1
|
Rumiantseva AS, Ageev AA, Ignatieva AN, Yakimova ME, Kharlamova DD, Martemyanov VV, Tokarev YS. Microsporidia-cypovirus interactions during simultaneous infection of the tree defoliator Dendrolimus sibiricus (Lepidoptera: Lasiocampidae). J Invertebr Pathol 2024; 207:108199. [PMID: 39277164 DOI: 10.1016/j.jip.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The Siberian moth, Dendrolimus sibiricus is a dangerous forest defoliator, the number one pest of boreal forests in Asia. Search for effective and ecologically friendly control measures drives attention to microbial pathogens. Viruses and microsporidia are obligate intracellular parasites widespread in insect populations causing either chronic or acute infections. Interactions of these pathogens vary from antagonistic to synergistic. The goal of the work was to test a recently discovered cytoplasmatic polyhedrosis virus (cypovirus) strain DsCPV-1 isolated from D.sibiricus, combined with a microsporidium, against D. sibiricus, by feeding the inoculum (viral polyhedral and microsporidian spores). Three different microsporidian parasites of lepidopterans were tested against D. sibiricus as monoinfection: Nosema bombycis from silkworm, N. pyrausta from corn borer, and Tubulinosema loxostegi from beet webworm. Nosema bombycis was the most virulent, with a median lethal time of 7 days in the first and second instars treated with 100,000 and 1 million spores/larva, respectively. Nosema bombycis (dose 100,000 spores/larva) was chosen to test it as mixed infection in combination with an extremely low dose of DsCPV-1 (1 polyhedron/larva) against two races of D. sibiricus second instar larvae (the fir-feeding race and the larch-feeding race). The mixed infection demonstrated the most prominent negative effect on larval lethal time and weight for the both tested races. Mixed infections showed a synergistic effect for the fir-feeding larvae but additive effect only for the larch feeding larvae. Both pathogens co-developed successfully in the larvae with equal ratio of producing inoculum. The combination of these entomopathogens is therefore promising for forest protection against the Siberian moth and could be the way to significantly decrease the amount of pathogens applied in field.
Collapse
Affiliation(s)
- Arina S Rumiantseva
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia
| | - Aleksander A Ageev
- Center of Forest Pyrology, All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krupskoy 42, Krasnoyarsk 660062, Russia
| | - Anastasia N Ignatieva
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia
| | - Maria E Yakimova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze 11, Novosibirsk 630091, Russia; Department of Information Biology, Novosibirsk State University, Pirogova Str.1, Novosibirsk 630090, Russia
| | - Daria D Kharlamova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze 11, Novosibirsk 630091, Russia
| | | | - Yuri S Tokarev
- All-Russian Institute of Plant Protection, sh. Podbelskogo 3, Pushkin, St. Petersburg 196608, Russia.
| |
Collapse
|
2
|
Herren P, Hesketh H, Meyling NV, Dunn AM. Environment-host-parasite interactions in mass-reared insects. Trends Parasitol 2023; 39:588-602. [PMID: 37258342 DOI: 10.1016/j.pt.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment-host-parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects.
Collapse
Affiliation(s)
- Pascal Herren
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Hesketh
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Alison M Dunn
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Sieben AJ, Mihaljevic JR, Shoemaker LG. Quantifying mechanisms of coexistence in disease ecology. Ecology 2022; 103:e3819. [PMID: 35855596 DOI: 10.1002/ecy.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
Pathogen coexistence depends on ecological processes operating at both within and between-host scales, making it difficult to quantify which processes may promote or prevent coexistence. Here, we propose that adapting modern coexistence theory-traditionally applied in plant communities-to pathogen systems provides an exciting approach for examining mechanisms of coexistence operating across different spatial scales. We first overview modern coexistence theory and its mechanistic decomposition; we subsequently adapt the framework to quantify how spatial variation in pathogen density, host resources and immunity, and their interaction may promote pathogen coexistence. We apply this derivation to an example two pathogen, multi-scale model comparing two scenarios with generalist and strain-specific immunity: one with demographic equivalency among pathogens and one with demographic trade-offs among pathogens. We then show how host-pathogen feedbacks generate spatial heterogeneity that promote pathogen coexistence and decompose those mechanisms to quantify how each spatial heterogeneity contributes to that coexistence. Specifically, coexistence of demographically equivalent pathogens occurs due to spatial variation in host resources, immune responses, and pathogen aggregation. With a competition-colonization trade-off, the superior colonizer requires spatial heterogeneity to coexist, whereas the superior competitor does not. Finally, we suggest ways forward for linking theory and empirical tests of coexistence in disease systems.
Collapse
Affiliation(s)
- Andrew J Sieben
- Department of Botany, University of Wyoming, Laramie, WY.,School of Medicine, Emory University, Atlanta, GA
| | - Joseph R Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | | |
Collapse
|
4
|
Resnerová K, Schovánková J, Horák J, Holuša J. Relationships between the fecundity of bark beetles and the presence of antagonists. Sci Rep 2022; 12:7573. [PMID: 35534596 PMCID: PMC9085876 DOI: 10.1038/s41598-022-11630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Although previous research has documented the occurrence of antagonists of bark beetles, the studies have only evaluated individual antagonists and have not assessed the overall effect of all antagonists on adult beetles. In this study, we determined which body-cavity antagonists were associated with a reduction in the fecundity and maternal gallery lengths of two important species of bark beetles: Ips typographus on Norway spruce and I. cembrae on European larch. We evaluated these relationships under natural conditions by collecting maternal females in galleries and examining their internal organs. The antagonists in the I. typographus hemolymph had significant negative associations with fecundity and gallery length. These antagonists were mainly nematodes and parasitoids in the hemocoel. In contrast, a positive association between gregarine presence and I. typographus fecundity was found. No antagonist that was likely to significantly alter I. cembrae fecundity or maternal gallery length was proven. Our study provides the first comprehensive assessment of antagonists that may have the potential impact on reduction the fecundity and thereby mass occurrence of these bark beetles.
