1
|
Kollmansperger S, Anders M, Werner J, Saller AM, Weiss L, Süß SC, Reiser J, Schneider G, Schusser B, Baumgartner C, Fenzl T. Nociception in Chicken Embryos, Part II: Embryonal Development of Electroencephalic Neuronal Activity In Ovo as a Prerequisite for Nociception. Animals (Basel) 2023; 13:2839. [PMID: 37760239 PMCID: PMC10525651 DOI: 10.3390/ani13182839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chicken culling has been forbidden in Germany since 2022; male/female selection and male elimination must be brought to an embryonic status prior to the onset of nociception. The present study evaluated the ontogenetic point at which noxious stimuli could potentially be perceived/processed in the brain in ovo. EEG recordings from randomized hyperpallial brain sites were recorded in ovo and noxious stimuli were applied. Temporal and spectral analyses of the EEG were performed. The onset of physiological neuronal signals could be determined at developmental day 13. ERP/ERSP/ITC analysis did not reveal phase-locked nociceptive responses. Although no central nociceptive responses were documented, adequate EEG responses to noxious stimuli from other brain areas cannot be excluded. The extreme stress impact on the embryo during the recording may overwrite the perception of noniceptive stimuli. The results suggest developmental day 13 as the earliest embryonal stage being able to receive and process nociceptive stimuli.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Malte Anders
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Julia Werner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Anna M. Saller
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Larissa Weiss
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Stephanie C. Süß
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Judith Reiser
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Benjamin Schusser
- Department of Molecular Life Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| | - Christine Baumgartner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Thomas Fenzl
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| |
Collapse
|
2
|
Salles A, Neunuebel J. What do mammals have to say about the neurobiology of acoustic communication? MOLECULAR PSYCHOLOGY : BRAIN, BEHAVIOR, AND SOCIETY 2023; 2:5. [PMID: 38827277 PMCID: PMC11141777 DOI: 10.12688/molpsychol.17539.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Auditory communication is crucial across taxa, including humans, because it enables individuals to convey information about threats, food sources, mating opportunities, and other social cues necessary for survival. Comparative approaches to auditory communication will help bridge gaps across taxa and facilitate our understanding of the neural mechanisms underlying this complex task. In this work, we briefly review the field of auditory communication processing and the classical champion animal, the songbird. In addition, we discuss other mammalian species that are advancing the field. In particular, we emphasize mice and bats, highlighting the characteristics that may inform how we think about communication processing.
Collapse
Affiliation(s)
- Angeles Salles
- Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Neunuebel
- Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Allen A, Heisler E, Kittelberger JM. Dopamine injections to the midbrain periaqueductal gray inhibit vocal-motor production in a teleost fish. Physiol Behav 2023; 263:114131. [PMID: 36796532 DOI: 10.1016/j.physbeh.2023.114131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.
Collapse
Affiliation(s)
- Alexander Allen
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | - Elizabeth Heisler
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | | |
Collapse
|
4
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
5
|
Keller D, Tsuda MC, Usdin TB, Dobolyi A. Behavioural actions of tuberoinfundibular peptide 39 (parathyroid hormone 2). J Neuroendocrinol 2022; 34:e13130. [PMID: 35499975 PMCID: PMC9515240 DOI: 10.1111/jne.13130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) acts via its endogenous class B G-protein coupled receptorthe parathyroid hormone 2 receptor (PTH2R). Hence, it is also known as parathyroid hormone 2. The peptide is expressed in the brain by a small number of neurons with a highly restricted distribution, which in turn project to a large number of brain regions that contain PTH2R. This peptide neuromodulator system has been extensively investigated over the past 20 years including its behavioural actions, such as its role in the control of nociception, fear and fear incubation, anxiety and depression-like behaviours, and maternal and social behaviours. It also influences thermoregulation and potentially auditory responses. TIP39 probably exerts direct effect on the neuronal networks controlling these behaviours based on the localization of PTH2R and local TIP39 actions. In addition, TIP39 also affects the secretion of several hypothalamic hormones providing the basis for indirect behavioural actions. Recently developed experimental tools have stimulated further behavioural investigations, and novel results obtained are discussed in this review.
