1
|
Guo Q. Quantitative analysis of the interaction between NMDA and AMPA receptors in glutamatergic synapses based on mathematical model. Neurosci Res 2025; 212:127-135. [PMID: 39427699 DOI: 10.1016/j.neures.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
NMDA and AMPA receptors are co-localized at most glutamatergic synapses, where their numbers and distribution undergo dynamic changes. Glutamate binds to both the NMDA and AMPA receptors. Initially, I investigated whether there is competition between AMPA receptors and N-methyl-D-aspartic acid (NMDA) receptors for glutamate. Subsequently, I examined how these dynamic receptor changes affect synaptic response. To test the hypothesis, a synaptic model incorporating coexisting NMDA and AMPA receptors within the postsynaptic density (PSD) was developed. During long-term potentiation (LTP) induction, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the PSD increase. If there is competition for glutamate between AMPA receptors and NMDA receptors, the number of activated NMDA receptor channels will decrease. Since LTP induction relies on the activation of NMDA receptors, reducing their activation will raise the threshold for LTP induction. Consequently, the LTP of the synapse itself can establish negative feedback, preventing excessive dynamics and maintaining the stability of the neural network.
Collapse
Affiliation(s)
- Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Padovan CS, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A. Expression of Neuronal Markers in Differentiated Marrow Stromal Cells and CD133+ Stem-Like Cells. Cell Transplant 2017; 12:839-48. [PMID: 14763503 DOI: 10.3727/000000003771000183] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone marrow stromal cells, which normally give rise to bone, cartilage, adipose tissue, and hematopoiesis-supporting cells, have been shown to differentiate in vitro and in vivo into neural-like cells. In this study, we examined the expression of neuronal and glial markers in human marrow stromal cells under culture conditions appropriate for neural stem cells, and compared the unsorted cell population to bone marrow CD133+ stem-like cells using immunofluorescence, Western blot, and functional patch-clamp analysis. Overall, the expression of the early neuronal marker β3-tubulin was most pronounced in the presence of DMEM/F12 and neurotrophin 3 (NT3) or brain-derived neurotrophic factor (BDNF), when marrow stromal cells were cultured onto fibronectin. Electrophysiological examination, however, could not show fast sodium currents or functional neurotransmitter receptors in differentiated marrow stromal cells. CD133+ mesenchymal stem-like cells, but not CD34+/CD133– cells, generally showed a higher expression of neuronal markers than did unsorted marrow stromal cells, and differentiated CD133+ cells more resembled neuron-like cells.
Collapse
Affiliation(s)
- Claudio S Padovan
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Roberts P, Spiros A, Geerts H. A Humanized Clinically Calibrated Quantitative Systems Pharmacology Model for Hypokinetic Motor Symptoms in Parkinson's Disease. Front Pharmacol 2016; 7:6. [PMID: 26869923 PMCID: PMC4735425 DOI: 10.3389/fphar.2016.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
The current treatment of Parkinson’s disease with dopamine-centric approaches such as L-DOPA and dopamine agonists, although very successful, is in need of alternative treatment strategies, both in terms of disease modification and symptom management. Various non-dopaminergic treatment approaches did not result in a clear clinical benefit, despite showing a clear effect in preclinical animal models. In addition, polypharmacy is common, sometimes leading to unintended effects on non-motor cognitive and psychiatric symptoms. To explore novel targets for symptomatic treatment and possible synergistic pharmacodynamic effects between different drugs, we developed a computer-based Quantitative Systems Pharmacology (QSP) platform of the closed cortico-striatal-thalamic-cortical basal ganglia loop of the dorsal motor circuit. This mechanism-based simulation platform is based on the known neuro-anatomy and neurophysiology of the basal ganglia and explicitly incorporates domain expertise in a formalized way. The calculated beta/gamma power ratio of the local field potential in the subthalamic nucleus correlates well (R2 = 0.71) with clinically observed extra-pyramidal symptoms triggered by antipsychotics during schizophrenia treatment (43 drug-dose combinations). When incorporating Parkinsonian (PD) pathology and reported compensatory changes, the computer model suggests a major increase in b/g ratio (corresponding to bradykinesia and rigidity) from a dopamine depletion of 70% onward. The correlation between the outcome of the QSP model and the reported changes in UPDRS III Motor Part for 22 placebo-normalized drug-dose combinations is R2 = 0.84. The model also correctly recapitulates the lack of clinical benefit for perampanel, MK-0567 and flupirtine and offers a hypothesis for the translational disconnect. Finally, using human PET imaging studies with placebo response, the computer model predicts well the placebo response for chronic treatment, but not for acute treatment in PD.
