1
|
Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. Exp Neurol 2019; 323:113095. [PMID: 31712124 DOI: 10.1016/j.expneurol.2019.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
Abstract
Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.
Collapse
|
2
|
Dason JS, Romero-Pozuelo J, Atwood HL, Ferrús A. Multiple roles for frequenin/NCS-1 in synaptic function and development. Mol Neurobiol 2012; 45:388-402. [PMID: 22396213 DOI: 10.1007/s12035-012-8250-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
Abstract
The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
3
|
Weiss JL, Hui H, Burgoyne RD. Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 2010; 30:1283-92. [PMID: 21104311 PMCID: PMC11498851 DOI: 10.1007/s10571-010-9588-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/01/2022]
Abstract
Calcium (Ca(2+)) is an important intracellular messenger underlying cell physiology. Ca(2+) channels are the main entry route for Ca(2+) into excitable cells, and regulate processes such as neurotransmitter release and neuronal outgrowth. Neuronal Calcium Sensor-1 (NCS-1) is a member of the Calmodulin superfamily of EF-hand Ca(2+) sensing proteins residing in the subfamily of NCS proteins. NCS-1 was originally discovered in Drosophila as an overexpression mutant (Frequenin), having an increased frequency of Ca(2+)-evoked neurotransmission. NCS-1 is N-terminally myristoylated, can bind intracellular membranes, and has a Ca(2+) affinity of 0.3 μM. Over 10 years ago it was discovered that NCS-1 overexpression enhances Ca(2+)-evoked secretion in bovine adrenal chromaffin cells. The mechanism was unclear, but there was no apparent direct effect on the exocytotic machinery. It was revealed, again in chromaffin cells, that NCS-1 regulates voltage-gated Ca(2+) channels (Cavs) in G-Protein Coupled Receptor (GPCR) signaling pathways. This work in chromaffin cells highlighted NCS-1 as an important modulator of neurotransmission. NCS-1 has since been shown to regulate and/or directly interact with many proteins including Cavs (P/Q, N, and L), TRPC1/5 channels, GPCRs, IP3R, and PI4 kinase type IIIβ. NCS-1 also affects neuronal outgrowth having roles in learning and memory affecting both short- and long-term synaptic plasticity. It is not known if NCS-1 affects neurotransmission and synaptic plasticity via its effect on PIP2 levels, and/or via a direct interaction with Ca(2+) channels or their signaling complexes. This review gives a historical account of NCS-1 function, examining contributions from chromaffin cells, PC12 cells and other models, to describe how NCS-1's regulation of Ca(2+) channels allows it to exert its physiological effects.
Collapse
Affiliation(s)
- Jamie L Weiss
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA.
| | | | | |
Collapse
|
4
|
Two frequenins in Drosophila: unveiling the evolutionary history of an unusual neuronal calcium sensor (NCS) duplication. BMC Evol Biol 2010; 10:54. [PMID: 20170488 PMCID: PMC2837045 DOI: 10.1186/1471-2148-10-54] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 02/19/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Drosophila frequenin (Frq), the homolog of the mammalian neuronal calcium sensor-1 (NCS-1), is a high affinity calcium-binding protein with ubiquitous expression in the nervous system. This protein has an important role in the regulation of neurotransmitter release per synapse, axonal growth and bouton formation. In D. melanogaster, frequenin is encoded by two genes (frq1 and frq2), a very unexpected feature in the Frq/NCS-1 subfamily. These genes are located in tandem in the same genomic region, and their products are 95% identical in their amino acid sequence, clearly indicating their recent origin by gene duplication. Here, we have investigated the factors involved in this unusual feature by examining the molecular evolution of the two frq genes in Drosophila and the evolutionary dynamics of NCS family in a large set of bilaterian species. RESULTS Surprisingly, we have found no amino acid replacements fixed across the twelve Drosophila species surveyed. In contrast, synonymous substitutions have been prevalent in the evolution of the coding region of frq1 and frq2, indicating the presence of strong functional constraints following gene duplication. Despite that, we have detected that significant evolutionary rate acceleration had occurred in Frq1 in early times from the duplication, in which positive selection (likely promoting functional diversification) had probably an important role. The analysis of sequence conservation and DNA topology at the non-coding regions of both genes has allowed the identification of DNA regions candidates to be cis-regulatory elements. The results reveal a possible mechanism of regulatory diversification between frq1 and frq2. CONCLUSIONS The presence of two frequenins in Drosophila and the rapid accumulation of amino acid substitutions after gene duplication are very unusual features in the evolution of the Frq/NCS-1 subfamily. Here we show that the action of positive selection in concordance with some extent of regulatory diversification might explain these findings. Selected amino acid substitutions in Frq1 likely contributed to the functional divergence between the two duplicates, which, in turn, should have diverged in their regulation by ecdysone-induced early genes.
