinity of autoantibodies against IL-8. These complexes are present in various human tissues, including the lung, as they have been detected in lung fluids from patients with ALI/ARDS. In this review, the significance of the latter findings are explored, and the possible involvement of anti-IL-8 autoantibody:IL-8 immune complexes in pathogenesis of ALI/ARDS is discussed.
Collapse
|
24
|
Cendron AC, Wines BD, Brownlee RTC, Ramsland PA, Pietersz GA, Hogarth PM. An FcgammaRIIa-binding peptide that mimics the interaction between FcgammaRIIa and IgG. Mol Immunol 2007; 45:307-19. [PMID: 17673295 DOI: 10.1016/j.molimm.2007.06.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/13/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
A disulphide-constrained peptide that binds to the low affinity Fc receptor, FcgammaRIIa (CD32) has been identified and its structure solved by NMR. Linear (7-mer and 12-mer) and disulphide-constrained (7-mer) phage display peptide libraries were panned on recombinant soluble FcgammaRIIa genetically fused to HSA (HSA-FcgammaRIIa). Peptides were isolated only from the constrained peptide library and these contained the consensus sequence, CWPGWxxC. Phage clones displaying variants of the peptide consensus sequence bound to FcgammaRIIa and the strongest binding clone C7C1 (CWPGWDLNC) competed with IgG for binding to FcgammaRIIa and was inhibited from binding to FcgammaRIIa by the FcgammaRIIa-blocking antibody, IV.3, suggesting that C7C1 and IgG share related binding sites on FcgammaRIIa. A synthetic disulphide-constrained peptide, pep-C7C1 bound to FcgammaRIIa by biosensor analysis, albeit with low affinity (KD approximately 100microM). It was significant that the FcgammaRIIa consensus peptide sequence contained a Proline (Pro3), which when substituted with alanine abrogated FcgammaRIIa binding, consistent with Pro3 contributing to receptor binding. Upon binding of IgG and IgE to their respective Fc receptors (FcgammaRs and FcepsilonRI) Pro329 in the Fc makes a critical interaction with two highly conserved Trp residues (Trp90 and Trp113) of the FcRs. The NMR structure of pep-C7C1 revealed a stabilizing type II beta-turn between Trp2 and Trp5, with Pro3 solvent exposed. Modelling of the pep-C7C1 structure in complex with FcgammaRIIa suggests that Pro3 of C7C1 binds to FcgammaRIIa by inserting between Trp90 and Trp113 of FcgammaRIIa thereby mimicking the molecular interaction made between FcgammaRIIa and IgG.
Collapse
Affiliation(s)
- Angela C Cendron
- Burnet Institute, Austin Campus, Studley Road, Heidelberg, Vic. 3084, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Allen TC, Fudala R, Nash SE, Kurdowska A. Anti-interleukin 8 autoantibody:interleukin 8 immune complexes visualized by laser confocal microscopy in injured lung. Arch Pathol Lab Med 2007; 131:452-6. [PMID: 17516748 DOI: 10.5858/2007-131-452-aaicvb] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT Anti-interleukin 8 autoantibody:interleukin 8 (anti-IL-8 autoantibody:IL-8) complexes are present in lung fluids of patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS), and levels of these complexes correlate with progression to and the outcome of ARDS. Fc gammaRIIa, an immunoglobulin G (IgG) receptor, mediates proinflammatory activity of the complexes. OBJECTIVE To evaluate lung tissues from patients with ARDS for presence of anti-IL-8 autoantibody:IL-8 complexes and to establish whether the complexes associate with Fc gammaRIIa. DESIGN Lung tissue sections from 3 patients with ARDS and sections of normal lung tissues from 3 patients were stained with antibodies against IL-8 and IgG to detect immune complexes and with antibody against Fc gammaRIIa. In some experiments, sections were blocked with anti-Fc gamma RIIa antibody before staining. Samples were analyzed using confocal microscopy. RESULTS Interleukin 8 costained with IgG and Fc gammaRIIa in lung tissues from patients with ARDS but not in control tissues, suggesting that anti-IL-8 autoantibody:IL-8 complexes are deposited in lungs of patients with ARDS via Fc gammaRIIa. Further, colocalization between IL-8 and Fc gammaRIIa could be blocked by anti-Fc gammaRIIa. CONCLUSIONS Our data demonstrate that anti-IL-8 autoantibody:IL-8 complexes are present in lung tissues of patients with ARDS, and are attached to Fc gammaRIIa.
