1
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Radulovic T, Rajaram E, Ebbers L, Pagella S, Winklhofer M, Kopp-Scheinpflug C, Nothwang HG, Milenkovic I, Hartmann AM. Serine 937 phosphorylation enhances KCC2 activity and strengthens synaptic inhibition. Sci Rep 2023; 13:21660. [PMID: 38066086 PMCID: PMC10709408 DOI: 10.1038/s41598-023-48884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.
Collapse
Affiliation(s)
- Tamara Radulovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ezhilarasan Rajaram
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lena Ebbers
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ivan Milenkovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
3
|
Lee J, Clause A, Kandler K. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus. J Neurosci 2023; 43:7766-7779. [PMID: 37734946 PMCID: PMC10648534 DOI: 10.1523/jneurosci.0920-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Amanda Clause
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
4
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
5
|
Fenyves BG, Szilágyi GS, Vassy Z, Sőti C, Csermely P. Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network. PLoS Comput Biol 2020; 16:e1007974. [PMID: 33347479 PMCID: PMC7785220 DOI: 10.1371/journal.pcbi.1007974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
Collapse
Affiliation(s)
- Bánk G. Fenyves
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor S. Szilágyi
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Vassy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
7
|
Zhou M, Yuan J, Yan Z, Dai J, Wang X, Xu T, Xu Z, Wang N, Liu J. Intrinsic and Miniature Postsynaptic Current Changes in Rat Principal Neurons of the Lateral Superior Olive after Unilateral Auditory Deprivation at an Early Age. Neuroscience 2019; 428:2-12. [PMID: 31866557 DOI: 10.1016/j.neuroscience.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Unilateral auditory deprivation results in lateralization changes in the central auditory system, interfering with the integration of binaural information and thereby leading to a decrease in binaural auditory functions such as sound localization. Principal neurons of the lateral superior olive (LSO) are responsible for computing the interaural intensity differences that are critical for sound localization in the horizontal plane. To investigate changes caused by unilateral auditory deprivation, electrophysiological activity was recorded from LSO principal neurons in control rats and rats with unilateral cochlear ablation. At one week after unilateral cochlear ablation, the excitability of LSO principal neurons on the side ipsilateral to the ablation (the ablated side) was greater than that on the side contralateral to the ablation (the intact side); however, the input resistance increased on both sides. Furthermore, by analysing the miniature inhibitory postsynaptic currents and miniature excitatory postsynaptic currents, we found that unilateral auditory deprivation weakened the inhibitory driving force on the intact side, whereas it strengthened the excitatory driving force on the ablated side. In summary, asymmetric changes in the electrophysiological activity of LSO principal neurons were found on both sides at postnatal day 19, one week after unilateral cochlear ablation.
Collapse
Affiliation(s)
- Mo Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanfeng Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinsheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tao Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zhiqing Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ningyu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jinfeng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Nerlich J, Rübsamen R, Milenkovic I. Developmental Shift of Inhibitory Transmitter Content at a Central Auditory Synapse. Front Cell Neurosci 2017; 11:211. [PMID: 28769768 PMCID: PMC5516124 DOI: 10.3389/fncel.2017.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Synaptic inhibition in the CNS is mostly mediated by GABA or glycine. Generally, the use of the two transmitters is spatially segregated, but there are central synapses employing both, which allows for spatial and temporal variability of inhibitory mechanisms. Spherical bushy cells (SBCs) in the mammalian cochlear nucleus receive primary excitatory inputs through auditory nerve fibers arising from the organ of Corti and non-primary inhibition mediated by a dual glycine-GABA transmission. Slow kinetics IPSCs enable activity dependent tonic-like conductance build up, functioning as a gain control by filtering out small or temporally imprecise EPSPs. However, it remained elusive whether GABA and glycine are released as content of the same vesicle or from distinct presynaptic terminals. The developmental profile of quantal release was investigated with whole cell recordings of miniature inhibitory postsynaptic currents (mIPSCs) from P1–P25 SBCs of Mongolian gerbils. GABA is the initial transmitter eliciting slow-rising and -decaying events of relatively small amplitudes, occurring only during early postnatal life. Around and after hearing onset, the inhibitory quanta are predominantly containing glycine that—with maturity—triggers progressively larger and longer mIPSC. In addition, GABA corelease with glycine evokes mIPSCs of particularly large amplitudes consistently occurring across all ages, but with low probability. Together, these results suggest that GABA, as the primary transmitter released from immature inhibitory terminals, initially plays a developmental role. In maturity, GABA is contained in synaptic vesicles only in addition to glycine to increase the inhibitory potency, thereby fulfilling solely a modulatory function.
Collapse
Affiliation(s)
- Jana Nerlich
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of LeipzigLeipzig, Germany
| | - Ivan Milenkovic
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| |
Collapse
|
9
|
Abstract
Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic "doublet" postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. Significance statement: In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications for the development and refinement of this auditory circuit and may play a role in the ability to precisely localize sound sources.
Collapse
|
10
|
Lee H, Bach E, Noh J, Delpire E, Kandler K. Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem. J Neurophysiol 2016; 115:1170-82. [PMID: 26655825 PMCID: PMC4808136 DOI: 10.1152/jn.00926.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023] Open
Abstract
During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.
Collapse
Affiliation(s)
- Hanmi Lee
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eva Bach
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee; and
| | - Karl Kandler
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Ebbers L, Satheesh SV, Janz K, Rüttiger L, Blosa M, Hofmann F, Morawski M, Griesemer D, Knipper M, Friauf E, Nothwang HG. L-type Calcium Channel Cav1.2 Is Required for Maintenance of Auditory Brainstem Nuclei. J Biol Chem 2015; 290:23692-710. [PMID: 26242732 DOI: 10.1074/jbc.m115.672675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Cav1.2 and Cav1.3 are the major L-type voltage-gated Ca(2+) channels in the CNS. Yet, their individual in vivo functions are largely unknown. Both channel subunits are expressed in the auditory brainstem, where Cav1.3 is essential for proper maturation. Here, we investigated the role of Cav1.2 by targeted deletion in the mouse embryonic auditory brainstem. Similar to Cav1.3, loss of Cav1.2 resulted in a significant decrease in the volume and cell number of auditory nuclei. Contrary to the deletion of Cav1.3, the action potentials of lateral superior olive (LSO) neurons were narrower compared with controls, whereas the firing behavior and neurotransmission appeared unchanged. Furthermore, auditory brainstem responses were nearly normal in mice lacking Cav1.2. Perineuronal nets were also unaffected. The medial nucleus of the trapezoid body underwent a rapid cell loss between postnatal days P0 and P4, shortly after circuit formation. Phosphorylated cAMP response element-binding protein (CREB), nuclear NFATc4, and the expression levels of p75NTR, Fas, and FasL did not correlate with cell death. These data demonstrate for the first time that both Cav1.2 and Cav1.3 are necessary for neuronal survival but are differentially required for the biophysical properties of neurons. Thus, they perform common as well as distinct functions in the same tissue.