Collapse
Affiliation(s)
- Dávid Keller
- ELKH‐ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Research Network and Eötvös Loránd UniversityBudapestHungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services UniversityBethesdaMarylandUSA
| | - Ted B. Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, NIHBethesdaMarylandUSA
| | - Arpád Dobolyi
- ELKH‐ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Research Network and Eötvös Loránd UniversityBudapestHungary
- Department of Physiology and NeurobiologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
6
|
Ruat J, Genewsky AJ, Heinz DE, Kaltwasser SF, Canteras NS, Czisch M, Chen A, Wotjak CT. Why do mice squeak? Towards a better understanding of defensive vocalization. iScience 2022; 25:104657. [PMID: 35845167 PMCID: PMC9283514 DOI: 10.1016/j.isci.2022.104657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Although mice mostly communicate in the ultrasonic range, they also emit audible calls. We demonstrate that mice selectively bred for high anxiety-related behavior (HAB) have a high disposition for emitting sonic calls when caught by the tail. The vocalization was unrelated to pain but sensitive to anxiolytics. As revealed by manganese-enhanced MRI, HAB mice displayed an increased tonic activity of the periaqueductal gray (PAG). Selective inhibition of the dorsolateral PAG not only reduced anxiety-like behavior but also completely abolished sonic vocalization. Calls were emitted at a fundamental frequency of 3.8 kHz, which falls into the hearing range of numerous predators. Indeed, playback of sonic vocalization attracted rats if associated with a stimulus mouse. If played back to HAB mice, sonic calls were repellent in the absence of a conspecific but attractive in their presence. Our data demonstrate that sonic vocalization attracts both predators and conspecifics depending on the context. Sonic vocalization in threatening situations is prominent in highly anxious mice It coincides with increased neuronal activity within the periaqueductal gray (PAG) Pharmacological inhibition of the PAG attenuates sonic vocalization Sonic calls attract both rats and mice in the presence of a stimulus mouse
Collapse
|
7
|
Salles A, Marino Lee S, Moss CF. Sound evoked fos-like immunoreactivity in the big brown bat. IBRO Neurosci Rep 2022; 12:197-202. [PMID: 35746972 PMCID: PMC9210485 DOI: 10.1016/j.ibneur.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Most bat species have highly developed audio-vocal systems, which allow them to adjust the features of echolocation calls that are optimized for different sonar tasks, such as detecting, localizing, discriminating and tracking targets. Furthermore, bats can also produce a wide array of social calls to communicate with conspecifics. The acoustic properties of some social calls differ only subtly from echolocation calls, yet bats have the ability to distinguish them and reliably produce appropriate behavioral responses. Little is known about the underlying neural processes that enable the correct classification of bat social communication sounds. One approach to this question is to identify the brain regions that are involved in the processing of sounds that carry behavioral relevance. Here, we present preliminary data on neuronal activation, as measured by c-fos expression, in big brown bats (Eptesicus fuscus) exposed to either social calls, echolocation calls or kept in silence. We focused our investigation on five relevant brain areas; three within the canonical auditory pathway (auditory cortex, inferior colliculus and medial geniculate body) and two that are involved in the processing of emotive stimulus content (amygdala and nucleus accumbens). In this manuscript we report c-fos staining of the areas of interest after exposure to conspecific calls. We discuss future work designed to overcome experimental limitations and explore whether c-fos staining reveals anatomical segregation of neurons activated by echolocation and social call categories.
