1
|
Nasim S, Abujamra BA, Chaparro D, Nogueira PDS, Riva A, Hutcheson JD, Kos L. Multiple cell types including melanocytes contribute to elastogenesis in the developing murine aortic valve. Sci Rep 2024; 14:25481. [PMID: 39461968 PMCID: PMC11513076 DOI: 10.1038/s41598-024-73673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Elastic fibers are crucial for aortic valve (AoV) function and are generated and maintained by valvular interstitial cells (VICs). VICs exhibit diverse phenotypes, yet the specific subpopulation responsible for producing and regulating elastic fibers remains unclear. This gap in knowledge is significant, given that elastin (Eln) abnormalities lead to congenital AoV defects and initiate AoV diseases. This study characterizes the timing of Eln expression in murine AoV, revealing it peaks during late embryogenesis and early postnatal stages, decreasing in adulthood. Spatial transcriptomics and RT-qPCR indicate that Eln expression correlates with genes associated to elastogenesis, including Acta2, a smooth muscle cell marker. While Eln expression is not exclusive to a single VIC subpopulation, RNAscope and immunofluorescence demonstrate a population of Eln-expressing VICs that co-express alpha smooth muscle actin and melanocytic markers. As previously reported in adult mice, we show a relationship between AoV pigment and elastic fiber patterning during early postnatal stages and further show that melanocytes may play a critical role in elastogenesis. In summary, Eln is expressed in the AoV during early postnatal stages by cells co-expressing markers of various types, highlighting the complexity of VICs phenotypes and their role in elastic fiber regulation.
Collapse
Affiliation(s)
- Sana Nasim
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Beatriz Abdo Abujamra
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Perony Da Silva Nogueira
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | | | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments. J Clin Med 2023; 12:jcm12031137. [PMID: 36769785 PMCID: PMC9918292 DOI: 10.3390/jcm12031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Human amniotic membranes (hAMs) are extraembryonic tissues currently employed in the treatment of many ocular and systemic diseases. Several reports indicate that hAMs can suppress the signaling pathway of tissue growth factor beta (TGF-β), a cytokine that plays a major role in the pathogenesis of proliferative vitreoretinopathy (PVR) through the induction of epithelial-mesenchymal transition (EMT) in exposed retinal pigmented epithelium (RPE) cells. The present study was conducted to evaluate the efficacy of a modified vitrectomy procedure (hAMP-V) involving the extensive coverage of exposed RPE with hAM patches to prevent postoperative PVR in a series of 15 cases of retinal detachment complicated by severe preoperatory PVR. The primary outcome was to assess the rate of successful retinal reattachment of a single hAMP-V procedure at 6 months from silicone oil removal. Secondary outcomes included the collection of intraoperative data concerning the quantity, size, and scope of hAM patches, and the assessment of postoperative improvements in mean LogMar BCVA at 3 and 6 months. Successful retinal reattachment was obtained in 14 out of 15 eyes (93.3%). Surgical failure due to major recurrence of PVR occurred in 1 out of 15 eyes (6.7%). Postoperative improvements in mean LogMar BCVA were statistically significant (p < 0.05, paired t-test). No intraoperative and postoperative adverse effects were reported. The study helped to refine the surgical technique while also offering cues for future improvements.