Collapse
Affiliation(s)
- Lena Ebbers
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Somisetty V Satheesh
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Katrin Janz
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Lukas Rüttiger
- the Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede Aulhorn Strasse 5, 72076 Tübingen, Germany
| | - Maren Blosa
- the Paul Flechsig Institute of Brain Research, Faculty of Medicine, University Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
| | - Franz Hofmann
- the Institut für Pharmakologie und Toxikologie, Technische Universität, Biedersteiner Strasse 29, D-80802 München, and
| | - Markus Morawski
- the Paul Flechsig Institute of Brain Research, Faculty of Medicine, University Leipzig, Liebigstrasse 19, 04103 Leipzig, Germany
| | - Désirée Griesemer
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Marlies Knipper
- the Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede Aulhorn Strasse 5, 72076 Tübingen, Germany
| | - Eckhard Friauf
- the Animal Physiology Group, Department of Biology, University of Kaiserlautern, P. O. Box 3049, 67663 Kaiserslautern, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany, the Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
12
|
Rosskothen-Kuhl N, Illing RB. Nutzung der Plastizität des Gehirns durch Cochleaimplantate. HNO 2015; 63:94-103. [DOI: 10.1007/s00106-014-2976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Case DT, Alamilla J, Gillespie DC. VGLUT3 does not synergize GABA/glycine release during functional refinement of an inhibitory auditory circuit. Front Neural Circuits 2014; 8:140. [PMID: 25505386 PMCID: PMC4244804 DOI: 10.3389/fncir.2014.00140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/09/2014] [Indexed: 11/29/2022] Open
Abstract
The vesicular glutamate transporter 3 (VGLUT3) is expressed at several locations not normally associated with glutamate release. Although the function of this protein has been generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement. It has however been unknown whether the primary function of VGLUT3 in development of these inhibitory synapses is to enable glutamate release or to promote loading of inhibitory neurotransmitter through vesicular synergy. Using tissue from young mice in which Vglut3 had been genetically deleted, we evaluated inhibitory neurotransmission in the MNTB-LSO pathway. Our results show, in contrast to what has been seen at adult synapses, that VGLUT3 expression has little or no effect on vesicular synergy at the immature glycinergic synapse of brainstem. This finding supports the model that the primary function of increased VGLUT3 expression in the immature auditory brainstem is to enable glutamate release in a developing inhibitory circuit.
Collapse
Affiliation(s)
- Daniel T Case
- Neuroscience Graduate Program, McMaster University Hamilton, ON, Canada
| | - Javier Alamilla
- Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada
| | - Deda C Gillespie
- Neuroscience Graduate Program, McMaster University Hamilton, ON, Canada ; Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
14
|
Dynamic fidelity control to the central auditory system: synergistic glycine/GABAergic inhibition in the cochlear nucleus. J Neurosci 2014; 34:11604-20. [PMID: 25164657 DOI: 10.1523/jneurosci.0719-14.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA and glycine are the major inhibitory transmitters that attune neuronal activity in the CNS of mammals. The respective transmitters are mostly spatially separated, that is, synaptic inhibition in the forebrain areas is mediated by GABA, whereas glycine is predominantly used in the brainstem. Accordingly, inhibition in auditory brainstem circuits is largely mediated by glycine, but there are few auditory synapses using both transmitters in maturity. Little is known about physiological advantages of such a two-transmitter inhibitory mechanism. We explored the benefit of engaging both glycine and GABA with inhibition at the endbulb of Held-spherical bushy cell synapse in the auditory brainstem of juvenile Mongolian gerbils. This model synapse enables selective in vivo activation of excitatory and inhibitory neuronal inputs through systemic sound stimulation and precise analysis of the input (endbulb of Held) output (spherical bushy cell) function. The combination of in vivo and slice electrophysiology revealed that the dynamic AP inhibition in spherical bushy cells closely matches the inhibitory conductance profile determined by the glycine-R and GABAA-R. The slow and potent glycinergic component dominates the inhibitory conductance, thereby primarily accounting for its high-pass filter properties. GABAergic transmission enhances the inhibitory strength and shapes its duration in an activity-dependent manner, thus increasing the inhibitory potency to suppress the excitation through the endbulb of Held. Finally, in silico modeling provides a strong link between in vivo and slice data by simulating the interactions between the endbulb- and the synergistic glycine-GABA-conductances during in vivo-like spontaneous and sound evoked activities.
Collapse
|
15
|
Clause A, Kim G, Sonntag M, Weisz CJC, Vetter DE, Rűbsamen R, Kandler K. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 2014; 82:822-35. [PMID: 24853941 DOI: 10.1016/j.neuron.2014.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Patterned spontaneous activity is a hallmark of developing sensory systems. In the auditory system, rhythmic bursts of spontaneous activity are generated in cochlear hair cells and propagated along central auditory pathways. The role of these activity patterns in the development of central auditory circuits has remained speculative. Here we demonstrate that blocking efferent cholinergic neurotransmission to developing hair cells in mice that lack the α9 subunit of nicotinic acetylcholine receptors (α9 KO mice) altered the temporal fine structure of spontaneous activity without changing activity levels. KO mice showed a severe impairment in the functional and structural sharpening of an inhibitory tonotopic map, as evidenced by deficits in synaptic strengthening and silencing of connections and an absence in axonal pruning. These results provide evidence that the precise temporal pattern of spontaneous activity before hearing onset is crucial for the establishment of precise tonotopy, the major organizing principle of central auditory pathways.