Collapse
Affiliation(s)
- Karolina Resnerová
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
| | - Jolana Schovánková
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jakub Horák
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jaroslav Holuša
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Empirical Support for the Pattern of Competitive Exclusion between Insect Parasitic Fungi. J Fungi (Basel) 2021; 7:jof7050385. [PMID: 34069271 PMCID: PMC8157078 DOI: 10.3390/jof7050385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal entomopathogens are largely facultative parasites and play an important role in controlling the density of insect populations in nature. A few species of these fungi have been used for biocontrol of insect pests. The pattern of the entomopathogen competition for insect individuals is still elusive. Here, we report the empirical competition for hosts or niches between the inter- and intra-species of the entomopathogens Metarhizium robertsii and Beauveria bassiana. It was found that the synergistic effect of coinfection on virulence increase was not evident, and the insects were largely killed and mycosed by M. robertsii independent of its initial co-inoculation dosage and infection order. For example, >90% dead insects were mycosed by M. robertsii even after immersion in a spore suspension with a mixture ratio of 9:1 for B. bassiana versus M. robertsii. The results thus support the pattern of competitive exclusion between insect pathogenic fungi that occurred from outside to inside the insect hosts. Even being inferior to compete for insects, B. bassiana could outcompete M. robertsii during co-culturing in liquid medium. It was also found that the one-sided mycosis of insects occurred during coinfection with different genotypic strains of either fungi. However, parasexual recombination was evident to take place between the compatible strains after coinfection. The data of this study can help explain the phenomena of the exclusive mycosis of insect individuals, but co-occurrence of entomopathogens in the fields, and suggest that the synergistic effect is questionable regarding the mixed use of fungal parasites for insect pest control.
Collapse
|
6
|
Carballo A, Williams T, Murillo R, Caballero P. Iflavirus Covert Infection Increases Susceptibility to Nucleopolyhedrovirus Disease in Spodoptera exigua. Viruses 2020; 12:E509. [PMID: 32380682 PMCID: PMC7290388 DOI: 10.3390/v12050509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/04/2023] Open
Abstract
Naturally occurring covert infections in lepidopteran populations can involve multiple viruses with potentially different transmission strategies. In this study, we characterized covert infection by two RNA viruses, Spodoptera exigua iflavirus 1 (SeIV-1) and Spodoptera exigua iflavirus 2 (SeIV-2) (family Iflaviridae) that naturally infect populations of Spodoptera exigua, and examined their influence on susceptibility to patent disease by the nucleopolyhedrovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (family Baculoviridae). The abundance of SeIV-1 genomes increased up to ten-thousand-fold across insect developmental stages after surface contamination of host eggs with a mixture of SeIV-1 and SeIV-2 particles, whereas the abundance of SeIV-2 remained constant across all developmental stages. Low levels of SeIV-2 infection were detected in all groups of insects, including those that hatched from surface-decontaminated egg masses. SeIV-1 infection resulted in reduced larval weight gain, and an unbalanced sex ratio, whereas larval developmental time, pupal weight, and adult emergence and fecundity were not significantly affected in infected adults. The inoculation of S. exigua egg masses with iflavirus, followed by a subsequent infection with SeMNPV, resulted in an additive effect on larval mortality. The 50% lethal concentration (LC50) of SeMNPV was reduced nearly 4-fold and the mean time to death was faster by 12 h in iflavirus-treated insects. These results suggest that inapparent iflavirus infections may be able to modulate the host response to a new pathogen, a finding that has particular relevance to the use of SeMNPV as the basis for biological pest control products.
Collapse
Affiliation(s)
- Arkaitz Carballo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain; (A.C.); (P.C.)
- Departamento de Biotecnología, Agronomía y Alimentos, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | - Rosa Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain; (A.C.); (P.C.)
- Departamento de Biotecnología, Agronomía y Alimentos, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain; (A.C.); (P.C.)
- Departamento de Biotecnología, Agronomía y Alimentos, Universidad Pública de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
7
|
Milutinović B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecol Lett 2020; 23:565-574. [PMID: 31950595 DOI: 10.1111/ele.13458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants - their social immunity - influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
Collapse
Affiliation(s)
- Barbara Milutinović
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Miriam Stock
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Anna V Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Elisabeth Naderlinger
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Christian Hilbe
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
8
|
Ιnteractions between Beauveria bassiana and Isaria fumosorosea and Their Hosts Sitophilus granarius (L.) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). INSECTS 2019; 10:insects10100362. [PMID: 31635123 PMCID: PMC6836108 DOI: 10.3390/insects10100362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
The interactions between the entomopathogenic fungus Beauveria bassiana Balsamo (Vuillemin) (Hypocreales: Cordycipitaceae) and the entomopathogenic fungus Isaria fumosorosea (Wize) Brown and Smith (Hypocreales: Clavicipitaceae) were examined on young adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae) and S. oryzae (L.) (Coleoptera: Curculionidae). Conidial suspensions of these entomopathogenic fungi were applied both separately and in combination, at three dosages, 104, 106, and 108 conidia/mL. Mortality of experimental adults was recorded daily for 15 days. An overall positive interaction between the pathogenic microorganisms was observed. Mean weevil mortality caused by the separate acting fungi, B. bassiana, ranged from 26.7% to 53.3% and from 36.6% to 63.3% for S. granarius and S. oryzae, respectively. The respective values for I. fumosorosea were 20.0%-53.3% and 46.7%-66.7%. The combined treatments showed a distinct interaction between the pathogens; for S. granarius, the interaction between the pathogens was additive in all combinations, whereas, for S. oryzae, the interaction was additive in seven and competitive in two of the combinations. Applying both entomopathogenic microorganisms may offer a method for weevil control that could be more effective than using each pathogen alone.