Collapse
Affiliation(s)
- Patrick Roberts
- In Silico BiosciencesBerwyn, PA, USA; Washington State UniversityVancouver, WA, USA
| | | | - Hugo Geerts
- In Silico BiosciencesBerwyn, PA, USA; Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
4
|
Bouteiller JMC, Qiu Y, Ziane MB, Baudry M, Berger TW. EONS: an online synaptic modeling platform. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2006:4155-8. [PMID: 17946227 DOI: 10.1109/iembs.2006.260693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chemical synapses, although representing the smallest unit of communication between two neurons in the nervous system constitute a complex ensemble of mechanisms. Understanding these mechanisms and the way synaptic transmission occurs is critical for our comprehension of CNS functions in general and learning and memory in particular. Here we describe a modeling platform called EONS (Elementary Object of Neural System) accessible online, which allows neuroscientists throughout the world to study qualitatively, but also quantitatively the relative contributions of diverse mechanisms underlying synaptic efficacy: the relevance of each and every elements that comprise a synapse, the interactions between these components and their subcellular distribution, as well as the influence of synaptic geometry (presynaptic terminal, cleft and postsynaptic density).
Collapse
|
5
|
Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 2007; 14:171-81. [PMID: 17947494 DOI: 10.1177/1073858407308518] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are approximately 0.5 to approximately 5 microM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 microM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
| | | |
Collapse
|
6
|
Carter AG, Soler-Llavina GJ, Sabatini BL. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 2007; 27:8967-77. [PMID: 17699678 PMCID: PMC6672187 DOI: 10.1523/jneurosci.2798-07.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medium spiny neurons (MSNs) are the principal cells of the striatum and perform a central role in sensorimotor processing. MSNs must integrate many excitatory inputs located across their dendrites to fire action potentials and enable striatal function. However, the dependence of synaptic responses on the temporal and spatial distribution of these inputs remains unknown. Here, we use whole-cell recordings, two-photon microscopy, and two-photon glutamate uncaging to examine subthreshold synaptic integration in MSNs from acute rat brain slices. We find that synaptic responses can summate sublinearly, linearly, or supralinearly depending on the spatiotemporal pattern of activity. Repetitive activity at single inputs leads to sublinear summation, reflecting long-lived AMPA receptor desensitization. In contrast, asynchronous activity at multiple inputs generates linear summation, with synapses on neighboring spines functioning independently. Finally, synchronous activity at multiple inputs triggers supralinear summation at depolarized potentials, reflecting activation of NMDA receptors and L-type calcium channels. Thus, the properties of subthreshold integration in MSNs are determined by the distribution of synaptic inputs and the differential activation of multiple postsynaptic conductances.
Collapse
Affiliation(s)
- Adam G. Carter
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
7
|
DiGregorio DA, Rothman JS, Nielsen TA, Silver RA. Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 2007; 27:8344-57. [PMID: 17670981 PMCID: PMC6147216 DOI: 10.1523/jneurosci.2399-07.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Native AMPA receptors (AMPARs) exhibit rapid and profound desensitization in the sustained presence of glutamate. Desensitization therefore contributes to short-term depression at synapses in which glutamate accumulates. At synapses that do not exhibit desensitization-dependent depression, AMPARs are thought to be protected against prolonged or repetitive exposure to synaptically released glutamate. At the cerebellar mossy fiber to granule cell (GC) synapse, in which high release probability and glutamate spillover produce a substantial buildup of glutamate concentration in the cleft ([Glut]cleft) during high-frequency transmission, only moderate desensitization of the phasic AMPAR EPSC occurs. To investigate how such currents are produced, we examined the kinetic properties of synaptic AMPARs in GCs using glutamate uncaging. Photolysis of 4-methoxy-7-nitroindolinyl-caged L-glutamate with large illumination spots produced step-like increases in [Glut]cleft that could be used to systematically probe AMPAR kinetics. At low levels of activation, synaptic AMPARs exhibited little desensitization. With larger activations, the desensitization time course became faster, but the level of desensitization was only weakly dependent on receptor occupancy. Indeed, a substantial desensitization-resistant current component remained (17%) in saturating glutamate. Photolysis with small illumination spots produced brief [Glut]cleft waveforms and transient AMPAR activations, similar to the EPSC current components. Paired-pulse uncaging with such spots revealed little desensitization after spillover-like activations and modest depression after activations that mimicked quantal and spillover components together. Our results show that GC AMPARs exhibit a resistance to desensitization at low occupancies and that this property is crucial for sustaining high-frequency transmission at a synapse in which glutamate accumulates.