Collapse
Affiliation(s)
- Amanda Clause
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gunsoo Kim
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Mandy Sonntag
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rudolf Rűbsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PLoS One 2014; 9:e92624. [PMID: 24647228 PMCID: PMC3960265 DOI: 10.1371/journal.pone.0092624] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/23/2014] [Indexed: 11/19/2022] Open
Abstract
Brain development and learning is accompanied by morphological and molecular changes in neurons. The growth associated protein 43 (Gap43), indicator of neurite elongation and synapse formation, is highly expressed during early stages of development. Upon maturation of the brain, Gap43 is down-regulated by most neurons with the exception of subdivisions such as the CA3 region of hippocampus, the lateral superior olive (LSO) and the central inferior colliculus (CIC). Little is known about the regulation of this mRNA in adult brains. We found that the expression of Gap43 mRNA in specific neurons can be modulated by changing sensory activity of the adult brain. Using the central auditory system of rats as a model, Gap43 protein and mRNA levels were determined in LSO and CIC of hearing-experienced rats unilaterally or bilaterally deafened or unilaterally stimulated by a cochlear implant (CI). Our data indicate that Gap43 is a marker useful beyond monitoring neuronal growth and synaptogenesis, reflecting also specific patterns of synaptic activities on specific neurons. Thus, unilateral loss of input to an adult auditory system directly causes asymmetrical expression of Gap43 mRNA between LSOs or CICs on both sides of the brainstem. This consequence can be prevented by simple-patterned stimulation of a dysfunctional ear by way of a CI. We suggest that as a function of input balance and activity pattern, Gap43 mRNA expression changes as cells associate converging afferent signals.
Collapse
|
17
|
Witte M, Reinert T, Dietz B, Nerlich J, Rübsamen R, Milenkovic I. Depolarizing chloride gradient in developing cochlear nucleus neurons: Underlying mechanism and implication for calcium signaling. Neuroscience 2014; 261:207-22. [DOI: 10.1016/j.neuroscience.2013.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022]
|
18
|
Hartmann AM, Tesch D, Nothwang HG, Bininda-Emonds OR. Evolution of the Cation Chloride Cotransporter Family: Ancient Origins, Gene Losses, and Subfunctionalization through Duplication. Mol Biol Evol 2013; 31:434-47. [DOI: 10.1093/molbev/mst225] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
19
|
Abstract
This article describes the assembly and performance of a simple and inexpensive ultraviolet-flash system suitable for rapid focal photolysis of caged compounds in cultured neurons and brain slices. Advantages and limitations of this system are discussed. Examples are provided illustrating how this system can be used for stimulating neurons and mapping their functional inputs in brain slices.
Collapse
|
20
|
Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional Cav1.3 calcium channels. J Neurosci 2013; 32:14602-16. [PMID: 23077046 DOI: 10.1523/jneurosci.0765-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synaptic refinement via the elimination of inappropriate synapses and strengthening of appropriate ones is crucially important for the establishment of specific, topographic neural circuits. The mechanisms driving these processes are poorly understood, particularly concerning inhibitory projections. Here, we address the refinement of an inhibitory topographic projection in the auditory brainstem in functional and anatomical mapping studies involving patch-clamp recordings in combination with minimal and maximal stimulation, caged glutamate photolysis, and single axon tracing. We demonstrate a crucial dependency of the refinement on Ca(V)1.3 calcium channels: Ca(V)1.3(-/-) mice displayed virtually no elimination of projections up to hearing onset. Furthermore, strengthening was strongly impaired, in line with a reduced number of axonal boutons. The mediolateral topography was less precise and the shift from a mixed GABA/glycinergic to a purely glycinergic transmission before hearing onset did not occur. Together, our findings provide evidence for a Ca(V)1.3-dependent mechanism through which both inhibitory circuit formation and determination of the neurotransmitter phenotype are achieved.
Collapse
|
21
|
Song N, Shi H, Li C, Yin S. Differences in developmental changes in GABAergic response between bushy and stellate cells in the rat anteroventral cochlear nucleus. Int J Dev Neurosci 2012; 30:397-403. [DOI: 10.1016/j.ijdevneu.2012.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/08/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ning‐ying Song
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Hai‐bo Shi
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Chun‐yan Li
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Shan‐kai Yin
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| |
Collapse
|
22
|
Wang LC, Tang ZQ, Lu Y. Synaptic activity-induced Ca(2+) signaling in avian cochlear nucleus magnocellularis neurons. Neurosci Res 2011; 72:129-39. [PMID: 22134051 DOI: 10.1016/j.neures.2011.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/05/2011] [Accepted: 11/10/2011] [Indexed: 01/08/2023]
Abstract
Neurons of the avian cochlear nucleus magnocellularis (NM) receive glutamatergic inputs from the spiral ganglion cells via the auditory nerve and feedback GABAergic inputs primarily from the superior olivary nucleus. We investigated regulation of Ca(2+) signaling in NM neurons with ratiometric Ca(2+) imaging in chicken brain slices. Application of exogenous glutamate or GABA increased the intracellular Ca(2+) concentration ([Ca(2+)](i)) in NM neurons. Interestingly, GABA-induced Ca(2+) responses persisted into neuronal maturation, in both standard and energy substrate enriched artificial cerebrospinal fluid. More importantly, we found that electrical stimulation applied to the glutamatergic and GABAergic afferent fibers innervating the NM was able to elicit transient [Ca(2+)](i) increases in NM neurons, and the amplitude of the Ca(2+) responses increased with increasing frequency and duration of the electrical stimulation. Antagonists for ionotropic glutamate receptors significantly blocked these [Ca(2+)](i) increases, whereas blocking GABA(A) receptors did not affect the Ca(2+) responses, suggesting that synaptically released glutamate but not GABA induced the Ca(2+) signaling in vitro. Furthermore, activation of GABA(A) receptors with exogenous agonists inhibited synaptic activity-induced [Ca(2+)](i) increases in NM neurons, suggesting a role of GABA(A) receptors in the regulation of Ca(2+) homeostasis in the avian cochlear nucleus neurons.
Collapse
Affiliation(s)
- Lie-Cheng Wang
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | | | | |
Collapse
|
23
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
24
|
Abstract
Within the Ca(v)1 family of voltage-gated calcium channels, Ca(v)1.2 and Ca(v)1.3 channels are the predominant subtypes in the brain. Whereas specific functions for each subtype were described in the adult brain, their role in brain development is poorly understood. Here we assess the role of Ca(v)1.3 subunits in the activity-dependent development of the auditory brainstem. We used Ca(v)1.3-deficient (Ca(v)1.3(-/-)) mice because these mice lack cochlea-driven activity that deprives the auditory centers from peripheral input. We found a drastically reduced volume in all auditory brainstem centers (range 25-59%, total 35%), which was manifest before hearing onset. A reduction was not obvious outside the auditory system. The lateral superior olive (LSO) was strikingly malformed in Ca(v)1.3(-/-) mice and had fewer neurons (1/3 less). The remaining LSO neurons displayed normal dendritic trees and received functional glutamatergic input, yet they fired action potentials predominantly with a multiple pattern upon depolarization, in contrast to the single firing pattern prevalent in controls. The latter finding appears to be due to a reduction of dendrototoxin-sensitive potassium conductances, presumably mediated through the K(v)1.2 subtype. Fura2 imaging provided evidence for functional Ca(v)1.3 channels in the LSO of wild-type mice. Our results imply that Ca(v)1.3 channels are indispensable for the development of the central auditory system. We propose that the unique LSO phenotype in Ca(v)1.3(-/-) mice, which hitherto was not described in other hereditary deafness models, is caused by the synergistic contribution of two factors: on-site loss of Ca(v)1.3 channels in the neurons plus lack of peripheral input.