Collapse
|
9
|
Abstract
Why some parasites evolve and maintain extreme levels of virulence is a question that remains largely unanswered. A body of theory predicts that parasites that form long-lived spores able to persist in the environment evolve higher virulence, known as the sit and wait hypothesis. Such parasites can obliterate their local host population and wait in the environment for further hosts to arrive, reducing some of the costs of high virulence. On the other hand, some models predict the opposite to be true, that virulence and environmental persistence are both costly and traded off, the resource allocation hypothesis. I conducted a meta-analysis on published data on the relationship between environmental persistence and virulence collected to date. I first examined all data available to date and then conducted a smaller analysis focussing on just those studies testing the specific predictions of the sit and wait hypothesis. Empirical work supports both hypotheses; however, the direction of the effect is largely associated with parasite type. In both analyses, viruses tend to show evidence of resource allocation trade-offs, these traits are positively correlated in bacterial and fungal parasites.
Collapse
|
10
|
Valverde-Garcia P, Santiago-Álvarez C, Thomas MB, Maranhao EAA, Garrido-Jurado I, Quesada-Moraga E. Sublethal effects of mixed fungal infections on the Moroccan locust, Dociostaurus maroccanus. J Invertebr Pathol 2018; 161:61-69. [PMID: 30594516 DOI: 10.1016/j.jip.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
Abstract
The effects of single and mixed infections with Beauveria bassiana (EABb 90/2-Dm) and Metarhizium acridum (IMI 330189) strains on survival, feeding and reproduction of thermoregulating Dociostaurus maroccanus were evaluated. Adult locusts (2-3 days post fledging) were treated with low dosages of both fungal pathogens alone and in mixture (total dosage for single treatments and combinations = 1 × 102 and 1 × 103 spores per insect). M. acridum IMI 330189 was more virulent than B. bassiana EABb 90/2-Dm at both dosages. In the mixed infections, in which half of the infective units of the more virulent pathogen were replaced by the less virulent pathogen, the analysis of the cumulative insect mortality after 30 days suggested additive interaction in the lethal effects between the two strains. All fungal treatments, except EABb 90/2-Dm at 1 × 102 spores per insect showed reduction in per capita feeding, as indicated by fecal production per insect per day when insects were maintained at 27 ± 2 °C (32-51% of reduction compared with the control); but only IMI 330189 caused significant reduction in per capita feeding (50%) when those insects were allowed to thermoregulate. Both strains and their mixtures caused a significant reduction of locust fecundity, with a 21-53% reduction in the number of egg-pods per female, and 30-65% reduction in the number of fertile eggs per female. In both sublethal effects (feeding and fecundity) a potential antagonistic interaction between the fungal strains was detected. Locust fecundity (egg-pods per female) and per capita feeding were positively correlated (r = 0.783). Implications of these findings on the potential use of both strains to control D. maroccanus populations are discussed.
Collapse
Affiliation(s)
- Pablo Valverde-Garcia
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Cándido Santiago-Álvarez
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, 001 Chemical Ecology Lab, Penn State, University Park, PA 16802, USA.
| | - Elizabeth A A Maranhao
- Instituto Agronômico de Pernambuco-IPA, Cx Postal 03, CEP 55602-420 Vitória de Santo Antão, PE, Brazil.
| | - Inmaculada Garrido-Jurado
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| | - Enrique Quesada-Moraga
- Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Building C4, Campus of Rabanales, 14071 Cordoba, Spain.
| |
Collapse
|
11
|
Larem A, Fritsch E, Undorf-Spahn K, Kleespies RG, Jehle JA. Interaction of Phthorimaea operculella granulovirus with a Nosema sp. microsporidium in larvae of Phthorimaea operculella. J Invertebr Pathol 2018; 160:76-86. [PMID: 30550745 DOI: 10.1016/j.jip.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
An antagonistic effect of a microsporidium (Nosema sp.) infection on the virulence of Phthorimaea operculella granulovirus (PhopGV) was recorded in potato tuber moth (Phthorimaea operculella) larvae with mixed infections. When the P. operculella colony was infected at a high rate (42.8-100%) with the microsporidium, it was less susceptible to the isolate PhopGV-GR1.1. A virus concentration 1.89 × 105 higher was necessary to cause the same level of mortality produced in the P. operculella colony when it was uninfected or had a low level of infection with the microsporidium (0-30%). This antagonistic effect was driven by a Nosema isolate (termed Nosema sp. Phop) that was purified from microsporidian-infected P. operculella individuals. The purified microsporidium was characterised by morphological features, including size, filament coils and different developmental stages using transmission electron microscopy (TEM). On the molecular level, the partial cistron rDNA information of the small ribosomal subunit (SSU), internal transcribed spacer (ITS), and the large ribosomal subunit (LSU) were identified. Phylogenetic analyses revealed that the newly described microsporidium belongs to the "true Nosema" clade. Partial sequence information of the RNA polymerase II largest subunit (RPB1) suggested that Nosema bombycis is the closest relative (98% identity). The morphological and phylogenetic characteristics suggest that it is an isolate of N. bombycis. Interactions of microsporidia and betabaculoviruses are rarely described in the literature, although mixed infections of different pathogens seem to be rather common events, ranging from antagonistic to mutualistic interactions. The observed antagonistic relationship between the Nosema sp. and PhopGV-GR1.1 showed that pathogen interactions need to be considered when single pathogens are applied to insect populations in the context of biological control of insect pests.