Collapse
|
3
|
Crispin M, Gerhart J, Heffer A, Martin M, Abdalla F, Bravo-Nuevo A, Philp NJ, Kuriyan AE, George-Weinstein M. Myo/Nog Cells Give Rise to Myofibroblasts During Epiretinal Membrane Formation in a Mouse Model of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 36723927 PMCID: PMC9904330 DOI: 10.1167/iovs.64.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Myo/Nog cells are the source of myofibroblasts in the lens and synthesize muscle proteins in human epiretinal membranes (ERMs). In the current study, we examined the response of Myo/Nog cells during ERM formation in a mouse model of proliferative vitreoretinopathy (PVR). Methods PVR was induced by intravitreal injections of gas and ARPE-19 cells. PVR grade was scored by fundus imaging, optical coherence tomography, and histology. Double label immunofluorescence localization was performed to quantify Myo/Nog cells, myofibroblasts, and leukocytes. Results Myo/Nog cells, identified by co-labeling with antibodies to brain-specific angiogenesis inhibitor 1 (BAI1) and Noggin, increased throughout the eye with induction of PVR and disease progression. They were present on the inner surface of the retina in grades 1/2 PVR and were the largest subpopulation of cells in grades 3 to 6 ERMs. All α-SMA-positive (+) cells and all but one striated myosin+ cell expressed BAI1 in grades 1 to 6 PVR. Folds and areas of retinal detachment were overlain by Myo/Nog cells containing muscle proteins. Low numbers of CD18, CD68, and CD45+ leukocytes were detected throughout the eye. Small subpopulations of BAI1+ cells expressed leukocyte markers. ARPE-19 cells were found in the vitreous but were rare in ERMs. Pigmented cells lacking Myo/Nog and muscle cell markers were present in ERMs and abundant within the retina by grade 5/6. Conclusions Myo/Nog cells differentiate into myofibroblasts that appear to contract and produce retinal folds and detachment. Targeting BAI1 for Myo/Nog cell depletion may be a pharmacological approach to preventing and treating PVR.
Collapse
Affiliation(s)
- Mara Crispin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Fathma Abdalla
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States
| | - Nancy J. Philp
- Sydney Kimmel Medical School of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, United States,Current address: Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | |
Collapse
|
4
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Huang YB, Liu PP, Zheng H, Yang XX, Yang CC, Liu Y, Liu Y. Inhibition of TGF-β2-induced migration and epithelial-mesenchymal transition in ARPE-19 by sulforaphane. Int J Ophthalmol 2021; 14:973-980. [PMID: 34282380 PMCID: PMC8243186 DOI: 10.18240/ijo.2021.07.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the effects of sulforaphane (SFN) on transforming growth factor (TGF)-β2 stimulated migration and epithelial-mesenchymal transition (EMT) in ARPE-19 cells. METHODS ARPE-19 cells were cultured in the presence or absence of SFN or TGF-β2. SFN toxicity was assessed by performing a lactate dehydrogenase assay (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays, and cell migration was evaluated by Transwell migration assay. Actin stress fiber formation in ARPE-19 cells was determined using immunofluorescence analysis. Immunoblotting analysis was used to determine fibronectin and α-smooth muscle actin expressions along with the degree of Smad and Akt phosphorylation. RESULTS SFN inhibited ARPE-19 migration. Additionally, SFN attenuated TGF-β2-induced appearance of actin stress fibers as well as fibronectin and α-smooth muscle actin expressions in these cells. SFN also hindered the TGF-β2-stimulated phosphorylation of Smad2, Smad3, and Akt. SFN showed no cytotoxicity towards ARPE-19 cells. CONCLUSION SFN inhibits TGF-β2-stimulated migration and EMT in ARPE-19 cells, probably by preventing the establishment of actin stress fibers and Akt and Smad2/3 signaling.
Collapse
Affiliation(s)
- Yan-Bing Huang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ping-Ping Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiu-Xia Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Cheng-Cheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
6
|
The Association between the Frequency of Rhegmatogenous Retinal Detachment and Atmospheric Temperature. J Ophthalmol 2020; 2020:2103743. [PMID: 32774898 PMCID: PMC7396048 DOI: 10.1155/2020/2103743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) frequency was observed to be higher with an increase in the daily temperature range. This showed that a wide daily range of temperature, rather than the absolute value of the temperature, is associated with the occurrence of RRD. Purpose. To investigate the association between the frequency of rhegmatogenous retinal detachment (RRD) and the atmospheric temperature. Method. A retrospective review of consecutive eyes that had undergone primary RRD surgery from 1996 to 2016 at Chungbuk National University Hospital was conducted. Temperature data (highest, lowest, and mean daily temperatures and daily temperature range) in Chungbuk Province were obtained from the Korean Meteorological Administration database. We investigated the relationship between the daily temperature range and the frequency of RRD surgery. We also analyzed the association between various temperature data and the frequency of RRD surgery. Result. There were 1,394 RRD surgeries from 1996 to 2016. Among them, 974 eyes were included in this study. The monthly average number of RRD operations showed a bimodal peak (in April and October) throughout the year. With the same tendency as the frequency of RRD, the monthly average of the daily temperature range over 1 year also showed a bimodal peak in April and October. There was a significant positive correlation between the monthly average of the daily temperature range and the number of RRD surgeries (r = 0.297, P < 0.001). However, there were no associations between RRD frequency and the mean temperature, highest temperature, and lowest temperature. Conclusion. The higher the daily temperature range, the higher was the RRD frequency observed. We speculated that dynamic changes in temperature during the day may affect degrees in chorioretinal adhesion and liquefaction of the vitreous, which may eventually result in retinal detachment. Therefore, further experimental studies on the correlation between temperature changes and retinal detachment are needed.