Collapse
Affiliation(s)
- David A. DiGregorio
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom, and
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8118, Laboratoire de Physiologie Cérébrale, Université Paris 5, 75270 Paris Cedex 06, France
| | - Jason S. Rothman
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom, and
| | - Thomas A. Nielsen
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom, and
| | - R. Angus Silver
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom, and
| |
Collapse
|
8
|
Crowley JJ, Carter AG, Regehr WG. Fast vesicle replenishment and rapid recovery from desensitization at a single synaptic release site. J Neurosci 2007; 27:5448-60. [PMID: 17507567 PMCID: PMC6672343 DOI: 10.1523/jneurosci.1186-07.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When the synaptic connection between two neurons consists of a small number of release sites, the ability to maintain transmission at high frequencies is limited by vesicle mobilization and by the response of postsynaptic receptors. These two properties were examined at single release sites between granule cells and stellate cells by triggering bursts of quantal events either with alpha-latrotoxin or with high-frequency trains of presynaptic activity. Bursts and evoked responses consisted of tens to hundreds of events with frequencies of up to hundreds per second. This indicates that single release sites can rapidly supply vesicles from a reserve pool to a release-ready pool. In addition, postsynaptic AMPA receptors recover from desensitization with a time constant of approximately 5 ms. Thus, even for synapses composed of a single release site, granule cells can effectively activate stellate cells during sustained high-frequency transmission because of rapid vesicle mobilization and fast recovery of AMPA receptors from desensitization.
Collapse
Affiliation(s)
- John J. Crowley
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam G. Carter
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE. Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. J Neurosci 2007; 27:111-23. [PMID: 17202478 PMCID: PMC2193629 DOI: 10.1523/jneurosci.4770-06.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named "genderblind" (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200-300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
10
|
Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 2005; 25:9080-95. [PMID: 16207867 PMCID: PMC6725747 DOI: 10.1523/jneurosci.2220-05.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. After tuning the model by adjusting maximal current conductances in each compartment, the model cell closely matched whole-cell recordings from an adult rat NAcb slice preparation. Synaptic inputs in the range of 1000-1300 Hz are required to maintain an "up" state in the model. Cell firing in the model required concurrent depolarization of several dendritic branches, which responded independently to afferent input. Depolarization from action potentials traveled to the tips of the dendritic branches and increased Ca2+ influx through voltage-gated Ca2+ channels. As NMDA/AMPA current ratios were increased, the membrane showed an increase in hysteresis of "up" and "down" state dwell times, but intrinsic bistability was not observed. The number of oscillatory inputs required to entrain the model cell was determined to be approximately 20% of the "up" state inputs. Altering the NMDA/AMPA ratio had a profound effect on processing of afferent input, including the ability to entrain to oscillations in afferent input in the theta range (4-12 Hz). These results suggest that afferent information integration by the NAcb MSP cell may be compromised by pathology in which the NMDA current is altered or modulated, as has been proposed in both schizophrenia and addiction.
Collapse
Affiliation(s)
- John A Wolf
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kotaleski JH, Plenz D, Blackwell KT. Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. J Neurophysiol 2005; 95:331-41. [PMID: 16192340 PMCID: PMC4107364 DOI: 10.1152/jn.00063.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast-spiking (FS) interneurons provide the main route of feedforward inhibition from cortex to spiny projection neurons in the striatum. A steep current-firing frequency curve and a dense local axonal arbor suggest that even small excitatory inputs could translate into powerful feedforward inhibition, although such an arrangement is also sensitive to amplification of spurious synaptic inputs. We show that a transient potassium (KA) current allows the FS interneuron to strike a balance between sensitivity to correlated input and robustness to noise, thereby increasing its signal-to-noise ratio (SNR). First, a compartmental FS neuron model was created to match experimental data from striatal FS interneurons in cortex-striatum-substantia nigra organotypic cultures. Densities of sodium, delayed rectifier, and KA channels were optimized to replicate responses to somatic current injection. Spontaneous alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and gamma-aminobutyric acid (GABA) synaptic currents were adjusted to the experimentally measured amplitude, rise time, and interevent interval histograms. Second, two additional adjustments were required to emulate the remaining experimental observations. GABA channels were localized closer to the soma than AMPA channels to match the synaptic population reversal potential. Correlation among inputs was required to produce the observed firing rate during up-states. In this final model, KA channels were essential for suppressing down-state spikes while allowing reliable spike generation during up-states. This mechanism was particularly important under conditions of high dopamine. Our results suggest that KA channels allow FS interneurons to operate without a decrease in SNR during conditions of increased dopamine, as occurs in response to reward or anticipated reward.
Collapse
Affiliation(s)
- J Hellgren Kotaleski
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Schlesinger F, Tammena D, Krampfl K, Bufler J. Desensitization and resensitization are independently regulated in human recombinant GluR subunit coassemblies. Synapse 2005; 55:176-82. [PMID: 15635696 DOI: 10.1002/syn.20110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AMPA-type glutamate receptor (GluR) channels are the most abundant excitatory transmitter receptors of the central nervous system. Four subunits with different posttranscriptional modifications and flip/flop splice variants are known. In vivo they occur as tetrameric heteromeric receptors. In the present study we analyzed the time course of desensitization (tau(D)) and resensitization (tau(rec)) kinetics of different homomeric (coassembly of splice or editing variants of one subunit) and heteromeric (coassembly of different subunits) GluR channels. We found that tau(D) had intermediate values depending on the amount of cDNA of the respective subunit at all heteromeric and homomeric GluR channels tested. The same holds true for tau(rec) except GluR2 flip channels were coexpressed with GluR1 channels. In this case, tau(rec) had values close to that of fast resensitizing GluR2 flip channels, even in the case of an abundance of GluR1 cDNA.