Collapse
|
25
|
Milenković I, Rübsamen R. Development of the chloride homeostasis in the auditory brainstem. Physiol Res 2011; 60:S15-27. [PMID: 21777024 DOI: 10.33549/physiolres.932178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inhibitory neurotransmission plays a substantial role in encoding of auditory cues relevant for sound localization in vertebrates. While the anatomical organization of the respective afferent auditory brainstem circuits shows remarkable similarities between mammals and birds, the properties of inhibitory neurotransmission in these neural circuits are strikingly different. In mammals, inhibition is predominantly glycinergic and endowed with fast kinetics. In birds, inhibition is mediated by gamma-Aminobutiric acid (GABA) and too slow to convey temporal information. A further prominent difference lies in the mechanism of inhibition in the respective systems. In auditory brainstem neurons of mammals, [Cl(-)](i) undergoes a developmental shift causing the actions of GABA and glycine to gradually change from depolarization to the 'classic' hyperpolarizing-inhibition before hearing onset. Contrary to this, in the mature avian auditory brainstem Cl(-) homeostasis mechanisms accurately adjust the Cl(-) gradient to enable depolarizing, but still very efficient, shunting inhibition. The present review considers the mechanisms underlying development of the Cl(-) homeostasis in the auditory system of mammals and birds and discusses some open issues that require closer attention in future studies.
Collapse
Affiliation(s)
- I Milenković
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
26
|
Grothe B, Koch U. Dynamics of binaural processing in the mammalian sound localization pathway--the role of GABA(B) receptors. Hear Res 2011; 279:43-50. [PMID: 21447375 DOI: 10.1016/j.heares.2011.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/01/2023]
Abstract
The initial binaural processing in the superior olive represents the fastest computation known in the entire mammalian brain. Although the binaural system has to perform under very different and often highly dynamic acoustic conditions, the integration of binaural information in the superior olivary complex (SOC) has not been considered to be adaptive or dynamic itself. Recent evidence, however, shows that the initial processing of interaural level and interaural time differences relies on well-adjusted interactions of both the excitatory and the inhibitory projections, respectively. Under static conditions, these inputs seem to be tightly balanced, but may also require dynamic adjustment for proper function when the acoustic environment changes. GABA(B) receptors are at least one mechanism rendering the system more dynamic than considered so far. A comprehensive description of how binaural processing in the SOC is dynamically regulated by GABA(B) receptors in adults and in early development is important for understanding how spatial auditory processing changes with acoustic context.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany.
| | | |
Collapse
|
27
|
The mammalian interaural time difference detection circuit is differentially controlled by GABAB receptors during development. J Neurosci 2010; 30:9715-27. [PMID: 20660254 DOI: 10.1523/jneurosci.1552-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Throughout development GABA(B) receptors (GABA(B)Rs) are widely expressed in the mammalian brain. In mature auditory brainstem neurons, GABA(B)Rs are involved in the short-term regulation of the strength and dynamics of excitatory and inhibitory inputs, thus modulating sound analysis. During development, GABA(B)Rs also contribute to long-term changes in input strength. Using a combination of whole-cell patch-clamp recordings in acute brain slices and immunostainings in gerbils, we characterized developmental changes in GABA(B)R-mediated regulation of synaptic inputs to neurons in the medial superior olive (MSO), an auditory brainstem nucleus that analyzes interaural time differences (ITDs). Here, we show that, before hearing onset, GABA(B)R-mediated depression of transmitter release is much stronger for excitation than inhibition, whereas in mature animals GABA(B)Rs mainly control the inhibition. During the same developmental period, GABA(B)R immunoreactivity shifts from the dendritic to the somatic region of the MSO. Furthermore, only before hearing onset (postnatal day 12), stimulation of the fibers originating in the medial and the lateral nucleus of the trapezoid body (MNTB and LNTB) activates GABA(B)Rs on both the inhibitory and the excitatory inputs. After hearing onset, GAD65-positive endings devoid of glycine transporter reactivity suggest GABA release from sources other than the MNTB and LNTB. At this age, pharmacological increase of spontaneous synaptic release activates GABA(B)Rs only on the inhibitory inputs. This indicates not only a profound inhibitory effect of GABA(B)Rs on the major inputs to MSO neurons in neonatal animals but also a direct modulatory role of GABA(B)Rs for ITD analysis in the MSO of adult animals.
Collapse
|
28
|
Kalmbach A, Kullmann PHM, Kandler K. NMDAR-Mediated Calcium Transients Elicited by Glutamate Co-Release at Developing Inhibitory Synapses. Front Synaptic Neurosci 2010; 2:27. [PMID: 21423513 PMCID: PMC3059663 DOI: 10.3389/fnsyn.2010.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/11/2010] [Indexed: 11/13/2022] Open
Abstract
Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs). To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapses, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDAR antagonist APV. APV, however, had no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. NMDAR-mediated calcium responses were decreased when increasing extracellular magnesium concentrations to physiological levels indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors increased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.
Collapse
Affiliation(s)
- Abigail Kalmbach
- Department of Neurobiology, School of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
29
|
Chalphin AV, Saha MS. The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci 2010; 3:11. [PMID: 20461146 PMCID: PMC2866564 DOI: 10.3389/fnmol.2010.00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/23/2010] [Indexed: 12/16/2022] Open
Abstract
Glycine's role as an inhibitory neurotransmitter in the adult vertebrate nervous system has been well characterized in a number of different model organisms. However, a full understanding of glycinergic transmission requires a knowledge of how glycinergic synapses emerge and the role of glycinergic signaling during development. Recent literature has provided a detailed picture of the developmental expression of many of the molecular components that comprise the glycinergic phenotype, namely the glycine transporters and the glycine receptor subunits; the transcriptional networks leading to the expression of this important neurotransmitter phenotype are also being elucidated. An equally important focus of research has revealed the critical role of glycinergic signaling in sculpting many different aspects of neural development. This review examines the current literature detailing the expression patterns of the components of the glycinergic phenotype in various vertebrate model organisms over the course of development and the molecular mechanisms governing the expression of the glycinergic phenotype. The review then surveys the recent work on the role of glycinergic signaling in the developing nervous system and concludes with an overview of areas for further research.