Collapse
|
8
|
Michael V, Goffinet J, Pearson J, Wang F, Tschida K, Mooney R. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. eLife 2020; 9:e63493. [PMID: 33372655 PMCID: PMC7793624 DOI: 10.7554/elife.63493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Animals vocalize only in certain behavioral contexts, but the circuits and synapses through which forebrain neurons trigger or suppress vocalization remain unknown. Here, we used transsynaptic tracing to identify two populations of inhibitory neurons that lie upstream of neurons in the periaqueductal gray (PAG) that gate the production of ultrasonic vocalizations (USVs) in mice (i.e. PAG-USV neurons). Activating PAG-projecting neurons in the preoptic area of the hypothalamus (POAPAG neurons) elicited USV production in the absence of social cues. In contrast, activating PAG-projecting neurons in the central-medial boundary zone of the amygdala (AmgC/M-PAG neurons) transiently suppressed USV production without disrupting non-vocal social behavior. Optogenetics-assisted circuit mapping in brain slices revealed that POAPAG neurons directly inhibit PAG interneurons, which in turn inhibit PAG-USV neurons, whereas AmgC/M-PAG neurons directly inhibit PAG-USV neurons. These experiments identify two major forebrain inputs to the PAG that trigger and suppress vocalization, respectively, while also establishing the synaptic mechanisms through which these neurons exert opposing behavioral effects.
Collapse
Affiliation(s)
- Valerie Michael
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - Jack Goffinet
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - John Pearson
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- Department of Biostatistics & Bioinformatics, Duke University Medical CenterDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | | | - Richard Mooney
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
9
|
Radtke-Schuller S, Fenzl T, Peremans H, Schuller G, Firzlaff U. Cyto- and myeloarchitectural brain atlas of the pale spear-nosed bat (Phyllostomus discolor) in CT Aided Stereotaxic Coordinates. Brain Struct Funct 2020; 225:2509-2520. [PMID: 32936343 PMCID: PMC7544721 DOI: 10.1007/s00429-020-02138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Abstract
The pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, at intervals of 350 µm. To facilitate comparisons with other species, brain structures were named according to the widely accepted Paxinos nomenclature and previous neuroanatomical studies of other bat species. Outlines of auditory cortical fields, as defined in earlier studies, were mapped onto atlas sections and onto the brain surface, together with the architectonic subdivisions of the neocortex. X-ray computerized tomography (CT) of the bat's head was used to establish the relationship between coordinates of brain structures and the skull. We used profile lines and the occipital crest as skull landmarks to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas. An electronic version of the atlas plates and supplementary material is available from https://doi.org/10.12751/g-node.8bbcxy.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany.
- Department of Psychiatry, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Thomas Fenzl
- Klinikum für Anästhesiologie und Intensivmedizin am Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Gerd Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany
| |
Collapse
|
10
|
Vernes SC, Wilkinson GS. Behaviour, biology and evolution of vocal learning in bats. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190061. [PMID: 31735153 DOI: 10.1098/rstb.2019.0061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The comparative approach can provide insight into the evolution of human speech, language and social communication by studying relevant traits in animal systems. Bats are emerging as a model system with great potential to shed light on these processes given their learned vocalizations, close social interactions, and mammalian brains and physiology. A recent framework outlined the multiple levels of investigation needed to understand vocal learning across a broad range of non-human species, including cetaceans, pinnipeds, elephants, birds and bats. Here, we apply this framework to the current state-of-the-art in bat research. This encompasses our understanding of the abilities bats have displayed for vocal learning, what is known about the timing and social structure needed for such learning, and current knowledge about the prevalence of the trait across the order. It also addresses the biology (vocal tract morphology, neurobiology and genetics) and evolution of this trait. We conclude by highlighting some key questions that should be answered to advance our understanding of the biological encoding and evolution of speech and spoken communication. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen 6500 AH, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, Nijmegen 6525 EN, The Netherlands
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Petersen H, Finger N, Bastian A, Jacobs D. The Behaviour and Vocalisations of Captive Geoffroy's Horseshoe Bats, Rhinolophus clivosus (Chiroptera: Rhinolophidae). ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2018.20.2.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hana Petersen
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Nikita Finger
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Anna Bastian
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, KwaZulu-Natal, South Africa
| | - David Jacobs
- Animal Evolution and Systematics Group, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
12
|
Yin JX, Ruan YN, Liu JL, Zhang SY, Racey P. FoxP2 expression in an echolocating bat (Rhinolophus ferrumequinum): Functional implications. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
|
14
|
Rodenas-Cuadrado P, Chen XS, Wiegrebe L, Firzlaff U, Vernes SC. A novel approach identifies the first transcriptome networks in bats: a new genetic model for vocal communication. BMC Genomics 2015; 16:836. [PMID: 26490347 PMCID: PMC4618519 DOI: 10.1186/s12864-015-2068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. RESULTS Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. CONCLUSION We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.