Collapse
|
5
|
Iketani M, Imaizumi C, Nakamura F, Jeromin A, Mikoshiba K, Goshima Y, Takei K. Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neuroscience 2009; 161:743-52. [PMID: 19368896 DOI: 10.1016/j.neuroscience.2009.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/26/2022]
Abstract
Calcium acts as an important second messenger in the intracellular signal pathways in a variety of cell functions. Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing neurons. However, the molecular mechanisms of this process are still largely unknown. Neuronal calcium sensor-1 (NCS-1) is a high-affinity and low-capacity calcium binding protein, which is specifically expressed in the nervous system. NCS-1 was distributed throughout the entire region of growth cones located at a distal tip of neurite in cultured chick dorsal root ganglion neurons. In the central domain of the growth cone, however, NCS-1 was distributed in a clustered specific pattern and co-localized with the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1). The pharmacological inhibition of InsP(3) receptors decreased the clustered specific distribution of NCS-1 in the growth cones and inhibited neurite outgrowth but did not change the growth cone morphology. The acute and localized loss of NCS-1 function in the growth cone induced by chromophore-assisted laser inactivation (CALI) resulted in the growth arrest of neurites and lamellipodial and filopodial retractions. These findings suggest that NCS-1 is involved in the regulation of both neurite outgrowth and growth cone morphology. In addition, NCS-1 is functionally linked to InsP(3)R1, which may play an important role in the regulation of neurite outgrowth.
Collapse
Affiliation(s)
- M Iketani
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Yoshida T, Mishina M. Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol Cell Neurosci 2008; 39:218-28. [PMID: 18657618 DOI: 10.1016/j.mcn.2008.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/13/2008] [Accepted: 06/21/2008] [Indexed: 01/10/2023] Open
Abstract
IL1-receptor accessory protein-like 1 (IL1RAPL1), a member of interleukin-1/toll receptor (TIR) family, is responsible for a nonsyndromic form of mental retardation (MR). The zebrafish orthologue of mammalian IL1RAPL1, designated as Il1rapl1b, was expressed widely in the brain and in the olfactory placode. We employed an olfactory sensory neuron-specific gene manipulation system in combination with in vivo imaging of transparent zebrafish embryos to examine the functional role of Il1rapl1b in synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals, the characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons during synapse formation. Antisense morpholino oligonucleotide against il1rapl1b suppressed both the synaptic vesicle accumulation and axon terminal remodeling. Consistently, the overexpression of Il1rapl1b stimulated synaptic vesicle accumulation. Swapping the carboxyl-terminal domain of Il1rapl1b with that of mouse IL-1 receptor accessory protein abolished the stimulatory effect. On the other hand, a substitution mutation in the TIR domain suppressed the morphological remodeling of axon terminals. Thus, the regulation of synaptic vesicle accumulation and subsequent morphological remodeling by Il1rapl1b appeared to be mediated by distinct domains. These results suggest that Il1rapl1b plays an important role in presynaptic differentiation during synapse formation.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
7
|
Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP. Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development 2008; 134:4479-89. [PMID: 18039973 DOI: 10.1242/dev.008979] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdown, we show that neuronal calcium sensor-1 (NCS-1) regulates neurite extension and branching, and activity-dependent Ca2+ signals in growth cones. An NCS-1 C-terminal peptide enhances only neurite branching and moderately reduces the Ca2+ signal in growth cones compared with dsRNA knockdown. Our findings suggest that at least two separate structural domains in NCS-1 independently regulate Ca2+ influx and neurite outgrowth, with the C-terminus specifically affecting branching. We describe a model in which NCS-1 regulates cytosolic Ca2+ around the optimal window level to differentially control neurite extension and branching.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Romero-Pozuelo J, Dason JS, Atwood HL, Ferrús A. Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology. Eur J Neurosci 2007; 26:2428-43. [DOI: 10.1111/j.1460-9568.2007.05877.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SUH, Levenson R, Beech DJ, Weiss JL. Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 2006; 572:165-72. [PMID: 16469785 PMCID: PMC1779652 DOI: 10.1113/jphysiol.2005.102889] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The calcium- and sodium-permeable transient receptor potential channel TRPC5 has an inhibitory role in neuronal outgrowth but the mechanisms governing its activity are poorly understood. Here we propose a mechanism involving the neuronal calcium sensor-1 (NCS-1) protein. Inhibitory mutants of TRPC5 and NCS-1 enhance neurite outgrowth similarly. Mutant NCS-1 does not inhibit surface-expression of TRPC5 but generally suppresses channel activity, irrespective of whether it is evoked by carbachol, store depletion, lanthanides or elevated intracellular calcium. NCS-1 and TRPC5 are in the same protein complex in rat brain and NCS-1 directly binds to the TRPC5 C-terminus. The data suggest protein-protein interaction between NCS-1 and TRPC5, and involvement of this protein complex in retardation of neurite outgrowth.