Collapse
|
30
|
Kandler K, Clause A, Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 2009; 12:711-7. [PMID: 19471270 DOI: 10.1038/nn.2332] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/07/2009] [Indexed: 02/08/2023]
Abstract
A fundamental organizing principle of auditory brain circuits is tonotopy, the orderly representation of the sound frequency to which neurons are most sensitive. Tonotopy arises from the coding of frequency along the cochlea and the topographic organization of auditory pathways. The mechanisms that underlie the establishment of tonotopy are poorly understood. In auditory brainstem pathways, topographic precision is present at very early stages in development, which may suggest that synaptic reorganization contributes little to the construction of precise tonotopic maps. Accumulating evidence from several brainstem nuclei, however, is now changing this view by demonstrating that developing auditory brainstem circuits undergo a marked degree of refinement on both a subcellular and circuit level.
Collapse
Affiliation(s)
- Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Eye and Ear Institute, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
31
|
Inhibitory synaptogenesis in the rat anteroventral cochlear nucleus. Neuroscience 2008; 154:315-28. [PMID: 18434029 DOI: 10.1016/j.neuroscience.2008.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
Abstract
Spherical cells in the anteroventral division of the cochlear nucleus, which relay excitatory inputs from the auditory nerve, also receive both GABAergic and glycinergic inhibitory synapses. Inhibition mediated by GABA and glycine fulfils essential roles in the processing abilities of these and other auditory neurons. However, the developmental program leading to a mature complement of GABAergic and glycinergic synapses and microcircuits is largely unknown. Because of their relatively simple geometry, spherical cells provide an excellent model for unraveling basic developmental patterns of inhibitory synaptogenesis. Using a combination of high resolution immunocytochemical methods, we report that, in the rat, synapses containing GABA or glycine are deployed on spherical cell bodies over a time period extending well beyond hearing onset. Such postnatal developmental recruitment of inhibitory endings is progressive, although there are two distinct leaps in their numbers. The first occurs by the end of the first postnatal week, prior to hearing onset, and the second, during the third postnatal week, after hearing onset. This pattern suggests that adjustments in inhibition could be driven by acoustic experience. While GABAergic and glycinergic endings are maturing and growing in number and size, their neurotransmitter content also appears to be developmentally regulated. Quantitative ultrastructural immunocytochemistry with colloidal gold suggests that GABA and glycine accumulation in synaptic endings follows a staggered pattern, with labeling stabilizing at adult levels by postnatal day 21. This may account for adjustments in synaptic efficacy and strength.
Collapse
|
32
|
Kullmann PHM, Kandler K. Dendritic Ca2+ responses in neonatal lateral superior olive neurons elicited by glycinergic/GABAergic synapses and action potentials. Neuroscience 2008; 154:338-45. [PMID: 18400406 DOI: 10.1016/j.neuroscience.2008.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
During development, GABA/glycinergic connections from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) gradually change from being depolarizing to being hyperpolarizing. Previous studies have shown that depolarizing MNTB-LSO synapses can trigger action potentials and increase the concentration of intracellular calcium. In the present study we used confocal calcium imaging combined with whole-cell patch clamp recordings to investigate how depolarizing MNTB inputs in neonatal rats and mice increase the calcium concentration in the dendrites of LSO neurons. Our results show that subthreshold synaptic responses can elicit local dendritic calcium responses while suprathreshold responses reliably generate global calcium responses that are observed in all dendritic processes. The amplitude of global dendritic calcium responses increased with distance from the soma. Global calcium responses were blocked by tetrodotoxin and could not be recovered by somatic injection of action potential waveforms indicating that global calcium responses are generated by back-propagating sodium action potentials.
Collapse
Affiliation(s)
- P H M Kullmann
- Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15208, USA
| | | |
Collapse
|
33
|
Nishimaki T, Jang IS, Ishibashi H, Yamaguchi J, Nabekura J. Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses. Eur J Neurosci 2007; 26:323-30. [PMID: 17623021 DOI: 10.1111/j.1460-9568.2007.05656.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lateral superior olivary nucleus (LSO) is an auditory relay centre within the brain stem that encodes interaural level differences for sound localization by integrating GABA/glycinergic input from the contralateral ear via the medial nucleus of the trapezoid body (MNTB), and glutamatergic input from the ipsilateral ear via the ventral cochlear nucleus (VCN). To study the development of the circuits that contribute to the establishment of sound localization, the heterosynaptic modulation mediated by glutamate released from VCN terminals and group II metabotropic glutamate receptor (mGluR) expressed on MNTB inhibitory terminals was investigated using whole-cell patch-clamp techniques. At postnatal day-4-8 (P4-8), repetitive stimulation of the VCN-LSO excitatory afferents caused significant inhibition of MNTB-LSO inhibitory postsynaptic currents (IPSCs) in amplitude with an increase of its coefficient of variation and changed the paired-pulse ratio. These effects were antagonized by LY341495, an mGluR2/3 antagonist. Thus, the suppression of MNTB-LSO synaptic responses induced by repetitive stimulation applied to the VCN-LSO glutamatergic afferent is presumably due to an activation of mGluR2/3 existing on MNTB-LSO presynaptic terminals. The suppression rate of MNTB-LSO IPSCs by DCG IV, an mGluR2/3 agonist, decreased with development and became negligible by the third week after birth. The immunohistochemical staining of mGluR2/3 in the LSO was also less apparent at P18 compared with that at P4. We suggest that mGluR-mediated heterosynaptic modulation of MNTB-LSO GABAergic/glycinergic transmission might contribute to the development of appropriate adult auditory circuits.
Collapse
Affiliation(s)
- Takuya Nishimaki
- Division for Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
34
|
Kenet T, Froemke RC, Schreiner CE, Pessah IN, Merzenich MM. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc Natl Acad Sci U S A 2007; 104:7646-51. [PMID: 17460041 PMCID: PMC1855918 DOI: 10.1073/pnas.0701944104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Indexed: 12/21/2022] Open
Abstract
Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination.