Collapse
Affiliation(s)
- Pedro Rodenas-Cuadrado
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands.
| | - Xiaowei Sylvia Chen
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands.
| | - Lutz Wiegrebe
- Ludwig-Maximilians-Universität, Division of Neurobiology, Department Biology II, Großhaderner Straße 2, Planegg-Martinsried, Munich, D-82152, Germany.
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, TU München, Liesel-Beckmann-Str. 4, Freising-Weihenstephan, Munich, 85350, Germany.
| | - Sonja C Vernes
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands. .,Donders Centre for Cognitive Neuroimaging, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands.
| |
Collapse
|
15
|
Ma J, Kanwal JS. Stimulation of the basal and central amygdala in the mustached bat triggers echolocation and agonistic vocalizations within multimodal output. Front Physiol 2014; 5:55. [PMID: 24624089 PMCID: PMC3942181 DOI: 10.3389/fphys.2014.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/28/2014] [Indexed: 02/06/2023] Open
Abstract
The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem.
Collapse
Affiliation(s)
- Jie Ma
- Department of Physiology and Biophysics, Georgetown University Washington, DC, USA
| | - Jagmeet S Kanwal
- Department of Physiology and Biophysics, Georgetown University Washington, DC, USA ; Department of Neurology, Georgetown University Washington, DC, USA
| |
Collapse
|
16
|
Projections from the paralemniscal nucleus to the spinal cord in the mouse. Brain Struct Funct 2012; 218:1307-16. [DOI: 10.1007/s00429-012-0459-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/15/2012] [Indexed: 11/25/2022]
|
17
|
Varga T, Mogyoródi B, Bagó AG, Cservenák M, Domokos D, Renner É, Gallatz K, Usdin TB, Palkovits M, Dobolyi A. Paralemniscal TIP39 is induced in rat dams and may participate in maternal functions. Brain Struct Funct 2012; 217:323-35. [PMID: 22081168 PMCID: PMC3294170 DOI: 10.1007/s00429-011-0357-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
The paralemniscal area, situated between the pontine reticular formation and the lateral lemniscus in the pontomesencephalic tegmentum contains some tuberoinfundibular peptide of 39 residues (TIP39)-expressing neurons. In the present study, we measured a 4 times increase in the level of TIP39 mRNA in the paralemniscal area of lactating mothers as opposed to nulliparous females and mothers deprived of pups using real-time RT-PCR. In situ hybridization histochemistry and immunolabeling demonstrated that the induction of TIP39 in mothers takes place within the medial paralemniscal nucleus, a cytoarchitectonically distinct part of the paralemniscal area, and that the increase in TIP39 mRNA levels translates into elevated peptide levels in dams. The paralemniscal area has been implicated in maternal control as well as in pain perception. To establish the function of induced TIP39, we investigated the activation of TIP39 neurons in response to pup exposure as maternal, and formalin injection as noxious stimulus. Both stimuli elicited c-fos expression in the paralemniscal area. Subsequent double labeling demonstrated that 95% of neurons expressing Fos in response to pup exposure also contained TIP39 immunoreactivity and 91% of TIP39 neurons showed c-fos activation by pup exposure. In contrast, formalin-induced Fos does not co-localize with TIP39. Instead, most formalin-activated neurons are situated medial to the TIP39 cell group. Our data indicate that paralemniscal neurons may be involved in the processing of maternal and nociceptive information. However, two different groups of paralemniscal neurons participate in the two functions. In particular, TIP39 neurons may participate in the control of maternal functions.