Collapse
Affiliation(s)
- Hui Hui
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lnenicka GA, Theriault K, Monroe R. Sexual differentiation of identified motor terminals inDrosophila larvae. ACTA ACUST UNITED AC 2006; 66:488-98. [PMID: 16470738 DOI: 10.1002/neu.20234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Drosophila, we have found that some of the motor terminals in wandering third-instar larvae are sexually differentiated. In three out of the four body-wall muscle fibers that we examined, we found female terminals that produced a larger synaptic response than their male counterparts. The single motor terminal that innervates muscle fiber 5 produces an EPSP that is 69% larger in females than in males. This is due to greater release of transmitter from female than male synaptic terminals because the amplitude of spontaneous miniature EPSPs was similar in male and female muscle fibers. This sexual difference exists throughout the third-instar: it is seen in both early (foraging) and late (wandering) third-instar larvae. The sexual differentiation appears to be neuron specific and not muscle specific because the same axon produces Is terminals on muscle fibers 2 and 4, and both terminals produce larger EPSCs in females than males. Whereas, the Ib terminals innervating muscle fibers 2 and 4 are not sexually differentiated. The differences in transmitter release are not due to differences in the size of the motor terminals. For the terminal on muscle fiber 5 and the Is terminal on muscle fiber 4, there were no differences in terminal length, the number of branches, or the number of synaptic boutons in males compared to females. These sexual differences in neuromuscular synaptic physiology may be related to male-female differences in locomotion.
Collapse
Affiliation(s)
- Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA.
| | | | | |
Collapse
|
11
|
Garcia N, Lanuza MA, Besalduch N, Santafe MM, Jeromin A, Tomas J. Localization of neuronal calcium sensor-1 at the adult and developing rat neuromuscular junction. J Neurosci Res 2005; 82:1-9. [PMID: 16088942 DOI: 10.1002/jnr.20593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal calcium sensor (NCS-1; frequenin) is a calcium-binding protein involved in the regulation of neurotransmission in the central and peripheral nervous systems from insects to vertebrates. This study reports the localization of NCS-1 immunoreactivity, by Western blotting and immunohistochemistry, at the adult and developing postnatal rat neuromuscular junction. Our confocal immunofluorescence results on the whole-mount muscle and on semithin cross-sections are indicative of the localization of NCS-1 to motor axon terminals. There is no evidence of immunoreactivity in the postsynaptic side of the neuromuscular junctions or teloglial Schwann cells. These results suggest that NCS-1 is involved in the formation and function of presynaptic nerve terminal part of the neuromuscular junction during synaptogenesis and in adult mammals.
Collapse
Affiliation(s)
- Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Hebbar S, Fernandes JJ. Pruning of motor neuron branches establishes the DLM innervation pattern in Drosophila. ACTA ACUST UNITED AC 2004; 60:499-516. [PMID: 15307154 DOI: 10.1002/neu.20031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the Drosophila life-cycle two sets of neuromuscular junctions are generated: the embryonic/larval NMJs develop during the first half, followed by the period of metamorphosis during which the adult counterpart is generated. Development of the adult innervation pattern is preceded by a withdrawal of larval NMJs, which occurs at the onset of metamorphosis, and is followed by adult-specific motor neuron outgrowth to innervate the newly developing adult fibers. Establishment of the adult innervation pattern occurs in the context of a broader restructuring of the nervous system, which results in the development of neural circuits that are necessary to carry out behaviors specific to the adult. In this article, we follow development of the dorsal longitudinal muscle (DLM) innervation pattern through metamorphosis. We find that the initial period of motor neuron elaboration is followed by a phase of extensive pruning resulting in a threefold reduction of neuromuscular contacts. This event establishes the adult pattern of second order branching. Subsequent higher order branching from the second order "contact" points generates the characteristic multiterminal innervation pattern of the DLMs. Boutons begin to appear after the pruning phase, and are much smaller than their larval counterparts. Additionally, we demonstrate that the DLM innervation is altered in the hyperexcitable double mutant, ether a go-go Shaker, and that the phenotype is suppressed by the hypoexcitable mutant, nap(ts1). Our results demonstrate that electrical activity regulates the patterning of DLM innervation during metamorphosis.