Collapse
|
13
|
Schlesinger F, Meywirth J, Krampfl K, Grosskreutz J, Petri S, Mauth C, Just L, Bader A, Bufler J. Ligand-gated channels in early mesencephalic neuronal precursors: immunocytochemical and electrophysiological analysis. Eur J Neurosci 2004; 19:2371-6. [PMID: 15128391 DOI: 10.1111/j.0953-816x.2004.03343.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal precursors play an important role in potential regenerative therapeutic strategies in different neurodegenerative diseases, e.g. Parkinson's disease. To understand proliferation and differentiation of these cells in vitro and in vivo, it is important to characterize functional properties of neuronal precursors in detail. The aim of the present study was to analyse the electrophysiological characteristics of ligand-gated channels of neuronal precursors prepared from the rat ventral mesencephalon (VM) of embryonic stage 12.5 during their in vitro differentiation. For the experiments we used the patch-clamp technique in combination with a system for ultrafast solution exchange and immunocytochemistry. It could be shown that functional active AMPA-type glutamate as well as GABA(A) receptor channels are expressed at an early stage of neuronal development. In culture we observed excitatory as well as inhibitory postsynaptic currents (defined by their different kinetics) which correspond to the activation of AMPAergic and GABAergic receptor channels. Two populations of glutamate-activated currents could be differentiated by their different time course of desensitization whereas the time course of resensitization and deactivation was normally distributed in all cells. GABAergic currents could be blocked by bicuculline and their kinetics correspond to that of GABA(A) receptor channel currents. Summarizing the results, in the present study it was shown for the first time that neuronal embryonic precursors of the rat VM express both functional AMPA-type glutamate and functional GABA(A) receptor channels in vitro.
Collapse
Affiliation(s)
- F Schlesinger
- Department of Neurology, Medizinische Hochschule Hannover, 30623 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ventriglia F. Saturation in excitatory synapses of hippocampus investigated by computer simulations. BIOLOGICAL CYBERNETICS 2004; 90:349-359. [PMID: 15221395 DOI: 10.1007/s00422-004-0476-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 03/03/2004] [Indexed: 05/24/2023]
Abstract
The standard view of the synaptic function in excitatory synapses has been deeply questioned by recent experimental data on hippocampal glutamate synapses both for possible receptor nonsaturation and for larger and non-Gaussian peak amplitude fluctuations. Our previous investigations of the mechanisms involved in the variability of the response of hippocampal glutamatergic synapses, carried out by computer simulation of simple Brownian models of glutamate diffusion, furnished initial evidence about their presynaptic character. A new, refined model, reported here, assumes a collision volume for the glutamate molecule and a more realistic description of receptors and their binding dynamics. Based on this model, conditions for AMPA and NMDA receptor saturation have been investigated and new miniature (or quantal) EPSC parameters have been computed. The results corroborate the hypothesis that the lack of AMPA and NMDA receptor saturation and the EPSC stochastic variability are attributable to the small volume of glutamatergic synaptic vesicles and hence to the small number of glutamate molecules diffusing in the cleft after a vesicle release. The investigations better characterize some not well-known elements of the synaptic structure, such as the fusion pore, and provide useful information on AMPA receptor dynamics. Indeed, a nice fit between computed EPSCs and some miniature EPSCs in recent experimental literature allowed for the computation of new transition time values among the different AMPA receptor states through a trial-and-error optimization procedure. Moreover, the model has been used to evaluate two hypotheses on the genesis of the long-term potentiation phenomenon.
Collapse
Affiliation(s)
- Francesco Ventriglia
- Istituto di Cibernetica, E. Caianiello del CNR, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| |
Collapse
|
15
|
Abstract
Up states are prolonged membrane potential depolarizations critical for synaptic integration and action potential generation in cortical and striatal neurons. They commonly result from numerous concurrent synaptic inputs, whereas neurons reside in a down state when synaptic inputs are few. By quantifying the composition, frequency, and amplitude of synaptic inputs for both states, we provide important constraints for state transitions in striatal network dynamics. Up and down states occur naturally in cortex-striatum-substantia nigra cocultures, which were used as an in vitro model in the present study. Spontaneous synaptic inputs during down states were extracted automatically in spiny projection neurons and fast spiking interneurons of the striatum using a newly developed computer algorithm. Consistent with a heterogeneous population of synaptic inputs, PSPs and PSCs showed no correlation in amplitude and rise time and occurred at relatively low frequencies of 10-40 Hz during the down state. The number of synaptic inputs during up states, estimated from the up-state charge and the unitary charge of down-state PSCs, was 217 +/- 44. Given the average up-state duration of 284 +/- 34 msec, synaptic input frequency was approximately 800 Hz during up-states for both neuronal types. Many down-state events reversed at the chloride reversal potential and were blocked by GABA(A) antagonists. The high correlation between up- and down-state reversal potential suggests that despite these drastic changes in synaptic input frequency, the ratio of inhibitory to excitatory currents is similar during both states.