Collapse
Affiliation(s)
- Tamás Varga
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Bence Mogyoródi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Attila G. Bagó
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary, National Institute of Neurosurgery, Budapest, Hungary
| | - Melinda Cservenák
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Dominika Domokos
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Éva Renner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Katalin Gallatz
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Ted B. Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Tüzolto u. 58, Budapest 1094, Hungary
| |
Collapse
|
18
|
|
19
|
Melcón ML, Schnitzler HU, Denzinger A. Variability of the approach phase of landing echolocating Greater Mouse-eared bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:69-77. [DOI: 10.1007/s00359-008-0383-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 10/09/2008] [Accepted: 10/19/2008] [Indexed: 10/21/2022]
|
20
|
Schwartz C, Tressler J, Keller H, Vanzant M, Ezell S, Smotherman M. The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:853-63. [PMID: 17503051 DOI: 10.1007/s00359-007-0237-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 04/23/2007] [Accepted: 04/28/2007] [Indexed: 10/23/2022]
Abstract
Echolocating insectivorous bats consummate prey captures using a distinct vocal motor pattern commonly known as the terminal or feeding buzz, which is widely considered a fixed motor pattern executed independently of auditory feedback influences. The Mexican free-tailed bat, Tadarida brasiliensis, offers an opportunity to explore the role of sensory feedback in buzzing because they emit similar buzzes both in flight during foraging and while stationary as communication sounds. Here we compared the spectral and temporal patterns of foraging and communication buzzes to address whether or not auditory feedback may influence buzz patterns. We found that while foraging buzzes uttered in open space were composed of generic FM calls, communication buzzes were composed of an adapted CF-FM call similar to the call type used by T. brasiliensis when navigating in confined spaces. This provides the first evidence that some bats can make significant context-dependent changes in the spectral parameters of calls within their buzz. We also found that inter-pulse intervals, but not call durations, were different within the two buzz types. These observations indicate that though a common pattern generator hierarchically organizes all buzzes, T. brasiliensis retains a significant capacity to adapt the spectral and temporal patterns of elements within its buzzes.
Collapse
Affiliation(s)
- Christine Schwartz
- Biology Department, Texas A&M University, 3258 TAMU, College Station, TX 77845-3258, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sinha SR, Moss CF. Vocal premotor activity in the superior colliculus. J Neurosci 2007; 27:98-110. [PMID: 17202477 PMCID: PMC6672295 DOI: 10.1523/jneurosci.2683-06.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 10/26/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022] Open
Abstract
Chronic neural recordings were taken from the midbrain superior colliculus (SC) of echolocating bats while they were engaged in one of two distinct behavioral tasks: virtual target amplitude discrimination (VTAD) and real oscillating target tracking (ROTT). In the VTAD task, bats used a limited range of sonar call features to discriminate the amplitude category of echoes, whereas in the ROTT task, the bat produced dynamically modulated sonar calls to track a moving target. Newly developed methods for chronic recordings in unrestrained, behaving bats reveal two consistent bouts of SC neural activity preceding the onset of sonar vocalizations in both tasks. A short lead bout occurs tightly coupled to vocal onset (VTAD, -5.1 to -2.2 ms range, -3.6 +/- 0.7 ms mean lead time; ROTT, -3.0 to + 0.4 ms range, -1.2 +/- 1.3 ms mean lead time), and this activity may play a role in marking the time of each sonar emission. A long lead bout in SC activity occurs earlier and spreads over a longer interval (VTAD, -40.6 to -8.4 ms range, -22.2 +/- 3.9 ms mean lead time; ROTT, -29.8 to -7.1 ms range, -17.5 +/- 9.1 ms mean lead time) when compared with short lead events. In the goal-directed ROTT task, the timing of long lead event times vary with the bat's sonar call duration. This finding, along with behavioral studies demonstrating that bats adjust sonar call duration as they track targets at changing distance, suggests the bat SC contributes to range-dependent adjustments of sonar call duration.