Collapse
Affiliation(s)
- Andreas Larem
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Eva Fritsch
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Karin Undorf-Spahn
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Regina G Kleespies
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| | - Johannes A Jehle
- Institute for Biological Control, Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Heinrichstraße 243, 64287 Darmstadt, Germany.
| |
Collapse
|
12
|
Sangbaramou R, Camara I, Huang XZ, Shen J, Tan SQ, Shi WP. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana. PLoS One 2018; 13:e0206816. [PMID: 30485309 PMCID: PMC6261545 DOI: 10.1371/journal.pone.0206816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022] Open
Abstract
Insects such as locusts and grasshoppers can reduce the effectiveness of pathogens and parasites by adopting different defense strategies. We investigated the behavioral thermopreference of Locusta migratoria manilensis (Meyen) (Orthoptera: Acrididae) induced by the fungus Beauveria bassiana, and the impact this behavior had on the fungal mycosis under laboratory conditions. By basking in higher temperature locations, infected nymphs elevated their thoracic temperature to 30-32.6 °C, which is higher than the optimum temperature (25°C) for B. bassiana conidial germination and hyphal development. A minimum thermoregulation period of 3 h/day increased survival of infected locusts by 43.34%. The therapeutic effect decreased when thermoregulation was delayed after initial infection. The fungus grew and overcame the locusts as soon as the thermoregulation was interrupted, indicating that thermoregulation helped the insects to cope with infection but did not completely rid them of the fungus. A significant enhancement in the number of haemocytes was observed in infected thermoregulating locusts, reaching levels that were even higher than those observed in the controls. In contrast, haemocyte concentration was severely reduced in infected insects that did not thermoregulate. In infected non-thermoregulating locusts, the reduction in haemocyte number was accompanied by an increase in fungal blastospore concentration that was obvious in the haemolymph by day four. In contrast, no circulating blastospores were found in the haemolymph of infected thermoregulating locusts three days post-inoculation. We also examined the phagocytic activity of infected insects in vivo by using fluorescein isothiocyanate (FITC)-labelled silica beads. The proportion of beads that was engulfed by haemocytes in infected, thermoregulating insects was similar to that in the controls throughout the experiment, whereas the rate of phagocytosis in infected, non-thermoregulating insects progressively decreased after infection. These findings demonstrated that behavioural thermoregulation can adversely affect B. bassiana mycosis in infected L. migratoria manilensis, thereby limiting the development of lethal entomopathogenic fungi in locusts. This is apparently accomplished through an increase in the levels of haemocytes, leading to greater phagocytic activity under certain environmental conditions.
Collapse
Affiliation(s)
- Rouguiatou Sangbaramou
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ibrahima Camara
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin-zheng Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shu-qian Tan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wang-peng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Maciel-Vergara G, Jensen AB, Eilenberg J. Cannibalism as a Possible Entry Route for Opportunistic Pathogenic Bacteria to Insect Hosts, Exemplified by Pseudomonas aeruginosa, a Pathogen of the Giant Mealworm Zophobas morio. INSECTS 2018; 9:insects9030088. [PMID: 30042293 PMCID: PMC6163536 DOI: 10.3390/insects9030088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023]
Abstract
Opportunistic bacteria are often ubiquitous and do not trigger disease in insects unless the conditions are specifically favorable for bacterial development in a suitable host. In this paper, we isolated and identified a bacterium, Pseudomonas aeruginosa, from the larvae of the giant mealworm Zophobas morio and we studied the possible entry routes by challenging larvae with per os injection and subdermal injection. We also evaluated the effect of exposing groups of larvae to P. aeruginosa inoculated in their feed and the effect of exposing wounded larvae to P. aeruginosa. We concluded that the mortality rate of Z. morio larvae is higher when P. aeruginosa gets in direct contact with the hemolymph via intracoelomic injection compared to a situation where the bacterium is force-fed. Larvae with an open wound exposed to P. aeruginosa presented higher mortality rate compared to larvae with a wound that was not exposed to the bacterium. We documented too, that cannibalism and scavenging were more prevalent among larvae in a group, when P. aeruginosa is present compared to when it is absent. We discuss hereby different aspects related with the pathogen’s entry routes to insects the complexity of pathogen´s transmission in high population densities and different ways to prevent and/or control P. aeruginosa in mass rearing systems.
Collapse
Affiliation(s)
- Gabriela Maciel-Vergara
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark.
- Laboratory of Entomology, Wageningen University, Radix Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Virology, Wageningen University, Radix Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark.