Collapse
|
16
|
Ventriglia F, Di Maio V. Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 2003; 71:195-204. [PMID: 14568220 DOI: 10.1016/s0303-2647(03)00117-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The postsynaptic response in glutamatergic synapses of hippocampus, produced by the release of a single presynaptic vesicle, shows a large variability in amplitude not only among the synapses, but also for a single synapse. A mathematical modelling based on a Brownian motion for the diffusion of glutamate molecules and receptor binding was applied to study the possible sources of the quantal variability. Detailed, geometric and functional, descriptions of the vesicle, of the fusion pore and of the synaptic cleft were used and quantal (or miniature) EPSCs were computed. Our results show non-saturation of AMPA receptors, attributable to the small number of molecules contained in the glutamate vesicles of hippocampus. NMDA receptor saturation was obtained rarely, only in very specific instances. We concluded that the lack of AMPA saturation and intrinsic random variations in basic presynaptic elements, such as the vesicle volume and the vesicle docking position, are the main causes of the observed stochastic variability of the quantal EPSC amplitude. Only minor effects can be ascribed to postsynaptic sources.
Collapse
Affiliation(s)
- Francesco Ventriglia
- Istituto di Cibemetica E. Caianiello del CNR Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy.
| | | |
Collapse
|
17
|
Grosskreutz J, Zoerner A, Schlesinger F, Krampfl K, Dengler R, Bufler J. Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells. Eur J Neurosci 2003; 17:1173-8. [PMID: 12670305 DOI: 10.1046/j.1460-9568.2003.02531.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AMPA-type glutamate receptors (AMPAR) display a high variability in functional properties, which determine the time course of excitatory postsynaptic potentials. They are assembled as tetramers of GluR subunits 1-4 of different splice variants and nuclear edited isoforms. Presently, the kinetics of activation, desensitization and recovery from desensitization of human AMPARs (GluR1, 3 and 4 flip and flop, and GluR2 flip and flop in R and G edited forms, respectively) transiently expressed in HEK293 cells were studied with patch-clamp techniques and ultra fast agonist application. Activation time constants were identical for all receptors (0.13 ms). The GluR2 flip G variant showed the slowest desensitization (10.8 ms), GluR4 flip the fastest (1.6 ms). Recovery from desensitization varied between 3.1 ms (GluR4 flip) and 178 ms (GluR1 flip). To determine functional interactions between subunits in heteromeric receptors the GluR1 flip and the GluR2 flip R were coexpressed. The time constant of desensitization increased linearly from 2.5 ms (GluR1 flip homomers) to 6.8 ms (GluR2 flip R homomers) with the amount of GluR2 flip R cDNA transfected. Recovery followed a monoexponential time course and had a time constant of 178 ms in GluR1 flip homomeric expression. In all GluR1 flip/GluR2 flip heteromers and in GluR2 flip R homomers desensitization recovered with a time constant of approximately 50 ms. Thus, subunit interaction seems likely during recovery but not desensitization. Both parameters might influence the ability of AMPA receptors to mediate glutamate induced chronic excitotoxicity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Julian Grosskreutz
- Department of Neurology, Medizinische Hochschule Hannover, 30625 Hannover.
| | | | | | | | | | | |
Collapse
|
18
|
Krampfl K, Jahn K, Cordes AL, Dengler R, Bufler J. Analysis of a slow desensitized state of recombinant adult-type nicotinic acetylcholine receptor channels. Eur J Neurosci 2002; 16:652-8. [PMID: 12270040 DOI: 10.1046/j.1460-9568.2002.02114.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A characteristic feature of the kinetics of nicotinic acetylcholine receptor (nAChR) channels is fast and nearly complete desensitization with a time course between 10 and 100 ms and recovery from desensitization in the range of some hundred ms. In the present study we used a piezo-driven system for ultra-fast solution exchange, analysed the recovery from the fast desensitized state of mouse recombinant adult-type nAChR channels and found no difference to that of embryonic-type channels. By double pulse experiments with application of pulses with a saturating concentration of 1 mm acetylcholine (ACh) with increasing duration of the first pulse and a constant interval between pulses we detected a second slow desensitized state which was entered with a time constant of 2835 ms. Recovery from the slow desensitized state proceeded with a single exponential with a time constant of 16134 ms. The experimental data were interpreted by the addition of a transition from the desensitized state with two bound ACh molecules to a slow desensitized state to the well known circular kinetic scheme of activation and desensitization of nAChR channels. This slow desensitized state might play a role in muscle fatigue or in pathological states like myasthenic syndromes.