Collapse
Affiliation(s)
- Shiva R Sinha
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
22
|
Fenzl T, Schuller G. Dissimilarities in the vocal control over communication and echolocation calls in bats. Behav Brain Res 2006; 182:173-9. [PMID: 17227683 DOI: 10.1016/j.bbr.2006.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/25/2022]
Abstract
Bats, like other mammals, use communication calls for social interaction, but rely at the same time on sophisticated echolocation systems for orientation and prey capture. Both call types are of laryngeal origin, but can be distinguished on the basis of their spectral and temporal features and apparently their functional involvement as well. Although they share a common final motor pathway, there is evidence that separate vocally active brainstem areas are involved in the functional control of communication and echolocation calls. This review summarizes findings that support the above assumption, and focus on the functional involvement of the periaqueductal gray, the paralemniscal area, and the nucleus of the brachium of the inferior colliculus, in differentiated vocal control.
Collapse
Affiliation(s)
- Thomas Fenzl
- Max-Planck-Institute for Psychiatry, Neurogenetics of Sleep, Kraepelinstrasse 2-10, D-80804 Munich, Germany
| | | |
Collapse
|
23
|
|
24
|
Ma J, Kobayasi K, Zhang S, Metzner W. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:535-50. [PMID: 16418857 DOI: 10.1007/s00359-006-0094-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/18/2005] [Accepted: 12/29/2005] [Indexed: 11/28/2022]
Abstract
Whereas echolocation in horseshoe bats is well studied, virtually nothing is known about characteristics and function of their communication calls. Therefore, the communication calls produced by a group of captive adult greater horseshoe bats were recorded during various social interactions in a free-flight facility. Analysis revealed that this species exhibited an amazingly rich repertoire of vocalizations varying in numerous spectro-temporal aspects. Calls were classified into 17 syllable types (ten simple syllables and seven composites). Syllables were combined into six types of simple phrases and four combination phrases. The majority of syllables had durations of more than 100 ms with multiple harmonics and fundamental frequencies usually above 20 kHz, although some of them were also audible to humans. Preliminary behavioral observations indicated that many calls were emitted during direct interaction with and in response to social calls from conspecifics without requiring physical contact. Some echolocation-like vocalizations also appeared to clearly serve a communication role. These results not only shed light upon a so far widely neglected aspect of horseshoe bat vocalizations, but also provide the basis for future studies on the neural control of the production of communicative vocalizations in contrast to the production of echolocation pulse sequences.
Collapse
Affiliation(s)
- Jie Ma
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
25
|
Fenzl T, Schuller G. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor. BMC Biol 2005; 3:17. [PMID: 16053533 PMCID: PMC1190161 DOI: 10.1186/1741-7007-3-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/01/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization. RESULTS Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible. CONCLUSION The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization.
Collapse
Affiliation(s)
- Thomas Fenzl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, 80804, Germany
| | - Gerd Schuller
- Department Biology II, Ludwig-Maximilians-Universitaet, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
26
|
Abstract
Echolocating bats (sub-order: Microchiroptera) form a highly successful group of animals, comprising approximately 700 species and an estimated 25% of living mammals. Many echolocating bats are nocturnal predators that have evolved a biological sonar system to orient and forage in three-dimensional space. Acoustic signal processing and vocal-motor control are tightly coupled, and successful echolocation depends on the coordination between auditory and motor systems. Indeed, echolocation involves adaptive changes in vocal production patterns, which, in turn, constrain the acoustic information arriving at the bat's ears and the time-scales over which neural computations take place.