Collapse
Affiliation(s)
- Sarita Hebbar
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | |
Collapse
|
13
|
Bogdanik L, Mohrmann R, Ramaekers A, Bockaert J, Grau Y, Broadie K, Parmentier ML. The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 2004; 24:9105-16. [PMID: 15483129 PMCID: PMC6730051 DOI: 10.1523/jneurosci.2724-04.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 08/02/2004] [Accepted: 08/03/2004] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, several groups of metabotropic glutamate receptors (mGluRs) are known to modulate synaptic properties. In contrast, the Drosophila genome encodes a single functional mGluR (DmGluRA), an ortholog of vertebrate group II mGluRs, greatly expediting the functional characterization of mGluR-mediated signaling in the nervous system. We show here that DmGluRA is expressed at the glutamatergic neuromuscular junction (NMJ), localized in periactive zones of presynaptic boutons but excluded from active sites. Null DmGluRA mutants are completely viable, and all of the basal NMJ synaptic transmission properties are normal. In contrast, DmGluRA mutants display approximately a threefold increase in synaptic facilitation during short stimulus trains. Prolonged stimulus trains result in very strongly increased ( approximately 10-fold) augmentation, including the appearance of asynchronous, bursting excitatory currents never observed in wild type. Both defects are rescued by expression of DmGluRA only in the neurons, indicating a specific presynaptic requirement. These phenotypes are reminiscent of hyperexcitable mutants, suggesting a role of DmGluRA signaling in the regulation of presynaptic excitability properties. The mutant phenotypes could not be replicated by acute application of mGluR antagonists, suggesting that DmGluRA regulates the development of presynaptic properties rather than directly controlling short-term modulation. DmGluRA mutants also display mild defects in NMJ architecture: a decreased number of synaptic boutons accompanied by an increase in mean bouton size. These morphological changes bidirectionally correlate with DmGluRA levels in the presynaptic terminal. These data reveal the following two roles for DmGluRA in presynaptic mechanisms: (1) modulation of presynaptic excitability properties important for the control of activity-dependent neurotransmitter release and (2) modulation of synaptic architecture.
Collapse
Affiliation(s)
- Laurent Bogdanik
- Laboratoire de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2580, 34094 Montpellier Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Jinno S, Jeromin A, Kosaka T. Expression and possible role of neuronal calcium sensor-1 in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2004; 3:83-8. [PMID: 15233574 DOI: 10.1080/14734220310025187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal calcium sensor-1 (NCS-1) is a member of EF-hand calcium-binding protein superfamily, which is considered to modulate synaptic transmission and plasticity. In this mini-review, we first summarize distribution of NCS-1 in the cerebellum. NCS-1 is mainly detected in postsynaptic sites, such as somata and dendrites of Purkinje cells, stellate/basket cells and granule cells. In addition, GABAergic inhibitory stellate/basket cell axon terminals also contain NCS-1. Secondly, we describe cerebellar compartmentation defined by NCS-1. The NCS-1 immunostaining displayed characteristic parasagittal-banding pattern in the Purkinje cell layer and molecular layer, whereas there were no apparent bands in the granule cell layer. The alternating positively and negatively NCS-1-labeled Purkinje cell clusters contributed to this cerebellar compartmentation. In contrast, stellate/basket cells were uniformly NCS-1-positive throughout the cerebellum. Interestingly, NCS-1 and zebrin II exhibited a similar parasagittal-banding pattern. But it is noteworthy that NCS-1-negative/zebrin II-positive Purkinje cell clusters were detected selectively in anterior lobule vermis and paraflocculus. These results suggest that NCS-1 defines a novel pattern of cerebellar cortical compartmentation. Lastly, we describe recent data suggesting some relationship between NCS-1 and cerebellar long-term depression-related molecules, and discuss the possible role of NCS-1 in the cerebellum.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy & Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
15
|
Averill S, Robson LG, Jeromin A, Priestley JV. Neuronal calcium sensor-1 is expressed by dorsal root ganglion cells, is axonally transported to central and peripheral terminals, and is concentrated at nodes. Neuroscience 2004; 123:419-27. [PMID: 14698749 DOI: 10.1016/j.neuroscience.2003.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal calcium sensor-1 (NCS-1) is a member of the EF-hand calcium-binding protein superfamily which has been implicated in the modulation of a number of neuronal functions. In this study we have examined the expression of NCS-1 in adult rat dorsal root ganglion (DRG) neurons. NCS-1 immunoreactivity was present in most DRG neurons, including many calcitonin gene-related peptide (CGRP) expressing ones. NCS-1 showed some colocalization with the synaptic vesicle protein synaptophysin and underwent both anterograde and retrograde axonal transport. NCS-1 immunoreactivity was also present in the dorsal horn of the spinal cord, and in peripheral cutaneous terminals innervating blood vessels, where it was coexpressed with CGRP. In addition, NCS-1 in peripheral nerves was concentrated at nodes and adjoining paranodes. These results suggest novel roles for NCS-1, particularly in relation to channel function at nodes and to the peripheral release of vasoactive peptides.