Collapse
Affiliation(s)
- K Krampfl
- Neurological Department, Hannover Medical School, 31623 Hannover, Germany
| | | | | | | | | |
Collapse
|
19
|
Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J. Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 2002; 15:51-62. [PMID: 11860506 DOI: 10.1046/j.0953-816x.2001.01841.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GluR2 flop subunit of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors greatly determines calcium permeability and kinetic properties of heteromeric AMPA subunit assemblies. Post-transcriptional editing of this subunit at the Q/R/N site controls calcium permeability whereas editing at the R/G site is involved in the regulation of biophysical properties. We used patch-clamp techniques with ultrafast solution exchange to examine the kinetics of recombinant human homomeric GluR2 flop channels transiently expressed in HEK293 cells [edited at the R/G site and Q/R/N site (GR), and unedited (RN) and edited (GN) at the R/G site both with asparagine (N) at the Q/R/N site]. The time constant of desensitization after application of 10 mm glutamate was 1.38 +/- 0.05 ms (n = 10), 5.53 +/- 0.57 ms (n = 7) and 1.33 +/- 0.06 ms (n = 12) for the GluR2 flop GR, RN and GN channels, respectively. The time constant of resensitization was 75 ms for the GluR2 flop RN and 30 ms for the GN channels. The dose-dependence of the peak current amplitude, kinetics of activation and deactivation, and peak open probability did not differ between RN and GN channels. The study shows that desensitization and resensitization kinetics of homomeric GluR2 flop channels are controlled by a single amino acid exchange (glycine by arginine) at the R/G site. Quantitative analysis by computer simulation using a circular kinetic scheme allows the prediction of the main experimental results.
Collapse
Affiliation(s)
- Klaus Krampfl
- Department of Neurology, Medizinische Hochschule Hannover, 31623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Krampfl K, Schlesinger F, Wolfes H, Dengler R, Bufler J. Functional diversity of recombinant human AMPA type glutamate receptors: possible implications for selective vulnerability of motor neurons. J Neurol Sci 2001; 191:19-23. [PMID: 11676988 DOI: 10.1016/s0022-510x(01)00626-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lower motor neurons are known to be susceptible to glutamate-mediated cell damage via overstimulation of AMPA type glutamate receptors (GluR). The molecular basis of an important hypothesis in investigating amyotrophic lateral sclerosis (ALS) is glutamate-excitotoxicity. The aim of this study was to define desensitization and deactivation kinetics of recombinant human GluR1 and GluR2 receptor channels and their splice variants by means of patch-clamp experiments employing ultrafast solution exchange techniques. By this approach, the desensitization time constants of homooligomeric channels could be measured as tau(Des)=2.95+/-0.22 ms (n=10) for GluR1flip, tau(Des)=3.17+/-0.19 ms (n=10) for GluR1flop, tau(Des)=9.86+/-0.79 ms (n=10) for GluR2flip, and tau(Des)=1.87+/-0.26 ms (n=10) for GluR2flop, respectively. In the case of GluR1flip/flop and GluR2flop, a nondesensitising steady state current of less than 1% of peak current amplitude was observed, while GluR2flip channel currents showed a marked steady state component of about 10% of the maximum current. No significant differences were detected comparing the deactivation time course of GluR1 and GluR2 splice variants. These results suggest that the human GluR subtypes tested comprise no fundamental difference to their rodent analogous. Therefore, we describe a preparation that will be useful for further investigation of motor neuron physiological properties and a methodological approach allowing to study functional recombinant human GluR channels under reliable conditions.
Collapse
Affiliation(s)
- K Krampfl
- Department of Neurology of the Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | | | |
Collapse
|
21
|
Jahn K, Mohammadi B, Krampfl K, Abicht A, Lochmüller H, Bufler J. Deactivation and desensitization of mouse embryonic- and adult-type nicotinic receptor channel currents. Neurosci Lett 2001; 307:89-92. [PMID: 11427307 DOI: 10.1016/s0304-3940(01)01929-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recombinant nicotinic acetylcholine receptor (nAChR) channels transiently expressed in HEK293 cells were investigated using the patch-clamp technique in the cell-attached and outside-out modes for single-channel analysis and ultra-fast agonist application to multiple channels. Deactivation (current decay after removal of agonist) and desensitization (current decay in the presence of agonist) were analyzed at embryonic- (gamma) and adult-type (epsilon) nAChR channels. Time constants of desensitization were similar for both receptor types (epsilon: 53.1+/-16.9 ms; gamma: 49.2+/-15.7 ms) and corresponded to the mean duration of clusters of single channel openings activated by pulses of 1 mM ACh. Deactivation showed distinct characteristics. Time constants were 1.76+/-0.16 ms for epsilon- and 3.19+/-0.18 ms for gamma-nAChR channels, corresponding to mean burst duration analyzed from single channels in the same preparation (epsilon: 1.85+/-1.2 ms, gamma: 3.85+/-2.1 ms). It is assumed that differences in deactivation are of functional relevance at the muscle endplate.