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 3rd floor, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Pauli G, Moura Mascarin G, Eilenberg J, Delalibera Júnior I. Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae). INSECTS 2018; 9:insects9020064. [PMID: 29899228 PMCID: PMC6023289 DOI: 10.3390/insects9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022]
Abstract
We provide insights into how the interactions of two entomopathogenic fungi and a virus play a role in virulence, disease development, and pathogen reproduction for an economically important insect crop pest, the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). In our model system, we highlight the antagonistic effects of the co-inoculation of Beauveria bassiana and granulovirus (DisaGV) on virulence, compared to their single counterparts. By contrast, combinations of Metarhizium anisopliae and B. bassiana, or M. anisopliae and DisaGV, have resulted in additive effects against the insect. Intriguingly, most cadavers that were derived from dual or triple infections, produced signs/symptoms of only one species after the death of the infected host. In the combination of fungi and DisaGV, there was a trend where a higher proportion of viral infection bearing conspicuous symptoms occurred, except when the larvae were inoculated with M. anisopliae and DisaGV at the two highest inoculum rates. Co-infections with B. bassiana and M. anisopliae did not affect pathogen reproduction, since the sporulation from co-inoculated larvae did not differ from their single counterparts.
Collapse
Affiliation(s)
- Giuliano Pauli
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
| | - Gabriel Moura Mascarin
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
- Embrapa Meio Ambiente, Rodovia SP-340, km 127.5, S/N-Tanquinho Velho, CEP 13820-000 Jaguariúna, SP, Brazil.
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark.
| | - Italo Delalibera Júnior
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
15
|
Samuel MD, Woodworth BL, Atkinson CT, Hart PJ, LaPointe DA. The epidemiology of avian pox and interaction with avian malaria in Hawaiian forest birds. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael D. Samuel
- U.S. Geological Survey; Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; Madison Wisconsin 53706 USA
| | - Bethany L. Woodworth
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
- University of New England; Biddeford Maine 04005 USA
| | - Carter T. Atkinson
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
| | | | - Dennis A. LaPointe
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
| |
Collapse
|
16
|
Kosoy M, Kosoy R. Complexity and biosemiotics in evolutionary ecology of zoonotic infectious agents. Evol Appl 2018; 11:394-403. [PMID: 29636794 PMCID: PMC5891042 DOI: 10.1111/eva.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
More is not automatically better. Generation and accumulation of information reflecting the complexity of zoonotic diseases as ecological systems do not necessarily lead to improved interpretation of the obtained information and understanding of these complex systems. The traditional conceptual framework for analysis of diseases ecology is neither designed for, nor adaptable enough, to absorb the mass of diverse sources of relevant information. The multidirectional and multidimensional approaches to analyses form an inevitable part in defining a role of zoonotic pathogens and animal hosts considering the complexity of their inter-relations. And the more data we have, the more involved the interpretation needs to be. The keyword for defining the roles of microbes as pathogens, animals as hosts, and environmental parameters as infection drivers is "functional importance." Microbes can act as pathogens toward their host only if/when they recognize the animal organism as the target. The same is true when the host recognizes the microbe as a pathogen rather than harmless symbiont based on the context of its occurrence in that host. Here, we propose conceptual tools developed in the realm of the interdisciplinary sciences of complexity and biosemiotics for extending beyond the currently dominant mindset in ecology and evolution of infectious diseases. We also consider four distinct hierarchical levels of perception guiding how investigators can approach zoonotic agents, as a subject of their research, representing differences in emphasizing particular elements and their relations versus more unified systemic approaches.
Collapse
Affiliation(s)
- Michael Kosoy
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
- Global Health AsiaMahidol UniversityBangkokThailand
| | - Roman Kosoy
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
17
|
Williams PD, Kamel SJ. The evolution of pathogen virulence: Effects of transitions between host types. J Theor Biol 2017; 438:1-8. [PMID: 29132934 DOI: 10.1016/j.jtbi.2017.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Much of evolutionary epidemiology theory is derived from a perspective in which all hosts, and all parasites, are epidemiologically equivalent. This stands in contrast to the well-documented existence of the numerous processes generating heterogeneity among hosts and parasites that can profoundly influence evolutionary/epidemiological dynamics. Age-related immunological changes, inequities in nutritional status, and interactions between parasites via coinfection are just a few of the many factors that generate heterogeneity among hosts in the ways they express susceptibility to, and respond to infection by, a focal pathogen. Moreover, organisms age, nutritional states improve or worsen, and co-infections can be cleared or acquired, implying that transitions between these different disease states are the rule, rather than the exception, in natural disease systems. Here we develop the theoretical framework for modeling the implications of such transitions in these multi-type host settings for the evolution of virulence. Results show that ignoring these common sources of host heterogeneities in disease characteristics can lead to both quantitatively and qualitatively mischaracterized evolutionary predictions.
Collapse
Affiliation(s)
- Paul David Williams
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC 28403, USA
| | - Stephanie Jill Kamel
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC 28403, USA.
| |
Collapse
|
18
|
Co-inoculum of Beauveria brongniartii and B. bassiana shows in vitro different metabolic behaviour in comparison to single inoculums. Sci Rep 2017; 7:13102. [PMID: 29026120 PMCID: PMC5638874 DOI: 10.1038/s41598-017-12700-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The use of entomopathogenic fungi for biocontrol of plant pests is recently receiving an increased interest due to the need of reducing the impact of agricultural practices on the environment. Biocontrol efficacy could be improved by co-inoculation of different microorganisms. However, interactions between the fungal species can trigger or depress the biocontrol activity. Co-inoculation of two entomopathogenic fungi (Beauveria bassiana and B. brongniartii) was performed in vitro to evaluate the effects of their joint behaviour on a range of different carbon sources in comparison to single inoculation. The two species showed a very different metabolic profile by Phenotype MicroArrayTM. B. bassiana showed a broader metabolism than B. brongniartii on a range of substrates. B. brongniartii showed a greater specificity in substrate utilization. Several carbon sources (L-Asparagine, L-Aspartic Acid, L- Glutamic Acid, m- Erythritol, D-Melezitose, D-Sorbitol) triggered the fungal metabolism in the co-inoculum. SSR markers and Real Time qPCR analysis showed that different substrates promoted either the growth of one or the other species, suggesting a form of interaction between the two fungi, related to their different ecological niches. The methodological approach that combines Phenotype MicroArrayTM and SSR genotyping appeared useful to assess the performance and potential competition of co-inoculated entomopathogenic fungi.