Collapse
Affiliation(s)
- S Averill
- Neuroscience Centre, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | |
Collapse
|
16
|
Jinno S, Jeromin A, Roder J, Kosaka T. Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J Comp Neurol 2003; 458:412-24. [PMID: 12619075 DOI: 10.1002/cne.10585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuronal calcium sensor-1 (NCS-1) is a member of the EF-hand calcium-binding protein superfamily, which is considered to modulate synaptic transmission and plasticity. The detailed distribution of NCS-1 was analyzed in the mouse cerebellar cortex. In coronal sections, the NCS-1 immunostaining displayed characteristic parasagittal banding pattern in the Purkinje cell layer and molecular layer, while there were no apparent bands in the granule cell layer. The alternating positively and negatively NCS-1-labeled Purkinje cell clusters contributed to this cerebellar compartmentation. In contrast, stellate-basket cells were uniformly NCS-1-positive throughout the cerebellum. Immunofluorescent double staining showed that NCS-1 and zebrin II exhibited a similar parasagittal banding pattern. Then, we performed mapping of NCS-1- and/or zebrin II-labeled Purkinje cell somata using seven sequential coronal sections. NCS-1-positive/zebrin II-positive Purkinje cell clusters were seen throughout the cerebellum, but NCS-1-positive/zebrin II-negative Purkinje cells were exceedingly rare. On the other hand, NCS-1-negative/zebrin II-positive Purkinje cell clusters were found in anterior lobule vermis and paraflocculus, whereas they were rarely seen in posterior lobules. The digitized quantitative analysis showed close relationship between NCS-1 and zebrin II immunoreactivity in the molecular layer. The correspondence between NCS-1 and zebrin II demonstrated here indicates a novel anteroposterior difference of cerebellar compartmentation and provides fundamental information of cerebellar organization.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
17
|
Abstract
Dopaminergic transmission within limbic regions of the brain is highly dependent on the regulation of D2 receptor activity. Here we show that the neuronal calcium sensor-1 (NCS-1) can mediate desensitization of D2 dopamine receptors. Analysis of D2 receptors expressed in human embryonic kidney 293 cells indicates that NCS-1 attenuates agonist-induced receptor internalization via a mechanism that involves a reduction in D2 receptor phosphorylation. This effect of NCS-1 was accompanied by an increase in D2 receptor-mediated cAMP inhibition after dopamine stimulation. The ability of NCS-1 to modulate D2 receptor signaling was abolished after a single amino acid mutation in NCS-1 that has been shown to impair the calcium-binding properties of NCS-1. Coimmunoprecipitation experiments from striatal neurons reveal that NCS-1 is found in association with both the D2 receptor and G-protein-coupled receptor kinase 2, a regulator of D2 receptor desensitization. Colocalization of NCS-1 and D2 receptors was examined in both primate and rodent brain. In striatum, NCS-1 and D2 receptors were found to colocalize within sites of synaptic transmission and in close proximity to intracellular calcium stores. NCS-1-D2 receptor interaction may serve to couple dopamine and calcium signaling pathways, thereby providing a critical component in the regulation of dopaminergic signaling in normal and diseased brain.