Collapse
Affiliation(s)
- T. Kenet
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - R. C. Froemke
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - C. E. Schreiner
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| | - I. N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - M. M. Merzenich
- *Keck Center of Integrative Neuroscience, University of California, San Francisco, CA 94143; and
| |
Collapse
|
35
|
Muller E, Le Corronc H, Triller A, Legendre P. Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus. Mol Cell Neurosci 2006; 32:254-73. [PMID: 16765056 DOI: 10.1016/j.mcn.2006.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/19/2006] [Accepted: 04/24/2006] [Indexed: 11/21/2022] Open
Abstract
At postsynaptic densities of mouse hypoglossal motoneurons, the proportion of glycine receptors co-clustered with GABAA receptors increases from neonatal to adult animals, suggesting that mixed synapses might play a greater role in adult synaptic inhibition. We visualized the presynaptic correlates of these developmental changes using immunocytochemistry. At P5, presynaptic terminals contained glycine and GlyT2 and/or GABA and GAD65, but at P15, the majority of inhibitory terminals contained glycine and GlyT2 only. The GABAergic component of evoked inhibitory postsynaptic currents in HMs decreased strongly between P5 and P15. Similarly, miniature inhibitory postsynaptic currents evolved from mainly glycinergic and mixed glycinergic/GABAergic events at P3-5 to predominantly glycinergic currents at P15. These results indicate that the decrease in the proportion of functional mixed inhibitory synapses with maturation results from a loss of the ability of presynaptic terminals to release both neurotransmitters during development while co-aggregation of GlyRs + GABAARs at postsynaptic loci remained.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102-Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Bat. B 6e étage, Case 1, 9, Quai Saint Bernard, 75252 Paris CEDEX 05, France
| | | | | | | |
Collapse
|
36
|
Shi HB, Kakazu Y, Shibata S, Matsumoto N, Nakagawa T, Komune S. Bilirubin potentiates inhibitory synaptic transmission in lateral superior olive neurons of the rat. Neurosci Res 2006; 55:161-70. [PMID: 16595155 DOI: 10.1016/j.neures.2006.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 11/25/2022]
Abstract
Bilirubin is a well-known neurotoxin that can result in multiple neurologic deficits. Previous studies have suggested that bilirubin affects aspects of synaptic transmission; however the acute effects of bilirubin on synaptic transmission have not been examined in real-time. In this study, using whole-cell voltage-clamp recordings, we observed the effect of bilirubin on inhibitory postsynaptic currents (IPSC) in postnatal 13-15-day-old neurons dissociated from lateral superior olive nuclei (LSO), one of the brainstem auditory nucleus that are highly vulnerable to bilirubin. The results showed that 10(-5)M bilirubin increased the frequency of spontaneous IPSC without causing change in their amplitudes or in the response to bath applied glycine, suggesting a presynaptic locus for the action. In the presence of tetrodotoxin, the frequency of miniature IPSC was also potentiated by 10(-5)M bilirubin. The facilitation by bilirubin was concentration dependent and increased with an increase in exposure time. Bicuculline only partially reduced the action of bilirubin. The action of bilirubin was observed in extracellular Ca(2+)-free ([Ca(2+)](o) free) solution but was fully occluded by pretreatment with BAPTA-AM in [Ca(2+)](o) free solution. Thus, in LSO neurons, bilirubin facilitates inhibitory synaptic transmission, in a manner independent of voltage-activated Na(+) and Ca(2+) channels but dependent on presynaptic [Ca(2+)](i). The increase of inhibitory synaptic transmission in response to acute bilirubin is a novel effect of bilirubin on the central nervous system and may have implications for neurotoxicity and the impairment of auditory transduction seen in hyperbilirubinemia.
Collapse
Affiliation(s)
- Hai-Bo Shi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Löhrke S, Srinivasan G, Oberhofer M, Doncheva E, Friauf E. Shift from depolarizing to hyperpolarizing glycine action occurs at different perinatal ages in superior olivary complex nuclei. Eur J Neurosci 2005; 22:2708-22. [PMID: 16324105 DOI: 10.1111/j.1460-9568.2005.04465.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The inhibitory transmitters glycine and GABA undergo a developmental shift from depolarizing to hyperpolarizing action (D/H-shift). To analyse this shift in functionally related nuclei of the rat superior olivary complex (SOC), we employed voltage-sensitive dye recordings in auditory brainstem slices. Complementarily, we analysed single neurons in gramicidin perforated-patch recordings. Our results show a differential timing of the D/H-shift in the four SOC nuclei analysed. In the medial superior olive (MSO), the shift occurred at postnatal day (P) 5-9. In the superior paraolivary nucleus (SPN), it occurred between embryonic day (E) 18 and P1. No D/H-shift was observed in the medial nucleus of the trapezoid body (MNTB) until P10. This is in line with the finding that most of the patched MNTB neurons displayed glycine-induced depolarizations between P0-9. While no regional differences regarding the D/H-shift were found within the MSO, SPN, and MNTB, we observed such differences in the lateral superior olive (LSO). All LSO regions showed a D/H-shift at P4-5. However, in the high-frequency regions, hyperpolarizations were large already at P6, yet amplitudes of this size were not present until P8 in the low-frequency regions, suggesting a delayed development in the latter regions. Our physiological results demonstrate that D/H-shifts in SOC nuclei are staggered in time and occur over a period of almost two weeks. Membrane-associated immunoreactivity of the Cl- outward transporter KCC2 was found in every SOC nucleus already at times when glycine was still depolarizing. This implies that the mere presence of KCC2 does not correlate with functional Cl- outward transport.
Collapse
Affiliation(s)
- Stefan Löhrke
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
38
|
Vale C, Caminos E, Martinez-Galán JR, Juiz JM. Expression and developmental regulation of the K+-Cl- cotransporter KCC2 in the cochlear nucleus. Hear Res 2005; 206:107-15. [PMID: 16081002 DOI: 10.1016/j.heares.2005.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
KCC2 is a neuron-specific Cl- transporter whose role in adult central neurons is to maintain low intracellular Cl- concentrations and, therefore, generate an inward-directed electrochemical gradient for Cl- needed for the hyperpolarizing responses to the inhibitory amino acids GABA and glycine. We report that the KCC2 protein is intensely expressed in CN neurons and preferentially associated with plasma membrane domains, consistent with GABA and glycinergic-mediated inhibition in this auditory nucleus. Postnatal KCC2 expression and distribution patterns are similar in developing and adult CN neurons and do not match the time course of GABergic or glycinergic synaptogenesis. Therefore, in the CN, neither KCC2 protein upregulation nor progressive integration in the plasma membrane seem to be involved in KCC2 developmental regulation. Considering that GABA and glycine are depolarizing during early postnatal development, it is conceivable that KCC2 is in place but inactive during early postnatal development in the CN and becomes active as inhibitory synaptogenesis proceeds. This notion is supported by the finding that the phosphorylation state of KCC2 differs from developing to adult CN, with the phosphorylated form predominating in the latter.