Collapse
|
19
|
Ravindran K, Akutse KS, Sivaramakrishnan S, Wang L. Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon 2016; 120:89-96. [DOI: 10.1016/j.toxicon.2016.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
20
|
Hesketh H, Hails RS. Bacillus thuringiensis impacts on primary and secondary baculovirus transmission dynamics in Lepidoptera. J Invertebr Pathol 2015; 132:171-181. [DOI: 10.1016/j.jip.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
|
21
|
Vaumourin E, Vourc'h G, Gasqui P, Vayssier-Taussat M. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 2015; 8:545. [PMID: 26482351 PMCID: PMC4617890 DOI: 10.1186/s13071-015-1167-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Most parasites co-occur with other parasites, although the importance of such multiparasitism has only recently been recognised. Co-infections may result when hosts are independently infected by different parasites at the same time or when interactions among parasite species facilitate co-occurrence. Such interactions can have important repercussions on human or animal health because they can alter host susceptibility, infection duration, transmission risks, and clinical symptoms. These interactions may be synergistic or antagonistic and thus produce diverse effects in infected humans and animals. Interactions among parasites strongly influence parasite dynamics and therefore play a major role in structuring parasite populations (both within and among hosts) as well as host populations. However, several methodological challenges remain when it comes to detecting parasite interactions. The goal of this review is to summarise current knowledge on the causes and consequences of multiparasitism and to discuss the different methods and tools that researchers have developed to study the factors that lead to multiparasitism. It also identifies new research directions to pursue.
Collapse
Affiliation(s)
- Elise Vaumourin
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France. .,USC BIPAR, INRA-ANSES-ENVA, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | - Patrick Gasqui
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | | |
Collapse
|
22
|
Dynamics of competition and co-infection between Zoophthora radicans and Pandora blunckii in Plutella xylostella larvae. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Klinger EG, Vojvodic S, DeGrandi-Hoffman G, Welker DL, James RR. Mixed infections reveal virulence differences between host-specific bee pathogens. J Invertebr Pathol 2015; 129:28-35. [PMID: 25982695 DOI: 10.1016/j.jip.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/04/2023]
Abstract
Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens.
Collapse
Affiliation(s)
- Ellen G Klinger
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States; Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States.
| | - Svjetlana Vojvodic
- University of Arizona, Center for Insect Science, 1041 E. Lowell St., Tucson, AZ 85721, United States
| | - Gloria DeGrandi-Hoffman
- USDA-ARS Carl Hayden Bee Research Center, 2000 East Allen Road, Tucson, AZ 85721, United States
| | - Dennis L Welker
- Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States
| | - Rosalind R James
- USDA-ARS Pollinating Insect Research Unit, 1410 North 800 East, Logan, UT 84341, United States
| |
Collapse
|
24
|
Nian XG, He YR, Lu LH, Zhao R. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2015; 71:216-224. [PMID: 24668916 DOI: 10.1002/ps.3784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Entomopathogenic fungi are potential candidates for controlling Plutella xylostella, a cosmopolitan pest of crucifers. In this study, bioassays were conducted to evaluate the interaction between Isaria fumosorosea and sublethal doses of two insecticides, beta-cypermethrin and Bacillus thuringiensis, against P. xylostella. RESULTS Data of each assay were in good agreement with the time-concentration-mortality model, indicating a strong dependence of the fungus and insecticide interaction on both concentration and post-exposure time. Using beta-cypermethrin 58-116 µg mL(-1) or B. thuringiensis 222.5-890 µg mL(-1) with the fungus significantly enhanced fungal efficacy. The LC50 values of the fungus declined over a 1-7 day period after exposure, and the LT50 values decreased with increasing concentration. Based on LC50 or LC90 estimates, synergism between the fungus and beta-cypermethrin resulted in a 2.7-28.3-fold reduction in LC50 values and a 12.1-19.6-fold reduction in LC90 values, while synergism of the fungus with B. thuringiensis led to a 2.4-385.0-fold reduction in LC50 values and a 4.4-151.7-fold reduction in LC90 values. CONCLUSION Results show that sublethal doses of B. thuringiensis and beta-cypermethrin can synergise I. fumosorosea activity on P. xylostella, suggesting that combination of I. fumosorosea with the two insecticides might offer an integrated approach to controlling P. xylostella in practice. © 2014 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-ge Nian
- College of Resources and Environment, South China Agricultural University, Guangdong, Guangzhou, China
| | | | | | | |
Collapse
|
25
|
Natsopoulou ME, McMahon DP, Doublet V, Bryden J, Paxton RJ. Interspecific competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an emerging infectious disease. Proc Biol Sci 2015; 282:20141896. [PMID: 25429014 PMCID: PMC4262169 DOI: 10.1098/rspb.2014.1896] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/24/2014] [Indexed: 02/03/2023] Open
Abstract
There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this 'priority effect' was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host-multi-parasite interactions as drivers of host-pathogen community structure.