Collapse
|
7
|
Gerhart J, Morrison N, Gugerty L, Telander D, Bravo-Nuevo A, George-Weinstein M. Myo/Nog cells expressing muscle proteins are present in preretinal membranes from patients with proliferative vitreoretinopathy. Exp Eye Res 2020; 197:108080. [PMID: 32474138 DOI: 10.1016/j.exer.2020.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 11/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a complication of rhegmatogenous retinal detachment and ocular trauma. The disease is characterized by development of membranes that may apply traction to the retina and cause redetachment. Membrane contractions are attributed to myofibroblasts arising from retinal pigment epithelial cells, glia and fibroblasts. The progenitors of myofibrobasts in the lens are Myo/Nog cells that express the skeletal muscle transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. The retina and choroid also contain Myo/Nog cells that respond to stress. We examined preretinal PVR membranes from three ocular trauma patients with retinal detachment for Myo/Nog cells and their expression of muscle proteins. Myo/Nog cells were identified by co-localization of antibodies to the G8 antigen and Noggin. Greater than 80% of all cells in sections from two of three patients expressed both G8 and Noggin. Myo/Nog cells lacked pigment. Alpha smooth muscle actin (α-SMA) and striated myosin II heavy chain were present in the majority of Myo/Nog cells in these two patients. Differentiation of Myo/Nog cells was paralleled by low levels of MyoD. Membrane sections from the third patient consisted mostly of connective tissue with very few cells. A small subpopulation in these sections expressed both G8 and Noggin, and muscle proteins were detected in only a minority of G8-positive (+) cells. In all three patients, greater than 99% of cells with MyoD, α-SMA and striated muscle myosin co-expressed G8. These findings suggest that contractile myofibroblasts in PVR membranes may be derived from differentiating Myo/Nog cells.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Telander
- University of California, Davis, CA, USA; Retinal Consultants, Sacramento, CA, USA
| | | | | |
Collapse
|
8
|
Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:33-53. [PMID: 31654385 DOI: 10.1007/978-3-030-28471-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of stem cell technology, including the technology to induce pluripotency in somatic cells, and direct differentiation of stem cells into specific somatic cell types, has created an exciting new field of scientific research. Much of the work with pluripotent stem (PS) cells has been focused on the exploration and exploitation of their potential as cells/tissue replacement therapies for personalized medicine. However, PS and stem cell-derived somatic cells are also proving to be valuable tools to study disease pathology and tissue-specific responses to injury. High-throughput drug screening assays using tissue-specific injury models have the potential to identify specific and effective treatments that will promote wound healing. Retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE) are well characterized cells that exhibit the phenotype and functions of in vivo RPE. In addition to their role as a source of cells to replace damaged or diseased RPE, iPS-RPE provide a robust platform for in vitro drug screening to identify novel therapeutics to promote healing and repair of ocular tissues after injury. Proliferative vitreoretinopathy (PVR) is an abnormal wound healing process that occurs after retinal tears or detachments. In this chapter, the role of iPS-RPE in the development of an in vitro model of PVR is described. Comprehensive analyses of the iPS-RPE response to injury suggests that these cells provide a physiologically relevant tool to investigate the cellular mechanisms of the three phases of PVR pathology: migration, proliferation, and contraction. This in vitro model will provide valuable information regarding cellular wound healing responses specific to RPE and enable the identification of effective therapeutics.