Collapse
|
18
|
Jinno S, Jeromin A, Roder J, Kosaka T. Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals. Neuroscience 2002; 113:449-61. [PMID: 12127101 DOI: 10.1016/s0306-4522(02)00172-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuronal calcium sensor-1 (NCS-1) is a member of the EF-hand calcium-binding protein superfamily, which is considered to modulate synaptic transmission and plasticity. In this work, we first examined the distribution patterns of NCS-1 in the hippocampus and cerebellum. The intense NCS-1-immunoreactive (IR) elements in the hippocampus were restricted to dendritic layers, while those in the cerebellum occurred in both dendritic and cellular layers. Then, we examined the exact localization of NCS-1 using immunofluorescent double labeling for NCS-1 and synaptophysin, a marker of presynaptic terminals. In the hippocampus, the mossy fiber systems (terminals and bundles) exhibited intense NCS-1 immunoreactivity. On the other hand, the presumed principal cell dendrites were also NCS-1-IR in the stratum lacunosum-moleculare of Ammon's horn and molecular layer of the dentate gyrus, where NCS-1-IR elements and synaptophysin-IR presynaptic terminals showed characteristic complementary distribution patterns. In the cerebellum, some of the basket cell axon terminals surrounding the somata of Purkinje cells exhibited NCS-1 immunoreactivity, while the pinceau showed consistent labeling for NCS-1. Higher magnification observations revealed that the NCS-1-IR presumed granule cell dendrites and synaptophysin-IR mossy fiber terminals in the glomeruli of the cerebellum showed characteristic complementary distribution patterns. Furthermore, we estimated quantitatively the relative amount of NCS-1 in the presynaptic terminals in individual layers, and confirmed that the mossy fiber terminals in the hippocampus contained comparatively high amounts of NCS-1. These results showed the diverse localization of NCS-1 in pre- and/or postsynaptic elements of the hippocampus and cerebellum, and suggest potential roles in specific synaptic transmission.
Collapse
Affiliation(s)
- S Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
19
|
Lourenssen S, Jeromin A, Roder J, Blennerhassett MG. Intestinal inflammation modulates expression of the synaptic vesicle protein neuronal calcium sensor-1. Am J Physiol Gastrointest Liver Physiol 2002; 282:G1097-104. [PMID: 12016136 DOI: 10.1152/ajpgi.00320.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The calcium-binding protein neuronal calcium sensor 1 (NCS-1) is involved in modulation of neurotransmitter release in the peripheral and central nervous systems. Since intestinal inflammation impairs neurotransmitter release, we evaluated the expression of NCS-1 in the normal rat colon and in dinitrobenzene sulfonic acid (DNBS)-induced colitis. Immunocytochemistry and Western blots showed high levels of NCS-1 in the myenteric plexus and in axons in the smooth muscle layers; 23 +/- 2% of myenteric neurons were NCS-1 positive, with staining restricted to the largest neurons. NCS-1-positive axons decreased to 13.3 +/- 0.4% of total axons by day 2 and dropped further to 7.0 +/- 0.1% by day 4, returning to control levels by day 16. Dual-label Western blot analysis showed that the expression of NCS-1 relative to PGP 9.5 decreased by 50% on day 4 but returned to control by day 16. The selective loss of NCS-1 during colitis may underlie the altered neural function seen in the inflamed intestine.
Collapse
Affiliation(s)
- S Lourenssen
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Guild SB, Murray AT, Wilson ML, Wiegand UK, Apps DK, Jin Y, Rindler M, Roder J, Jeromin A. Over-expression of NCS-1 in AtT-20 cells affects ACTH secretion and storage. Mol Cell Endocrinol 2001; 184:51-63. [PMID: 11694341 DOI: 10.1016/s0303-7207(01)00645-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of over-expressing neuronal calcium sensor 1 (NCS-1) upon stimulated adrenocorticotrophin (ACTH) secretion was studied in AtT-20 cells. Stably-transfected AtT-20 cell lines over-expressing NCS-1 were obtained and compared to wild type AtT-20 cells. Corticotrophin releasing factor (CRF-41)-stimulated ACTH secretion from NCS-1 over-expressing cells was significantly reduced from that obtained in wild type AtT-20 cells. The effects of other stimulants of ACTH secretion from wild type AtT-20 cells were not attenuated in NCS-1 over-expressing cells. Calcium, guanosine 5'-O-(3'-thiotriphosphate) (GTP-gamma-S) and mastoparan stimulated ACTH secretion from permeabilised wild type AtT-20 and NCS-1 over-expressing AtT-20 cells with significantly greater ACTH secretion obtained in NCS-1 over-expressing cells. This study shows that in intact cells over-expression of NCS-1 reduces exocytotic ACTH release, while in permeabilised cells increases ACTH release. NCS-1 has multiple cellular targets and that directly and indirectly via these targets acts to increase the releasable ACTH pool while inhibiting CRF-41 stimulus-secretion coupling.