Collapse
Affiliation(s)
- Cynthia F Moss
- Department of Psychology, Institute for Systems Research, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
27
|
Prasada Rao PD, Kanwal JS. Oxytocin and vasopressin immunoreactivity within the forebrain and limbic-related areas in the mustached bat, Pteronotus parnellii. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:151-68. [PMID: 14726624 DOI: 10.1159/000076241] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 10/21/2003] [Indexed: 11/19/2022]
Abstract
The nonapeptides, oxytocin and arginine vasopressin, play an important role in mammalian social and reproductive behavior. Using immunocytochemical procedures, we identified oxytocin-immunoreactive neurons in the frontal and auditory cortices, limbic areas such as the medial septal nucleus, horizontal limb of the diagonal band and the amygdala. Only arginine vasopressin neurons were present in the bed nucleus of the stria terminalis. In limbic-related areas, the hypothalamic paraventricular and supraoptic nuclei and the nucleus centralis contained both oxytocin and arginine vasopressin neurons. The medial preoptic area showed a positive reaction for several arginine vasopressin fibers, but not oxytocin fibers, except in one female bat sacrificed during the breeding season. Arginine vasopressin fibers were observed in another limbic-related area, the periaqueductal gray. Furthermore, oxytocin was predominantly localized within sensory (e.g., auditory) and frontal cortex and limbic areas, whereas arginine vasopressin was restricted largely to known audiovocal regions of the periaqueductal gray. Classical neurosecretory nuclei in the hypothalamus contain both peptides. Oxytocin-immunoreactive neurons were also found in other structures such as the olfactory bulb, olfactory tubercle, primary and secondary motor cortex, fronto-parietal cortex, piriform cortex and the nucleus of the internal capsule. Both oxytocin and arginine vasopressin immunoreactivity was present in the suprachiasmatic nucleus, median eminence, neural lobe of the hypophysis and the pineal gland. Together with previous studies, the presence of these peptides within auditory areas of the cortex (sensory and frontal), and limbic as well as limbic-related regions provides anatomical evidence supporting their proposed role in social vocal behaviors and probably in auditory processing.
Collapse
Affiliation(s)
- P D Prasada Rao
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington D.C. 20057-1460, USA
| | | |
Collapse
|
28
|
Firzlaff U, Schuller G. Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor. Hear Res 2003; 185:110-22. [PMID: 14599698 DOI: 10.1016/s0378-5955(03)00281-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The directional dependence of sound pressure transformation of head and pinna has been measured in the phyllostomid bat Phyllostomus discolor for the frontal hemisphere using a maximum length sequence method. The azimuthal position of the axis of highest pinna gain came closer to the midsagital plane with increasing frequency. The acoustic axis of highest pinna gain was further characterized by an increase of the elevation angle with increasing frequency and a specific decrease at 55 kHz. Additionally, a spectral notch separated two regions of high and low frequency hearing at specific elevation and frequency combinations. The special influence of the tragus on the position of the pinna gain axis and the spectral notches is demonstrated. The functional implications of the spectral notch for hearing in P. discolor are discussed.
Collapse
Affiliation(s)
- Uwe Firzlaff
- Department Biologie II, Ludwig-Maximilians-Universität, Luisenstr. 14, 80333 München, Germany.
| | | |
Collapse
|
29
|
Abstract
The directional dependence of sound pressure transformation of head and pinna has been measured in the phyllostomid bat Phyllostomus discolor for the frontal hemisphere using a maximum length sequence method. The azimuthal position of the axis of highest pinna gain came closer to the midsagital plane with increasing frequency. The acoustic axis of highest pinna gain was further characterized by an increase of the elevation angle with increasing frequency and a specific decrease at 55 kHz. Additionally, a spectral notch separated two regions of high and low frequency hearing at specific elevation and frequency combinations. The special influence of the tragus on the position of the pinna gain axis and the spectral notches is demonstrated. The functional implications of the spectral notch for hearing in P. discolor are discussed.
Collapse
Affiliation(s)
- Uwe Firzlaff
- Department Biologie II, Ludwig-Maximilians-Universität, Luisenstr. 14, 80333 München, Germany.
| | | |
Collapse
|