Collapse
Affiliation(s)
- Timothy Craig Allen
- Department of Pathology, University of Texas Health Center, 11937 US Hwy 271, Tyler, TX 75708, USA
| | | | | | | |
Collapse
|
26
|
Elshafie AI, Ahlin E, Mathsson L, ElGhazali G, Rönnelid J. Circulating Immune Complexes (IC) and IC-Induced Levels of GM-CSF Are Increased in Sudanese Patients with Acute VisceralLeishmania donovaniInfection Undergoing Sodium Stibogluconate Treatment: Implications for Disease Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:5383-9. [PMID: 17404324 DOI: 10.4049/jimmunol.178.8.5383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with Leishmania donovani is associated with IL-10 as well as with GM-CSF. Immune complexes (IC) exert important functions by stimulation of monocytes/macrophage-mediated production of pro- and anti-inflammatory cytokines in rheumatic diseases. In this investigation, we have explored IC-induced cytokine production during Leishmania infection. Sera from 43 patients with visceral leishmaniasis (VL), 17 patients with post-kala-azar dermal leishmaniasis, and 20 healthy Sudanese controls were precipitated with polyethylene glycol (PEG). The PEG precipitates were added to serum-free PBMC for 20 h,whereupon supernatant levels of IL-1beta, IL-6, IL-10, IL-1 receptor antagonist protein, TNF-alpha, TNF receptor p75, and GM-CSF were investigated using ELISA. Circulating levels of C1q-binding IC were also measured in the serum samples. PEG precipitates from Leishmania-infected patients induced significantly higher levels of GM-CSF (p = 0.0037) and IL-10 (p < 0.0001), as well as of IL-6 (p < 0.0001) and IL-1 receptor antagonist (p = 0.0238) as compared with PEG precipitates from controls. Patients with acute VL as well as VL patients receiving sodium stibogluconate treatment displayed significantly increased levels of PEG precipitate-induced GM-CSF. The induction of GM-CSF by circulating IC was especially prominent in acute VL patients receiving sodium stibogluconate treatment; ANOVA revealed significant interaction between disease activity and treatment for PEG precipitate-induced levels of GM-CSF (disease activity, p = 0.0006; treatment, p = 0.0005; interaction, p = 0.0046). Parallel associations were determined for C1q-binding immune complexes, but not for any cytokine other than GM-CSF. The importance of IC-induced GM-CSF in leishmaniasis warrants further study.
Collapse
|
27
|
van de Velde NC, Mottram PL, Hogarth PM. FcgammaRII and multi-system autoimmune disease. ACTA ACUST UNITED AC 2006; 28:329-38. [PMID: 17091247 DOI: 10.1007/s00281-006-0056-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 12/20/2022]
Abstract
The FcR are a crucial link in the immune response between humoral and cellular immunity and cell-based effector systems, mediating a wide variety of physiological and biochemical responses. The FcR for IgG (FcgammaR) and in particular the most widely expressed of these, FcgammaRII, are important in regulating adaptive immunity. Disruption of their function is a key factor in the development of autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by chronic, multi-organ inflammation. Studies of the FcgammaRII include structure/function relationships, investigation of the associations between FcR polymorphisms and human disease and animal studies using knockout or transgenic mouse models. These investigations showed that the various forms of FcgammaRII interact with immune complexes to either initiate or inhibit inflammation. In conjunction with environmental antigens and genotype, the FcgammaRII activating and inhibitory receptors determine the nature and magnitude of response to antigens. In this review, the structure and function of the FcgammaRIIs and their role in immune complex-mediated auto-immunity are discussed.