Collapse
|
9
|
Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60:44-65. [PMID: 28807717 PMCID: PMC5600870 DOI: 10.1016/j.preteyeres.2017.08.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Wound healing is one of the most complex biological processes to occur in life. Repair of tissue following injury involves dynamic interactions between multiple cell types, growth factors, inflammatory mediators and components of the extracellular matrix (ECM). Aberrant and uncontrolled wound healing leads to a non-functional mass of fibrotic tissue. In the eye, fibrotic disease disrupts the normally transparent ocular tissues resulting in irreversible loss of vision. A common feature in fibrotic eye disease is the transdifferentiation of cells into myofibroblasts that can occur through a process known as epithelial-mesenchymal transition (EMT). Myofibroblasts rapidly produce excessive amounts of ECM and exert tractional forces across the ECM, resulting in the distortion of tissue architecture. Transforming growth factor-beta (TGFβ) plays a major role in myofibroblast transdifferentiation and has been implicated in numerous fibrotic eye diseases including corneal opacification, pterygium, anterior subcapsular cataract, posterior capsular opacification, proliferative vitreoretinopathy, fibrovascular membrane formation associated with proliferative diabetic retinopathy, submacular fibrosis, glaucoma and orbital fibrosis. This review serves to introduce the pathological functions of the myofibroblast in fibrotic eye disease. We also highlight recent developments in elucidating the multiple signaling pathways involved in fibrogenesis that may be exploited in the development of novel anti-fibrotic therapies to reduce ocular morbidity due to scarring.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
10
|
Auger N, Rhéaume MA, Bilodeau-Bertrand M, Tang T, Kosatsky T. Climate and the eye: Case-crossover analysis of retinal detachment after exposure to ambient heat. ENVIRONMENTAL RESEARCH 2017; 157:103-109. [PMID: 28549308 DOI: 10.1016/j.envres.2017.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Retinal detachment is an important cause of visual loss, but the association with outdoor heat exposure has not been studied. Our objective was to determine the relationship between acute exposure to high outdoor temperature and risk of retinal detachment. MATERIALS AND METHODS We analysed 14,302 individuals with inpatient procedures for retinal detachment from April through September between 2006 and 2013 in the province of Quebec, Canada. Using a time-stratified case-crossover study design, we examined the association of retinal detachment with outdoor summer temperature the preceding week. We estimated odds ratios (OR) and 95% confidence intervals (CI) for mean weekly temperature according to subtypes of retinal detachment (traction, serous, rhegmatogenous, breaks), and assessed associations by age and sex. RESULTS Exposure to elevated temperature the preceding week was associated with a higher likelihood of traction detachment, but not other forms of retinal detachment. Associations were stronger at <75 years of age in both men and women. Relative to 15°C, a mean weekly temperature of 25°C was associated with an OR for traction detachment of 2.71 (95% CI 1.56-4.71) before 55 years, 2.73 (95% CI 1.61-4.64) at 55-64 years, and 1.98 (95% CI 1.30-3.02) at 64-75 years. DISCUSSION Elevated outdoor temperatures may be associated with an increased risk of traction retinal detachment. In light of climate change, a better understanding of the impact of heat waves on the eye and other sensory organs is needed.