Collapse
Affiliation(s)
- K Jahn
- Department of Neurology, Ludwig-Maximilians University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Löwenick CV, Krampfl K, Schneck H, Kochs E, Bufler J. Open channel and competitive block of nicotinic receptors by pancuronium and atracurium. Eur J Pharmacol 2001; 413:31-5. [PMID: 11173060 DOI: 10.1016/s0014-2999(00)00836-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mouse myotubes were used to investigate effects of the nondepolarizing neuromuscular blocking drugs pancuronium and atracurium on embryonic-type nicotinic acetylcholine receptor channels. Experiments were performed using patch-clamp techniques in combination with devices for ultra-fast solution exchange at outside--out patches. Application of 0.1 mM acetylcholine resulted in a fast current transient. When the peak amplitude was achieved, the current decayed monoexponentially due to desensitization. After application of drugs (pancuronium or atracurium), two different mechanisms of block were observed: (1) open channel block of embryonic-type nicotinic acetylcholine receptor channels after coapplication of blocker and acetylcholine, characterized by decrease of the time constant of current decay; (2) competitive block of embryonic-type nicotinic acetylcholine receptor channels by pancuronium or atracurium after preincubation of outside-out patches with the respective blocker. Different affinities of pancuronium (K(B) approximately 0.01 microM) and atracurium (K(B) approximately 1 microM) to embryonic-type nicotinic acetylcholine receptor channels were observed.
Collapse
Affiliation(s)
- C V Löwenick
- Department for Anesthesiology of the Technical University Munich, Ismaninger Str. 10, 81675 München, Germany
| | | | | | | | | |
Collapse
|
23
|
Trommershäuser J, Titz S, Keller BU, Zippelius A. Variability of excitatory currents due to single-channel noise, receptor number and morphological heterogeneity. J Theor Biol 2001; 208:329-43. [PMID: 11207094 DOI: 10.1006/jtbi.2000.2222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patch clamp recordings of excitatory postsynaptic currents (EPSCs) in central neurons reveal large fluctuations in amplitudes and decay times of AMPA-receptor-mediated EPSCs. By using Monte Carlo simulations of synaptic transmission in brainstem interneurons, we tested several hypothesis that could account for the observed variability. The coefficient of variation (CV) of 0.5 for miniature amplitudes cannot be explained by fluctuations in vesicle content or receptor distribution, but is traced to variations in receptor number, which is estimated as 77+/-39 receptors per bouton. As the variability of rise times reflects fluctuations in size of the post-synaptic density and heterogeneity of the receptor distribution, the relatively small CV=0.37 of experimentally determined values points to a homogeneous arrangement of receptors. Within our model the large variability of decay times (CV=0.49) can only be explained by fluctuations in the transmitter time course (mean residence times of 0.4+/-0.13 ms), presumably resulting from heterogeneities in synaptic morphology. Hence, our simulations indicate that different noise sources control the variability of amplitudes, rise and decay times. In particular, the distribution of decay times yields information about the synaptic transmission process, which cannot be obtained from other observables.
Collapse
Affiliation(s)
- J Trommershäuser
- Institut für Theoretische Physik, Universitat Göttingen, Bunsenstr. 9, D-37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
24
|
Pentobarbital Has Curare-Like Effects on Adult-Type Nicotinic Acetylcholine Receptor Channel Currents. Anesth Analg 2000. [DOI: 10.1097/00000539-200004000-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Krampfl K, Schlesinger F, Dengler R, Bufler J, Klaus K, Friedrich S, Reinhardt D. Pentobarbital has curare-like effects on adult-type nicotinic acetylcholine receptor channel currents. Anesth Analg 2000; 90:970-4. [PMID: 10735809 DOI: 10.1213/00000539-200004000-00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Pentobarbital (PB) is widely used as a short-term sedative and anticonvulsive drug with a side-effect of relaxing muscle tone. We investigated block of nicotinic acetylcholine receptor (nAChR) channel currents by PB using the patch-clamp technique in combination with an ultrafast system for solution exchange. As a preparation, recombinant rat adult-type nAChR channels transiently expressed in HEK293 cells were used. Appli-cation of 1 mM acetylcholine to small cells or outside-out patches showed a transient current with fast activation and desensitization kinetics. Adding PB to the acetylcholine-containing solution resulted in a decrease of the time constant of current decay and of the peak current amplitude starting at concentrations >0.01 mM PB. Preincubation of nAChR channels with PB led to a decrease of the peak current amplitude without alteration of activation and desensitization kinetics caused by competitive block of nAChR channels. In conclusion, similar to the effect of d-Tubocurarine, block of nAChR channel currents by PB can be explained by a combination of open-channel and competitive block. IMPLICATIONS The interaction between adult-type nicotinic acetylcholine receptors, acetylcholine, and pentobarbital was biophysically investigated by using the patch-clamp technique in combination with tools for ultrafast solution exchange. PB elicited open-channel block and competitive block of nicotinic acetylcholine receptor channel currents, whereas the latter seems to be effective in clinically relevant concentrations.