Collapse
Affiliation(s)
- Nicholas C van de Velde
- Burnet Institute (Austin Campus), Austin Hospital, Studley Road, Heidelberg, Victoria, 3084, Australia,
| | | | | |
Collapse
|
28
|
Mullazehi M, Mathsson L, Lampa J, Rönnelid J. Surface-bound anti-type II collagen-containing immune complexes induce production of tumor necrosis factor alpha, interleukin-1beta, and interleukin-8 from peripheral blood monocytes via Fc gamma receptor IIA: a potential pathophysiologic mechanism for humoral anti-type II collagen immunity in arthritis. ACTA ACUST UNITED AC 2006; 54:1759-71. [PMID: 16736518 DOI: 10.1002/art.21892] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Type II collagen (CII) is a major component of hyaline cartilage, and antibodies against CII are found in a subgroup of patients with rheumatoid arthritis. We undertook this study to investigate whether and how antibodies directed against CII can form solid-phase immune complexes (ICs) with cytokine-inducing properties in a model theoretically resembling the situation in the inflamed joint, in which CII is exposed for interaction with anti-CII antibodies during periods of inflammation. METHODS Sixty-five arthritis patients with varying levels of anti-native CII antibodies and 10 healthy controls were evaluated concerning anti-CII and cytokines induced in a solid-phase IC model. Monocytes were either depleted or enriched to define responder cells. Antibodies blocking Fc gamma receptors (Fc gammaR) were used to define the responsible T cell surface receptors. RESULTS ICs containing anti-CII from arthritis patients induced the production of tumor necrosis factor alpha (TNFalpha), interleukin-1beta (IL-1beta), and IL-8. We found a close correlation between enzyme-linked immunosorbent assay optical density values and induction of TNFalpha (r = 0.862, P < 0.0001), IL-1beta (r = 0.839, P < 0.0001), and IL-8 (r = 0.547, P < 0.0001). The anti-CII-containing IC density threshold needed for cytokine induction differed among peripheral blood mononuclear cell donors. Anti-CII-containing IC-induced cytokine production was almost totally abolished (>99%) after monocyte depletion, and receptor blocking studies showed significant decreases in the production of TNFalpha, IL-1beta, and IL-8 after blocking Fc gammaRIIa, but not after blocking Fc gammaRIII. CONCLUSION These findings represent a possible mechanism for perpetuation of joint inflammation in the subgroup of arthritis patients with high levels of anti-CII. Blockade of Fc gammaRIIa and suppression of synovial macrophages are conceivable treatment options in such patients.
Collapse
|
29
|
Mathsson L, Lampa J, Mullazehi M, Rönnelid J. Immune complexes from rheumatoid arthritis synovial fluid induce FcgammaRIIa dependent and rheumatoid factor correlated production of tumour necrosis factor-alpha by peripheral blood mononuclear cells. Arthritis Res Ther 2006; 8:R64. [PMID: 16569263 PMCID: PMC1526644 DOI: 10.1186/ar1926] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 02/10/2006] [Accepted: 02/20/2006] [Indexed: 11/10/2022] Open
Abstract
Immune complexes (ICs) can induce production of cytokines by peripheral blood mononuclear cells via Fc receptors. Rheumatoid factor (RF) develop in response to ICs in many clinical and experimental settings. We investigated whether and how polyethylene glycol (PEG) precipitated ICs from rheumatoid arthritis (RA) sera and synovial fluid (SF) can influence cytokine production by peripheral blood mononuclear cells. We also examined the relationship between RF and IC induced cytokine production. Parallel sera and SF from 47 RA patients and sera from 15 healthy control individuals were PEG precipitated. The precipitates were added to serum-free peripheral blood mononuclear cell cultures and tumour necrosis factor (TNF)-alpha levels were measured after 20 hours. In separate cell culture experiments FcgammaRIIa and FcgammaRIII were blocked and monocytes were depleted or enriched. RF in serum was determined by nephelometry, and IgG levels in precipitates and anti-cyclic citrullinated peptide antibodies in serum were measured using ELISA. Clinical data were collected from the patients' charts. In two separate investigations, we demonstrated a correlation between RF, PEG-precipitated IgG levels and induction of the proinflammatory cytokine TNF-alpha by PEG-precipitated SF ICs. No such correlation was found for serum ICs. TNF-alpha levels induced by SF precipitates, but not serum precipitates, correlated with the number of swollen and tender joints. Monocytes/macrophages were shown to be the main responder cells, and blockade of FcgammaRIIa, but not blockade of FcgammaRIII, inhibited TNF-alpha production in cultures stimulated with precipitated ICs. Anti-cyclic citrullinated peptide correlated with RF but exhibited no association with IgG content in PEG precipitates or with precipitate-induced TNF-alpha levels. These findings support the hypothesis that SF ICs and correlated RF production are directly linked to cytokine-dependent inflammation in RA. Suppression of monocytes/macrophages in RA joints or blockade of the primate-specific activating FcgammaRIIa receptor might be ways to reduce IC-induced TNF-alpha production in the joints of seropositive RA patients.