Collapse
Affiliation(s)
- Nathalie Auger
- University of Montreal Hospital Research Centre, 900 Saint-Denis, Montreal, Quebec, Canada H2X 0A9; Institut national de santé publique du Québec, 190 Crémazie E Blvd, Montreal, Quebec, Canada H2P 1E2.
| | - Marc-André Rhéaume
- University of Montreal Hospital Research Centre, 900 Saint-Denis, Montreal, Quebec, Canada H2X 0A9; Department of Ophthalmology, University of Montreal, 2900 Édouard-Montpetit, Montreal, Quebec, Canada H3T 1J4
| | - Marianne Bilodeau-Bertrand
- University of Montreal Hospital Research Centre, 900 Saint-Denis, Montreal, Quebec, Canada H2X 0A9; Institut national de santé publique du Québec, 190 Crémazie E Blvd, Montreal, Quebec, Canada H2P 1E2
| | - Tina Tang
- Faculty of Medicine, McGill University, 3655, Promenade Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Tom Kosatsky
- National Collaborating Centre for Environmental Health, British Columbia Centre for Disease Control, 601 West Broadway, Vancouver, British Columbia, Canada V5Z 4C2
| |
Collapse
|
11
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, Clegg DO. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium. Stem Cells Transl Med 2014; 3:1066-78. [PMID: 25069775 PMCID: PMC4149306 DOI: 10.5966/sctm.2014-0079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture.
Collapse
Affiliation(s)
- Roxanne H Croze
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - David E Buchholz
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Monte J Radeke
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - William J Thi
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Peter J Coffey
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
13
|
Chiba C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp Eye Res 2014; 123:107-14. [DOI: 10.1016/j.exer.2013.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
|
14
|
Si Y, Wang J, Guan J, Han Q, Hui Y. Platelet-derived growth factor induced alpha-smooth muscle actin expression by human retinal pigment epithelium cell. J Ocul Pharmacol Ther 2012; 29:310-8. [PMID: 23116162 DOI: 10.1089/jop.2012.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSES (1) To evaluate the association between expression of α-smooth muscle actin (α-SMA) in proliferative vitreoretinopathy (PVR) and the pathological grading of PVR, and the effect of platelet-derived growth factor (PDGF) on the expression of α-SMA by human retinal pigment epithelial (RPE) cells. (2) To investigate the potential induction of PDGF on the proliferation and migration of human RPE cells as well as the signaling pathways responsible. METHODS We immunohistochemically investigated the expression of α-SMA in PVR. To further investigate the effect of PDGF and the downstream signaling, exogenous PDGF-BB and signaling inhibitors were added to cultured human RPE cells. The MTT method was performed to detected cell proliferation, while cell migration was also measured. RESULTS α-SMA expression was positively correlated with the pathological grading of PVR. PDGF-BB could stimulate the proliferation and migration of cultured RPE cells through the participation of mitogen-activated protein kinase. In addition, PDGF induced α-SMA expression. The promotion of proliferate/migration and α-SMA expression by PDGF-BB was enhanced by the presence of serum. CONCLUSIONS PDGF and α-SMA are 2 potential therapeutic targets for the treatment of PVR.
Collapse
Affiliation(s)
- Yanfang Si
- Department of Ophthalmology, Hospital 309 of PLA, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C, Nicoll JAR. Consequence of Abeta immunization on the vasculature of human Alzheimer's disease brain. ACTA ACUST UNITED AC 2008; 131:3299-310. [PMID: 18953056 DOI: 10.1093/brain/awn261] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major feature of Alzheimer's disease is the accumulation of amyloid-beta peptide (Abeta) in the brain both in the form of plaques in the cerebral cortex and in blood vessel as cerebral amyloid angiopathy (CAA). Experimental models and human clinical trials have shown that accumulation of Abeta plaques can be reversed by immunotherapy. In this study, we hypothesized that Abeta in plaques is solubilized by antibodies generated by immunization and drains via the perivascular pathway, detectable as an increase in cerebrovascular Abeta. We have performed a follow up study of Alzheimer's disease patients immunized against Abeta42. Neuropathological examination was performed on nine patients who died between four months and five years after their first immunization. Immunostaining for Abeta40 and Abeta42 was quantified and compared with that in unimmunized Alzheimer's disease controls (n = 11). Overall, compared with these controls, the group of immunized patients had approximately 14 times as many blood vessels containing Abeta42 in the cerebral cortex (P<0.001) and seven times more in the leptomeninges (P = 0.013); among the affected blood vessels in the immunized cases, most of them had full thickness and full circumference involvement of the vessel wall in the cortex (P = 0.001), and in the leptomeninges (P = 0.015). There was also a significantly higher level of cerebrovascular Abeta40 in the immunized cases than in the unimmunized cases (cortex: P = 0.009 and leptomeninges: P = 0.002). In addition, the immunized patients showed a higher density of cortical microhaemorrhages and microvascular lesions than the unimmunized controls, though none had major CAA-related intracerebral haemorrhages. The changes in cerebral vascular Abeta load did not appear to substantially influence the structural proteins of the blood vessels. Unlike most of the immunized patients, two of the longest survivors, four to five years after first immunization, had virtually complete absence of both plaques and CAA, raising the possibility that, given time, Abeta is eventually cleared from the cerebral vasculature. The findings are consistent with the hypothesis that Abeta immunization results in solubilization of plaque Abeta42 which, at least in part, exits the brain via the perivascular pathway, causing a transient increase in the severity of CAA. The extent to which these vascular alterations following Abeta immunization in Alzheimer's disease are reflected in changes in cognitive function remains to be determined.