Collapse
Affiliation(s)
- K Krampfl
- Neurological Department of the Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000; 59:33-78. [PMID: 10718099 DOI: 10.2165/00003495-200059010-00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has been postulated, consistent with the ubiquitous presence of glutamatergic neurons in the brain, that defects in glutamatergic neurotransmission are associated with many human neurological and psychiatric disorders. This review evaluates the possible application of ligands acting on glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate (KA) receptors to minimise the pathology and/or symptoms of various diseases. Glutamate activation of AMPA receptors is thought to mediate most fast synaptic neurotransmission in the brain, while transmission via KA receptors contributes only a minor component. Variants of the protein subunits forming these receptors greatly extend the pharmacological and electrophysiological properties of AMPA/KA receptors. Disease and drug use can differentially affect the expression of the subunits and their variants. Ligands bind to AMPA receptors by competing with glutamate at the glutamate binding site, or non-competitively at other sites on the proteins (allosteric modulators). Ligands showing selective competitive antagonist actions at the AMPA/ KA class of glutamate receptors were first reported in 1988, and the systemically active antagonist 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) was first shown to have useful therapeutic effects on animal models of neurological diseases in 1990. Since then, newer antagonists with increased potency, higher specificity, increased water solubility, and a longer duration of action in vivo have been developed. Negative allosteric modulators such as the prototype GYKI-52466 also block AMPA receptors but have little action at KA receptors. Positive allosteric modulators enhance glutamatergic neurotransmission at AMPA receptors. Polyamines and adamantane derivatives bind within the ion channel of calcium-permeable AMPA receptors. The latest developments include ligands selective for KA receptors containing Glu-R5 subunits. Evidence for advantages of AMPA receptor antagonists over N-methyl-D-aspartate (NMDA) receptor antagonists for symptomatic treatment of neurological and psychiatric conditions, and for minimising neuronal loss occurring after acute neurological diseases, such as physical trauma, ischaemia or status epilepticus, have been shown in animal models. However, as yet AMPA receptor antagonists have not been shown to be effective in clinical trials. On the other hand, a limited number of clinical trials have been reported for AMPA receptor ligands that enhance glutamatergic neurotransmission by extending the ion channel opening time (positive allosteric modulators). These acute studies demonstrate enhanced memory capability in both young and aged humans, without any apparent serious adverse effects. The use of these allosteric modulators as antipsychotic drugs is also possible. However, the long term use of both direct agonists and positive allosteric modulators must be approached with considerable caution because of potential adverse effects.
Collapse
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, New Zealand.
| |
Collapse
|
27
|
Krampfl K, Lepier A, Jahn K, Franke C, Bufler J. Molecular modulation of recombinant rat alpha1beta2gamma2 GABA(A) receptor channels by diazepam. Neurosci Lett 1998; 256:143-6. [PMID: 9855360 DOI: 10.1016/s0304-3940(98)00767-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recombinant gamma-aminobutyric acid (GABA(A)) receptor channels containing alpha1beta2gamma2-subunits were transiently expressed in HEK293 cells. Modulation by diazepam (DZ) was investigated using the patch-clamp technique with a device for ultra-fast solution exchange. GABA activated Cl(-)-currents were potentiated when DZ > 0.1 microM was added to non-saturating concentrations of GABA (< 0.1 mM GABA). Maximal potentiation of the peak current amplitude by a factor of 2.5 was observed when 1 microM DZ was added to the test-solution. Deactivation of GABA-activated currents after the end of GABA pulses was best fitted with two time constants. After application of DZ + GABA, increase of time constants of deactivation was measured. It was independent on GABA concentration. We conclude that prolongation of deactivation after application of GABA + DZ may be an important mechanism of the modulatory action of DZ at GABA(A) receptor channels.
Collapse
Affiliation(s)
- K Krampfl
- Department of Neurology, Technical University Munich, Germany
| | | | | | | | | |
Collapse
|