Collapse
Affiliation(s)
- Linda Mathsson
- Unit of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Jon Lampa
- Unit of Rheumatology, Karolinska Institute, Stockholm, Sweden
| | | | - Johan Rönnelid
- Unit of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Unit of Rheumatology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
30
|
|
31
|
Tan Sardjono C, Mottram PL, van de Velde NC, Powell MS, Power D, Slocombe RF, Wicks IP, Campbell IK, McKenzie SE, Brooks M, Stevenson AW, Hogarth PM. Development of spontaneous multisystem autoimmune disease and hypersensitivity to antibody-induced inflammation in Fcgamma receptor IIa-transgenic mice. ACTA ACUST UNITED AC 2005; 52:3220-9. [PMID: 16200626 DOI: 10.1002/art.21344] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The major human Fc receptor, FcgammaRIIa, is the most widespread activating FcR. Our aim was to determine the role of FcgammaRIIa in a transgenic mouse model of immune complex-mediated autoimmunity and to characterize the development of spontaneous autoimmune disease. METHODS Arthritis was induced in normal and FcgammaRIIa-transgenic mice by immunization with type II collagen (CII) or by transfer of arthritogenic anti-CII antibodies. Also, mice that spontaneously developed autoimmune disease were assessed by clinical scoring of affected limbs, histology and serology, and measurement of autoantibody titers and cytokine production. RESULTS FcgammaRIIa-transgenic mice developed collagen-induced arthritis (CIA) more rapidly than did archetypal CIA-sensitive DBA/1 (H-2q) mice, while nontransgenic C57BL/6 (H-2b) mice did not develop CIA when similarly immunized. Passive transfer of a single dose of anti-CII antibody induced a more rapid, severe arthritis in FcgammaRIIa-transgenic mice than in nontransgenic animals. In addition, most immune complex-induced production of tumor necrosis factor alpha by activated macrophages occurred via FcgammaRIIa, not the endogenous mouse FcR. A spontaneous, multisystem autoimmune disease developed in aging (>20 weeks) transgenic mice (n = 25), with a 32% incidence of arthritis, and by 45 weeks, all mice had developed glomerulonephritis and pneumonitis, and most had antihistone antibodies. Elevated IgG2a levels were seen in mice with CIA and in those with spontaneous disease. CONCLUSION The presence of enhanced passive and induced autoimmunity, as well as the emergence of spontaneous autoimmune disease at 20-45 weeks of age, suggest that FcgammaRIIa is a very important factor in the pathogenesis of autoimmune inflammation and a possible target for therapeutic intervention.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/blood
- Antigens, CD/genetics
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Disease Models, Animal
- Disease Susceptibility
- Female
- Glomerulonephritis/genetics
- Glomerulonephritis/immunology
- Histones/immunology
- Humans
- Hypersensitivity/genetics
- Hypersensitivity/immunology
- Immunoglobulin G/blood
- Macrophages/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Pneumonia/genetics
- Pneumonia/immunology
- Pregnancy
- Radiography
- Receptors, IgG/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
32
|