Collapse
Affiliation(s)
- D Boche
- Division of Clinical Neurosciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Boche D, Cunningham C, Docagne F, Scott H, Perry VH. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006; 22:638-50. [PMID: 16510291 DOI: 10.1016/j.nbd.2006.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/16/2005] [Accepted: 01/02/2006] [Indexed: 11/17/2022] Open
Abstract
The ME7 model of murine prion disease shows an atypical inflammatory response characterized by morphologically activated microglia and an anti-inflammatory cytokine profile with a marked expression of TGFbeta1. The investigation of the role of TGFbeta1 during a time course disease shows that its expression is correlated with (i) the onset of behavioral abnormalities, (ii) increased activated microglia, (iii) thickening of the basement membrane, and (iv) is associated with increased PrP(sc) deposition. Increasing TGFbeta1 using an adenoviral vector has no significant impact on prion-associated behavioral impairments or on neuropathology. In contrast, inhibition of TGFbeta1 activity using an adenovirus expressing decorin induces severe cerebral inflammation, expression of inducible nitric oxide synthase and acute neuronal death in prion-diseased animals only. These data suggest that TGFbeta1 plays a critical role in the downregulation of microglial responses minimizing brain inflammation and thus avoiding exacerbation of brain damage.
Collapse
Affiliation(s)
- Delphine Boche
- CNS Inflammation Group, Southampton Neurosciences Group, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX Hampshire, UK.
| | | | | | | | | |
Collapse
|
17
|
Miura M, Hata Y, Hirayama K, Kita T, Noda Y, Fujisawa K, Shimokawa H, Ishibashi T. Critical role of the Rho-kinase pathway in TGF-beta2-dependent collagen gel contraction by retinal pigment epithelial cells. Exp Eye Res 2005; 82:849-59. [PMID: 16310190 DOI: 10.1016/j.exer.2005.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 09/20/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Retinal pigment epithelial cells (RPEs) are thought to be one of the main components of fibrous membrane observed in eyes with proliferative vitreo-retinopathy. We investigated the signalling mechanisms of TGF-beta2-dependent collagen gel contraction by RPEs. An in vitro type I collagen gel contraction assay was performed to evaluate the effect of TGF-beta2 on gel contraction. The expression of alpha-smooth muscle actin (alpha-SMA) and the phosphorylation state of myosin light chain (MLC) were analyzed by Western blotting. The involvement of protein kinases such as p44/42 mitogen-activated protein kinase (MAPK), protein kinase C (PKC), p38 MAPK and phosphatidylinositol-3 kinase was investigated. The contribution of Rho-kinase and/or MLC-kinase was also evaluated using respective kinase inhibitors (Y27632, hydroxyfasudil and ML7). Additionally, RPEs were immunostained to examine whether the expression of alpha-SMA detected in our western blotting correlated to the stress fiber formation within the cells. TGF-beta2 caused time (0-5 days)-and dose (0 10 ng ml(-1))-dependent gel contraction associated with overexpression of alpha-SMA and phosphorylation of MLC (p < 0.01, respectively). PKC inhibitor (GF109203X, 5 microM) and p38 MAPK inhibitor (SB203580, 10 microM) significantly attenuated TGF-beta2-elicited gel contraction via partial downregulation of both alpha-SMA expression and MLC phosphorylation (p < 0.01, respectively). The gel contraction was prominently inhibited in the presence of Y27632 (10 microM) or hydroxyfasudil (10 microM) with strong suppression of MLC phosphorylation but had no significant effect on alpha-SMA expression. Treatment with ML7, in contrast, resulted in a marginal inhibition of MLC phosphorylation and gel contraction. Finally, pretreatment of the cells with Y27632 or hydroxyfasudil prevented the formation of stress fiber within the cells. These results indicate that TGF-beta2-dependent myofibroblastic transdifferentiation and MLC phosphorylation by RPEs involve both PKC and p38 MAPK pathways at least in part. Myofibroblastic transdifferentiation of RPEs appears to be independent of the Rho-kinase pathway, and the presence of alpha-SMA does not necessarily reflect the contractile potential of a cell. While Rho-kinase inhibitors are incapable of preventing myofibroblastic transdifferentiation itself, this pathway could be one of the critical targets of cell-mediated contraction of the tissue containing fibrillar collagens by transdifferentiated RPEs.