Collapse
Affiliation(s)
- S B Guild
- Molecular Endocrinology Group, School of Biology, Bute Medical Building, University of St Andrews, St. Andrews KY16 9TS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol 2001; 532:649-59. [PMID: 11313436 PMCID: PMC2278582 DOI: 10.1111/j.1469-7793.2001.0649e.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The role of rat neuronal calcium sensor-1 (NCS-1), a Ca2+-binding protein, in synapse formation and transmitter release was examined in mouse neuroblastoma x rat glioma hybrid NG108-15 cells in culture. Wild-type NG108-15 cells expressed rodent NCS-1. Endogenous NCS-1 was partially co-localized with the synaptic protein SNAP-25 at the plasma membrane in both cell bodies and processes, but not with the Golgi marker [beta]-COP, an individual coat subunit of the coatomer complex present on Golgi-derived vesicles. In NG108-15 cells co-cultured with rat myotubes, partial co-localization of SNAP-25 and NCS-1 was observed at the plasma membrane of neurites and growth cones, some of which had synaptic contacts to muscle cells. Transient co-transfection of the rat NCS-1 cDNA and green fluorescent protein (GFP) resulted in NCS-1 overexpression in about 30 % of the cells as determined by fluorescence microscopy. The rate of functional synapse formation with co-cultured rat myotubes increased 2-fold as determined by the presence of miniature endplate potentials (MEPPs) in NCS-1-overexpressing NG108-15 cells compared to non- and mock-transfected cells. The number of neurites per cell, branches per neurite and length of neurites was slightly less in cells that were either transiently transfected (GFP-NCS-1-fluorescence positive) or stably transformed with NCS-1 compared to GFP-NCS-1-negative, non-transfected or mock-transfected NG108-15 cells. The number of action potentials that elicited endplate potentials increased in NG108-15 cells stably transformed with rat NCS-1. The mean number of quanta per impulse (m) increased 5-fold. These results show that NCS-1 functions to facilitate synapse formation, probably because of the increased quantal content of evoked acetylcholine release.
Collapse
Affiliation(s)
- X L Chen
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Inositol phospholipids represent a minor fraction of membrane phospholipids; yet they play important regulatory functions in signaling pathways and membrane traffic. The phosphorylated inositol ring can act either as a precursor for soluble intracellular messengers or as a binding site for cytosolic or membrane proteins. Hence, phosphorylation-dephosphorylation of phosphoinositides represents a mechanism for regulation of recruitment to the membrane of coat proteins, cytoskeletal scaffolds or signaling complexes and for the regulation of membrane proteins. Recent work suggests that phosphoinositide metabolism has an important role in membrane traffic at the synapse. PtdIns(4,5)P(2) generation is implicated in the secretion of at least a subset of neurotransmitters. Furthermore, PtdIns(4,5)P(2) plays a role in the nucleation of clathrin coats and of an actin-based cytoskeletal scaffold at endocytic zones of synapses, and PtdIns(4,5)P(2) dephosphorylation accompanies the release of newly formed vesicles from these interactions. Thus, the reversible phosphorylation of inositol phospholipids may be one of the mechanisms governing the timing and vectorial progression of synaptic vesicle membranes during their exocytic-endocytic cycle.
Collapse
Affiliation(s)
- O Cremona
- Department of Medical Sciences, Università del Piemonte Orientale 'A. Avogadro', Via Solaroli 17, Italy.
| | | |
Collapse
|
23
|
Abstract
Neural geometry is the major factor that determines connectivity and, possibly, functional output from a nervous system. Recently some of the proteins and pathways involved in specific modes of branch formation or maintenance, or both, have been described. To a variable extent, dendrites and axon collaterals can be viewed as dynamic structures subject to fine modulation that can result either in further growth or retraction. Each form of branching results from specific molecular mechanisms. Cell-internal, substrate-derived factors and functional activity, however, can often differ in their effect according to cell type and physiological context at the site of branch formation. Neural branching is not a linear process but an integrative one that takes place in a microenvironment where we have only a limited experimental access. To attain a coherent mechanism for this phenomenon, quantitative in situ data on the proteins involved and their interactions will be required.
Collapse
Affiliation(s)
- A Acebes
- The Instituto Cajal (CSIC), 28002, Madrid, Spain
| | | |
Collapse
|
24
|
Bartlett SE, Reynolds AJ, Weible M, Jeromin A, Roder J, Hendry IA. PtdIns 4-kinasebeta and neuronal calcium sensor-1 co-localize but may not directly associate in mammalian neurons. J Neurosci Res 2000; 62:216-24. [PMID: 11020214 DOI: 10.1002/1097-4547(20001015)62:2<216::aid-jnr6>3.0.co;2-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It was recently demonstrated that the yeast homologue of phosphatidylinositol 4-kinasebeta PIK1 is directly associated with frq1, the yeast homologue of mammalian neuronal calcium sensor-1 (NCS-1) (Hendricks et al., [1999] Nat. Cell Biol. 1:234- 241). This was a novel finding and suggests that a calcium binding protein activates and regulates PtdIns 4-kinasebeta. This finding had not been shown in mammalian cells and both PtdIns 4-kinasebeta and NCS-1 have been shown to have important roles in the regulation of exocytotic release associated with neurotransmission. The aims of this study were to determine if PtdIns 4-kinasebeta and NCS-1 directly associate in mammalian neural tissues. We show that the immunostaining pattern for PtdIns 4-kinasebeta and NCS-1 is co-localized throughout the neurites of newborn cultured dorsal root ganglia (DRG) neurons but not in E13 DRG neurons. We then provide biochemical evidence that PtdIns 4-kinasebeta may not be in physical association with NCS-1 in mammalian nervous tissue unlike that previously reported in yeast.