Collapse
Affiliation(s)
- Myrsini E Natsopoulou
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany
| | - Dino P McMahon
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, Berlin 14195, Germany Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Vincent Doublet
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| | - John Bryden
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Robert J Paxton
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, Halle (Saale) 06120, Germany School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
26
|
Within-host competition among the honey bees pathogens Nosema ceranae and Deformed wing virus is asymmetric and to the disadvantage of the virus. J Invertebr Pathol 2014; 124:31-4. [PMID: 25450738 DOI: 10.1016/j.jip.2014.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/05/2014] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Two pathogens co-infecting a common host can either interact positively (facilitation), negatively (competition) or act independently. A correlative study has suggested that two pathogens of the honey bee, Nosema ceranae and Deformed wing virus (DWV), interact negatively within a host (Costa et al., 2011). To test this hypothesis, we sequentially co-infected honey bees with these pathogens in a reciprocally crossed experimental design. Prior establishment in the host ventriculus by N. ceranae inhibited DWV while prior infection by DWV did not impact N. ceranae, highlighting an asymmetry in the competitive interaction between these emerging pathogens.
Collapse
|
27
|
Lange B, Reuter M, Ebert D, Muylaert K, Decaestecker E. Diet quality determines interspecific parasite interactions in host populations. Ecol Evol 2014; 4:3093-102. [PMID: 25247066 PMCID: PMC4161182 DOI: 10.1002/ece3.1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects.
Collapse
Affiliation(s)
- Benjamin Lange
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College LondonLondon, WC1E 6BT, UK
| | - Dieter Ebert
- Zoological Institute, University of BaselBasel, CH-4051, Switzerland
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| |
Collapse
|
28
|
Liebhold AM, Plymale R, Elkinton JS, Hajek AE. Emergent fungal entomopathogen does not alter density dependence in a viral competitor. Ecology 2013; 94:1217-22. [PMID: 23923480 DOI: 10.1890/12-1329.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Population cycles in forest Lepidoptera often result from recurring density-dependent epizootics of entomopathogens. While these systems are typically dominated by a single pathogen species, insects are often infected by multiple pathogens, yet little is known how pathogens interact to affect host dynamics. The apparent invasion of northeastern North America by the fungal entomopathogen Entomophaga maimaiga some time prior to 1989 provides a unique opportunity to evaluate such interactions. Prior to the arrival of E. maimaga, the oscillatory dynamics of host gypsy moth, Lymantria dispar, populations were apparently driven by epizootics of a nucleopolyhedrovirus. Subsequent to its emergence, E. maimaiga has caused extensive mortality in host populations, but little is known about how it has altered multigenerational dynamics of the gypsy moth and its virus. Here we compared demographic data collected in gypsy moth populations prior to vs. after E. maimaiga's invasion. We found that the recently invading fungal pathogen virtually always causes greater levels of mortality in hosts than does the virus, but fungal mortality is largely density independent. Moreover, the presence of the fungus has apparently not altered the gypsy moth-virus density-dependent interactions that were shown to drive periodic oscillations in hosts before the arrival of the fungus.
Collapse
Affiliation(s)
- Andrew M Liebhold
- U.S. Forest Service Northern Research Station, 180 Canfield Street, Morgantown, West Virginia 26505, USA.
| | | | | | | |
Collapse
|
29
|
Ha HJ, Alley M, Howe L, Gartrell B. Evaluation of the pathogenicity of avipoxvirus strains isolated from wild birds in New Zealand and the efficacy of a fowlpox vaccine in passerines. Vet Microbiol 2013; 165:268-74. [DOI: 10.1016/j.vetmic.2013.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/27/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
|
30
|
The occurrence of two species of Entomophthorales (Entomophthoromycota), pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838145. [PMID: 23862158 PMCID: PMC3697232 DOI: 10.1155/2013/838145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/22/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.
Collapse
|
31
|
Deepening the Conception of Functional Information in the Description of Zoonotic Infectious Diseases. ENTROPY 2013. [DOI: 10.3390/e15051929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zamora-Macorra EJ, Guzmán-Franco AW, Pell JK, Alatorre-Rosas R, Suarez-Espinoza J. Order of inoculation affects the success of co-invading entomopathogenic fungi. NEOTROPICAL ENTOMOLOGY 2012; 41:521-523. [PMID: 23949679 DOI: 10.1007/s13744-012-0075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 06/02/2023]
Abstract
The effect of order of inoculation of Pandora blunckii and Zoophthora radicans co-infecting Plutella xylostella (L.) (Lepidoptera: Plutellidae) was investigated. After co-inoculation, the proportion of larvae infected by either species was greatly reduced compared to when they were inoculated singly. The order of inoculation influenced the final outcome; the isolate inoculated last always killed more larvae than the isolate inoculated first.
Collapse
Affiliation(s)
- E J Zamora-Macorra
- Postgrado en Fitosanidad-Entomología y Acarología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de Mexico, Mexico
| | | | | | | | | |
Collapse
|
33
|
Mantzoukas S, Milonas P, Kontodimas D, Angelopoulos K. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0565-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
34
|
Chouvenc T, Efstathion CA, Elliott ML, Su NY. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften 2012; 99:949-58. [PMID: 23086391 DOI: 10.1007/s00114-012-0977-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/24/2022]
Abstract
Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Department of Entomology and Nematology, Fort Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3205 College Avenue, Fort Lauderdale, FL 33314, USA.