Collapse
Affiliation(s)
- Muneki Miura
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Saika S, Kono-Saika S, Tanaka T, Yamanaka O, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Yoo J, Flanders KC, Roberts AB. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. J Transl Med 2004; 84:1245-58. [PMID: 15273699 DOI: 10.1038/labinvest.3700156] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells dedifferentiate and undergo epithelial-mesenchymal transition (EMT) following retinal detachment, playing a central role in formation of fibrous tissue on the detached retina and vitreous retraction (proliferative vitreoretinopathy (PVR)). We have developed a mouse model of subretinal fibrosis with implications for PVR in which retinal detachment is induced without direct damage to the RPE cells. Transforming growth factor-beta (TGF-beta) has long been implicated both in EMT of RPEs and the development of PVR. Using mice null for Smad3, a key signaling intermediate downstream of TGF-beta and activin receptors, we show that Smad3 is essential for EMT of RPE cells induced by retinal detachment. De novo accumulation of fibrous tissue derived from multilayered RPE cells was seen following experimental retinal detachment in eyes of wild type, but not Smad3-null mice. Expression of alpha-smooth muscle actin, a hallmark of EMT in this cell type, and extracellular matrix components, lumican and collagen VI, were also not observed in eyes of Smad3-null mice. Our data show that induction of PDGF-BB by Smad3-dependent TGF-beta signaling is likely an important secondary proliferative component of the disease process. The results suggest that blocking the Smad3 pathway might be beneficial in prevention/treatment of PVR.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pastor JC, de la Rúa ER, Martín F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 2002; 21:127-44. [PMID: 11906814 DOI: 10.1016/s1350-9462(01)00023-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is still a major cause of failure of retinal detachment surgery. Despite a dramatic increase in our pathobiologic knowledge of PVR during the last 10 years, little of this information has been used to modify the surgical management of the disease, and, thus, the anatomic and functional results are still unsatisfactory. Collaborative research involving clinicians and basic researchers must be encouraged. PVR must be considered a multifactorial disease caused by interaction of several cells and intra- and extraocular factors. Therefore, therapeutic options based on the inhibition of one factor or phenomenon may be regarded with scepticism. To prevent PVR, it is necessary to determine the factors involved in its development, and because of its relatively small prevalence, large, prospective, multicenter studies seem necessary. In addition, clinical research must not be underestimated. PVR affects both sides of the retina and the retina itself, a point to which little attention has been paid and that is critical for surgical results. Therefore, a new classification that provides information about clinical relevance, such as the evolutionary stages of the disease (biologic activity) and the degree of surgical difficulty (location of the fibrotic process), seems necessary.
Collapse
Affiliation(s)
- J Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Retina Group, Ramon y Cajal, 7, 47005, Spain.
| | | | | |
Collapse
|