Mathsson L, Tejde A, Carlson K, Höglund M, Nilsson B, Nilsson-Ekdahl K, Rönnelid J. Cryoglobulin-induced cytokine production via FcgammaRIIa: inverse effects of complement blockade on the production of TNF-alpha and IL-10. Implications for the growth of malignant B-cell clones. Br J Haematol 2005; 129:830-8. [PMID: 15953012 DOI: 10.1111/j.1365-2141.2005.05538.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies produced by patients with lymphoproliferative diseases sometimes appear as cryoglobulins (CG), immunoglobulins (Ig) that reversibly agglutinate and form immune complexes (IC) when cooled below normal body temperature or through variation in pH and ionic strength. In accordance with our findings of IC-induced cytokine production from peripheral blood mononuclear cells (PBMC) in systemic lupus erythematosus, we investigated whether CG can also induce cytokine production. One IgG and one IgM type I CG from two patients with multiple myeloma and Waldenstrom's macroglobulinaemia were individually purified and added to PBMC cultures. In separate experiments temperature and ionic strength were varied, or FcgammaRIIa, FcgammaRIII and complement activation were blocked; supernatant cytokine levels were then determined by enzyme-linked immunosorbent assay. CG-induced cytokine production from monocytes varied with precipitation induced by changes in temperature and ionic strength and was mediated via FcgammaRIIa- and complement-dependent mechanisms. Complement blockade resulted in increased IgG CG-induced interleukin (IL)-10 production that was inversely correlated with decreased production of tumour necrosis factor-alpha. CG-induced IL-10 might be a growth factor for malignant B-lymphocytes in CG-associated lymphoproliferative diseases with constant complement consumption. Knowledge of mechanisms underlying CG-induced cytokine production can be useful for designing treatments for type I CG-associated pathology in lymphoproliferative diseases.
Collapse
Affiliation(s)
- Linda Mathsson
- Unit of Clinical Immunology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lande R, Giacomini E, Serafini B, Rosicarelli B, Sebastiani GD, Minisola G, Tarantino U, Riccieri V, Valesini G, Coccia EM. Characterization and Recruitment of Plasmacytoid Dendritic Cells in Synovial Fluid and Tissue of Patients with Chronic Inflammatory Arthritis. THE JOURNAL OF IMMUNOLOGY 2004; 173:2815-24. [PMID: 15295000 DOI: 10.4049/jimmunol.173.4.2815] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are thought to play a key role in driving the immunopathogenic response underlying chronic inflammatory arthritis. In this study, we have examined the presence and phenotype of plasmacytoid DCs (pDCs) in the synovial fluids (SF) of patients with rheumatoid arthritis (RA), psoriatic arthritis (PA), and osteoarthritis (OA) and determined the chemotactic properties of SF from these patients toward pDCs. Flow cytometry analysis showed that the percentage of pDCs, identified as a population of Lin(-)CD123(++) cells, is 4- to 5-fold higher in RA SF and PA SF than in OA SF. The morphological and immunophenotypic characterization of pDCs isolated from PA and RA SF indicates that they are in an immature state, most likely due to inhibitory factors present in RA SF, but are still able to undergo maturation when exposed ex vivo to viral agent or unmethylated DNA. CD123(+) and BDCA2(+) pDCs were detected by immunohistochemistry in RA synovial tissue in which expression of the IFN-alpha-inducible protein MxA was also found, suggesting production of type I IFN by maturing pDCs. We also show that CXCR3 and CXCR4 are expressed by both blood-derived pDCs and pDCs isolated from RA and PA SF and that CXCL-10, CXCL-11, and CXCL-12 present in RA and PA SF stimulate chemotaxis of blood-derived pDCs. Altogether, these findings suggest that chemokine-driven recruitment of pDCs from the blood to the inflamed synovium could be important in the regulation of the immune response in chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Roberto Lande
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|