Collapse
Affiliation(s)
- Carmen Vale
- School of Medicine and Centro Regional de Investigación Biomédica, Universidad de Castilla-La Mancha, Campus de Albacete, 02005 Albacete, Spain
| | | | | | | |
Collapse
|
39
|
Kandler K, Gillespie DC. Developmental refinement of inhibitory sound-localization circuits. Trends Neurosci 2005; 28:290-6. [PMID: 15927684 PMCID: PMC4120098 DOI: 10.1016/j.tins.2005.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/30/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The ability to localize sound rapidly and accurately depends on the precise organization of inhibitory neuronal circuits in the auditory brainstem. However, the rules and mechanisms by which this precision is established during development are still poorly understood. Although activity-dependent reorganization has been known for over a decade to have a central role in this process, more recent studies have revealed an unanticipated degree of reorganization that occurs on levels ranging from cellular phenotype to network connectivity. These results suggest novel mechanisms by which immature inhibitory sound-localization circuits become optimized. Lessons from auditory brainstem circuits thus could provide insight into inhibitory development in other brain areas, where inhibitory networks are less experimentally accessible.
Collapse
Affiliation(s)
- Karl Kandler
- Department of Neurobiology and Center for the Neuronal Basis of Cognition, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
40
|
Lee H, Chen CXQ, Liu YJ, Aizenman E, Kandler K. KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur J Neurosci 2005; 21:2593-9. [PMID: 15932617 PMCID: PMC2945502 DOI: 10.1111/j.1460-9568.2005.04084.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During brain development, GABA and glycine switch from being depolarizing to being hyperpolarizing neurotransmitters. This conversion results from a gradual decrease in the chloride electrochemical equilibrium potential (ECl) of developing neurons, which correlates to an increase in the expression or activity of the potassium chloride cotransporter, KCC2. However, evidence as to whether KCC2 expression is sufficient, in and of itself, to induce this switch is lacking. In order to address this question, we used a gain-of-function approach by over-expressing human KCC2 (hKCC2) in immature cortical neurons, before endogenous up-regulation of KCC2. We found that premature expression of hKCC2 produced a substantial negative shift in the GABA reversal potential and decreased or abolished GABA-elicited calcium responses in cultured neurons. We conclude that KCC2 expression is not only necessary but is also sufficient for ending the depolarizing period of GABA in developing cortical neurons.
Collapse
Affiliation(s)
- Hanmi Lee
- Department Neurobiology, University of Pittsburgh School of Medicine, W1447 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Carol Xiu-Qing Chen
- Department Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yong-Jian Liu
- Department Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elias Aizenman
- Department Neurobiology, University of Pittsburgh School of Medicine, W1447 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Karl Kandler
- Department Neurobiology, University of Pittsburgh School of Medicine, W1447 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
- Center for the Neuronal Basis of Cognition University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
41
|
Blaesse P, Ehrhardt S, Friauf E, Nothwang HG. Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 2005; 320:33-50. [PMID: 15714284 DOI: 10.1007/s00441-004-1054-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/29/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0-P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood.
Collapse
Affiliation(s)
- Peter Blaesse
- Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Deutschland
| | | | | | | |
Collapse
|
42
|
Gillespie DC, Kim G, Kandler K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 2005; 8:332-8. [PMID: 15746915 DOI: 10.1038/nn1397] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/29/2004] [Indexed: 11/09/2022]
Abstract
Activity-dependent synapse refinement is crucial for the formation of precise excitatory and inhibitory neuronal circuits. Whereas the mechanisms that guide refinement of excitatory circuits are becoming increasingly clear, the mechanisms guiding inhibitory circuits have remained obscure. In the lateral superior olive (LSO), a nucleus in the mammalian sound localization system that receives inhibitory input from the medial nucleus of the trapezoid body (MNTB), specific elimination and strengthening of synapses that are both GABAergic and glycinergic (GABA/glycinergic synapses) is essential for the formation of a precise tonotopic map. We provide evidence that immature GABA/glycinergic synapses in the rat LSO also release the excitatory neurotransmitter glutamate, which activates postsynaptic NMDA receptors (NMDARs). Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals. Glutamatergic transmission at MNTB-LSO synapses is most prominent during the period of synapse elimination. Synapse-specific activation of NMDARs by glutamate release at GABAergic and glycinergic synapses could be important in activity-dependent refinement of inhibitory circuits.
Collapse
Affiliation(s)
- Deda C Gillespie
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1412 Biomedical Science Tower, 3500 Terrace St., Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
43
|
|
44
|
Allain AE, Baïri A, Meyrand P, Branchereau P. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 2004; 1000:134-47. [PMID: 15053961 DOI: 10.1016/j.brainres.2003.11.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2003] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated an excitatory action of GABA early in development, which is likely to play a neurotrophic role. In order to better understand the role of GABA in the mouse spinal cord, we followed the evolution of GABAergic neurons over the course of development. We investigated, in the present study, the ontogeny of GABA immunoreactive (GABA-ir) cell bodies and fibers in the embryonic mouse spinal cord at brachial and lumbar levels. GABA-ir somata were first detected at embryonic day 11.5 (E11.5) exclusively at brachial level in the marginal zone. By E13.5, the number of GABAergic neurons sharply increased throughout the extent of the ventral horn both at brachial and lumbar level. Stained perikarya first appeared in the future dorsal horn at E15.5 and progressively invaded this area while they decreased in number in the presumed ventral gray matter. At E12.5, E13.5 and E15.5, we checked the possibility that ventral GABA-ir cells could belong to the motoneuronal population. Using a GABA/Islet-1/2 double labeling, we did not detect any double-stained neurons indicating that spinal motoneurons do not synthesize GABA during the course of development. GABA-ir fibers also appeared at the E11.5 stage in the presumptive lateral white matter at brachial level. At E12.5 and E13.5, GABA-ir fibers progressively invaded the ventral marginal zone and by E15.5 reached the dorsal marginal zone. At E17.5 and postnatal day 0 (P0), the number of GABA-ir fibers declined in the white matter. Finally, by P0, GABA immunoreactivity that delineated somata was mainly restricted to the dorsal gray matter and declined in intensity and extent. The ventral gray matter exhibited very few GABA-ir cell bodies at this neonatal stage of development. The significance of the migration of somatic GABA immunoreactivity from ventral to the dorsal gray matter is discussed.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Avenue des Facultés, 33405 Talence, France
| | | | | | | |
Collapse
|
45
|
Kandler K. Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 2004; 14:96-104. [PMID: 15018944 DOI: 10.1016/j.conb.2004.01.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In contrast to our detailed knowledge about the development and plasticity of excitatory neuronal circuits, little is known about the development of inhibitory circuits. Recent studies from the developing mammalian auditory system have revealed the presence of substantial activity-dependent synaptic reorganization in several inhibitory pathways. These studies importantly shed some new light on the general rules and cellular mechanisms that manage the organization of precise inhibitory circuits in the developing brain.