Collapse
Affiliation(s)
- S E Bartlett
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Werle MJ, Roder J, Jeromin A. Expression of frequenin at the frog (Rana) neuromuscular junction, muscle spindle and nerve. Neurosci Lett 2000; 284:33-6. [PMID: 10771155 DOI: 10.1016/s0304-3940(00)01004-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Frequenin is a calcium binding protein previously implicated in the regulation of neurotransmission in Drosophila and Xenopus. We have used the frog (Rana pipiens) to study the localization and regulation of expression of frequenin-like molecules in the vertebrate peripheral nervous system. Affinity purified antibodies to frequenin recognize molecules in the neuromuscular junction, axons in the peripheral nerve, and neuronal processes in muscle spindles. Western blots of endplate regions, peripheral nerve, and brain, resulted in the labelling of a single 24 kDa band, which is the expected size for frequenin. These results suggest that frequenin expression is high in the frog peripheral nervous system, and may reflect a function for frequenin in synaptic transmission in vertebrates.
Collapse
Affiliation(s)
- M J Werle
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, 66160, Kansas, USA.
| | | | | |
Collapse
|
26
|
Koh YH, Gramates LS, Budnik V. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc Res Tech 2000; 49:14-25. [PMID: 10757875 DOI: 10.1002/(sici)1097-0029(20000401)49:1<14::aid-jemt3>3.0.co;2-g] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding the mechanisms that mediate synaptic plasticity is a primary goal of molecular neuroscience. The Drosophila larval neuromuscular junction provides a particularly useful model for investigating the roles of synaptic components in both structural and functional plasticity. The powerful molecular genetics of this system makes it possible to uncover new synaptic components and signaling molecules, as well as their function in the intact organism. Together with the mouse hippocampus and Aplysia dissociated cell culture, the Drosophila larval neuromuscular junction has been among the most valuable model systems for examining the molecular and cellular basis of neuronal plasticity.
Collapse
Affiliation(s)
- Y H Koh
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
27
|
Jeromin A, Shayan AJ, Msghina M, Roder J, Atwood HL. Crustacean frequenins: Molecular cloning and differential localization at neuromuscular junctions. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19991105)41:2<165::aid-neu1>3.0.co;2-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Prokop A, Uhler J, Roote J, Bate M. The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. J Cell Biol 1998; 143:1283-94. [PMID: 9832556 PMCID: PMC2133088 DOI: 10.1083/jcb.143.5.1283] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1998] [Revised: 09/14/1998] [Indexed: 11/22/2022] Open
Abstract
The lethal mutation l(2)CA4 causes specific defects in local growth of neuronal processes. We uncovered four alleles of l(2)CA4 and mapped it to bands 50A-C on the polytene chromosomes and found it to be allelic to kakapo (. Genetics. 146:275- 285). In embryos carrying our kakapo mutant alleles, motorneurons form correct nerve branches, showing that long distance growth of neuronal processes is unaffected. However, neuromuscular junctions (NMJs) fail to form normal local arbors on their target muscles and are significantly reduced in size. In agreement with this finding, antibodies against kakapo (Gregory and Brown. 1998. J. Cell Biol. 143:1271-1282) detect a specific epitope at all or most Drosophila NMJs. Within the central nervous system of kakapo mutant embryos, neuronal dendrites of the RP3 motorneuron form at correct positions, but are significantly reduced in size. At the subcellular level we demonstrate two phenotypes potentially responsible for the defects in neuronal branching: first, transmembrane proteins, which can play important roles in neuronal growth regulation, are incorrectly localized along neuronal processes. Second, microtubules play an important role in neuronal growth, and kakapo appears to be required for their organization in certain ectodermal cells: On the one hand, kakapo mutant embryos exhibit impaired microtubule organization within epidermal cells leading to detachment of muscles from the cuticle. On the other, a specific type of sensory neuron (scolopidial neurons) shows defects in microtubule organization and detaches from its support cells.
Collapse
Affiliation(s)
- A Prokop
- Department of Zoology, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
| | | | | | | |
Collapse
|