Collapse
Affiliation(s)
- Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Liu Q, Wong-Riley MTT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in the rat pre-Botzinger complex. J Appl Physiol (1985) 2004; 96:1825-31. [PMID: 14729731 DOI: 10.1152/japplphysiol.01264.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that the pre-Bötzinger complex (PBC) exhibited a dramatic reduction in cytochrome oxidase activity at postnatal day (P) 12. This coincided in time with decreases in glutamate and NMDA receptor subunit 1 and increases in GABA, GABAB, glycine receptor, and glutamate receptor GluR2. To test our hypothesis that various alpha-subunits of GABAA receptors also undergo changes in their expression during postnatal development, as they do in other brain regions, we undertook an in-depth immunohistochemical study of GABAA receptor subunits alpha1, alpha2, and alpha3 in the PBC of P0 to P21 rats. We found that 1) GABAA alpha3-subunit was expressed at relatively high levels at P0, which then declined with age; 2) GABAA alpha1-subunit was expressed at relatively low levels at P0 but increased with age; 3) the developmental trends of subunits alpha1 and alpha3 intersected at P12; and 4) GABAA alpha2-subunit expression was moderate to light at P0 and remained quite constant during development, being lowest at P21. These findings suggest that the apparent switch in relative expressions of subunits alpha3 and alpha1 during development and the intersection of slopes around P12 may be associated with possible changes in GABAA receptor subtypes that would mediate different functional properties of GABA transmission, such as primarily a less efficient inhibitory transmission before P12 and a more mature inhibitory effect at P12 and thereafter, as suggested by the kinetics of distinct postsynaptic potentials. This mechanism may contribute partially to the dramatic reduction in cytochrome oxidase activity within the PBC at P12, as shown previously.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
47
|
|
48
|
Srinivasan G, Friauf E, Löhrke S. Functional glutamatergic and glycinergic inputs to several superior olivary nuclei of the rat revealed by optical imaging. Neuroscience 2004; 128:617-34. [PMID: 15381290 DOI: 10.1016/j.neuroscience.2004.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/24/2022]
Abstract
Superior olivary complex (SOC) neurons receive excitatory and inhibitory inputs from both ears. We determined the nature of such inputs to the main SOC nuclei with an optical imaging system. To do so, brainstem slices of postnatal (P) rats (P3-13) were treated with the fast voltage-sensitive dye RH795, and ipsilateral and contralateral SOC inputs were activated electrically. Optical signals, equivalent to membrane potential changes, were detected by a 464-photodiode array. The signals consisted mostly of two components which were identified as pre- and postsynaptic potentials in experiments with Ca2+-free solutions. They correlated with morphological structures, i.e. the presynaptic components were prominent in neuropil regions whereas the postsynaptic components dominated in somata regions. Postsynaptic components were distinguished pharmacologically with the glycine receptor blocker strychnine and the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Concerning the lateral superior olive, we confirmed the known glutamatergic inputs from the ipsilateral side and the glycinergic inputs from the ipsilateral and contralateral sides. Furthermore, we identified a CNQX-sensitive input from the contralateral side. In the medial superior olive, we corroborated the glutamatergic and glycinergic inputs from the ipsilateral and contralateral sides. Both ipsi- and contralaterally, the glutamatergic input was more pronounced than the glycinergic input. In the superior paraolivary nucleus, we also identified ipsilateral and contralateral inputs. Besides the known glycinergic input from the contralateral side, we found a novel glycinergic input from the ipsilateral side and identified CNQX-sensitive inputs from the contralateral and ipsilateral sides. The latter was very weak and appeared only in 30% of the experiments. The data show the feasibility of identifying functional inputs to the SOC with voltage-sensitive dye recordings.
Collapse
Affiliation(s)
- G Srinivasan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany
| | | | | |
Collapse
|
49
|
Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 2003; 7:17-23. [PMID: 14699415 DOI: 10.1038/nn1170] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 12/01/2003] [Indexed: 11/09/2022]
Abstract
Early in postnatal development, inhibitory inputs to rat lateral superior olive (LSO) neurons change from releasing predominantly GABA to releasing predominantly glycine into the synapse. Here we show that spontaneous miniature inhibitory postsynaptic currents (mIPSCs) also change from GABAergic to glycinergic over the first two postnatal weeks. Many 'mixed' mIPSCs, resulting from co-release of glycine and GABA from the same vesicles, are seen during this transition. Immunohistochemistry showed that a large number of terminals contained both GABA and glycine at postnatal day 8 (P8). By P14, both the content of GABA in these mixed terminals and the contribution of GABA to the mixed mIPSCs had decreased. The content of glycine in terminals increased over the same period. Our results indicate that switching from GABAergic to glycinergic inputs to the LSO may occur at the level of a single presynaptic terminal. This demonstrates a new form of developmental plasticity at the level of a single central synapse.
Collapse
Affiliation(s)
- Junichi Nabekura
- Department of Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ene FA, Kullmann PHM, Gillespie DC, Kandler K. Glutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns. J Neurophysiol 2003; 90:2581-91. [PMID: 12853437 DOI: 10.1152/jn.00238.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral superior olive (LSO) is a binaural auditory brain stem nucleus that plays a central role in sound localization. Survival and maturation of developing LSO neurons critically depend on intracellular calcium signaling. Here we investigated the mechanisms by which glutamatergic afferents from the cochlear nucleus increase intracellular calcium concentration in LSO neurons. Using fura-2 calcium imaging in slices prepared from neonatal mice, we found that cochlear nucleus afferents can activate all major classes of ionotropic and metabotropic glutamate receptors, each of which contributes to an increase in intracellular calcium. The specific activation of different glutamate receptor classes was dependent on response amplitudes and afferent stimulus patterns. Low-amplitude responses elicited by single stimuli were entirely mediated by calcium-impermeable AMPA/kainate receptors that activated voltage-gated calcium channels. Larger-amplitude responses elicited by either single stimuli or stimulus trains resulted in additional calcium influx through N-methyl-d-aspartate receptors. Finally, high-frequency stimulation also recruited group I and group II metabotropic glutamate receptors, both of which mobilized intracellular calcium. This calcium release in turn activated a strong influx of extracellular calcium through a membrane calcium channel that is distinct from voltage-gated calcium channels. Together, these results indicate that before hearing onset, distinct patterns of afferent activity generate qualitatively distinct types of calcium responses, which likely serve in guiding different aspects of LSO development.
Collapse
Affiliation(s)
- F Aura Ene
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|