| | | | | | | |
Collapse
|
35
|
Ha HJ, Alley M, Howe L, Castro I, Gartrell B. Avipoxvirus infections in brown kiwi (Apteryx mantelli). N Z Vet J 2012; 61:49-52. [PMID: 22984886 DOI: 10.1080/00480169.2012.700629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CASE HISTORY Nodular lesions were found on the skin of two immature brown kiwi (Apteryx mantelli) less than 6 months of age living freely on Ponui Island off the North Island of New Zealand. The lesions were observed during routine external examination undertaken as a part of the management of other research projects, one in 2006 and the other in 2011. Apart from the skin lesions, both birds showed no signs of illness and the lesions resolved spontaneously over a 2-month period. PATHOLOGICAL FINDINGS The first case showed several 3-mm diameter firm, brown nodules located on the skin below the hock of both legs. The second case had a single multinodular mass that measured 7×20 mm, on the base of the bill. A portion of the mass and scab samples were collected for diagnosis. Histological examination of the nodules revealed severe ballooning degeneration of keratinocytes and epithelial hyperplasia. Round eosinophilic structures resembling avipoxvirus (APV) intracytoplasmic inclusion bodies (Bollinger bodies) were observed in the layers of keratinocytes. In deeper layers of the epidermis, there was evidence of secondary bacterial growth and inflammation. DIAGNOSIS DNA was extracted from tissue samples and subjected to PCR analysis. Avipoxvirus 4b core protein gene was detected in both samples by PCR. Bootstrap analysis of APV 4b core protein gene revealed that APV isolates from two kiwi comprised two different subclades. One isolate displayed 100% sequence homology to subclade B1, and the other presented 100% sequence homology to subclade A3. CLINICAL RELEVANCE This study confirmed that kiwi are susceptible to APV infection and that at least two different strains of APV are present in the population examined. Since there is no information on the origin, virulence, or prevalence of APV in kiwi, a seroprevalence study would be useful to elucidate the degree of exposure and immune response to the disease. This would allow a more informed approach to risk management of the disease in wild and captive populations.
Collapse
Affiliation(s)
- H J Ha
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
36
|
Vojvodic S, Boomsma JJ, Eilenberg J, Jensen AB. Virulence of mixed fungal infections in honey bee brood. Front Zool 2012; 9:5. [PMID: 22444792 PMCID: PMC3384236 DOI: 10.1186/1742-9994-9-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/23/2012] [Indexed: 11/16/2022] Open
Abstract
Introduction Honey bees, Apis mellifera, have a diverse community of pathogens. Previous research has mostly focused on bacterial brood diseases of high virulence, but milder diseases caused by fungal pathogens have recently attracted more attention. This interest has been triggered by partial evidence that co-infection with multiple pathogens has the potential to accelerate honey bee mortality. In the present study we tested whether co-infection with closely related fungal brood-pathogen species that are either specialists or non-specialist results in higher host mortality than infections with a single specialist. We used a specially designed laboratory assay to expose honey bee larvae to controlled infections with spores of three Ascosphaera species: A. apis, the specialist pathogen that causes chalkbrood disease in honey bees, A. proliperda, a specialist pathogen that causes chalkbrood disease in solitary bees, and A. atra, a saprophytic fungus growing typically on pollen brood-provision masses of solitary bees. Results We show for the first time that single infection with a pollen fungus A. atra may induce some mortality and that co-infection with A. atra and A. apis resulted in higher mortality of honey bees compared to single infections with A. apis. However, similar single and mixed infections with A. proliperda did not increase brood mortality. Conclusion Our results show that co-infection with a closely related fungal species can either increase or have no effect on host mortality, depending on the identity of the second species. Together with other studies suggesting that multiple interacting pathogens may be contributing to worldwide honey bee health declines, our results highlight the importance of studying effects of multiple infections, even when all interacting species are not known to be specialist pathogens.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Center for Social Evolution, Department of Agriculture and Ecology Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
37
|
Abstract
SUMMARYVariability of immune responses is an essential aspect of ecological immunology, yet how much of this variability is due to differences among parasite genotypes remains unknown. Here, variation in immune response of the crab, Macrophthalmus hirtipes, is examined as a function of experimental exposure to 10 clonal cercarial lineages of the trematode Maritrema novaezealandensis. Our goals were (1) to assess the variability of the host immune reaction elicited by 10 parasite clones, (2) to test if the heterozygosity–fitness correlation, whereby organisms with higher heterozygosities achieve a higher fitness than those with lower heterozygosities, applies to heterozygous parasites eliciting weak immune responses, and (3) to see how concomitant infections by other macroparasites influence the crab's immune response to cercariae. Parasite clones were distinguished and heterozygosities calculated using 20 microsatellite markers. We found that exposure to cercariae resulted in increased haemocyte counts, and that although interclonal differences in immune response elicited were detected, parasite heterozygosity did not correlate with host immune response. Additionally, the presence of other pre-existing parasites in hosts did not influence their immune response following experimental exposure to cercariae. Overall, the existence of variability in immune response elicited by different parasite clones is promising for future ecological immunology studies using this system.
Collapse
|
38
|
Laine AL. Context-dependent effects of induced resistance under co-infection in a plant-pathogen interaction. Evol Appl 2011; 4:696-707. [PMID: 25568016 PMCID: PMC3352536 DOI: 10.1111/j.1752-4571.2011.00194.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/12/2011] [Indexed: 12/31/2022] Open
Abstract
The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains, and dynamics under multiple infection have been suggested to be a major force driving pathogen evolution. Here, I studied whether hosts' induced defenses mediate dynamics of multiple infection of the fungal pathogen, Podosphaera plantaginis, infecting Plantago lanceolata. A laboratory study of sequential infections, where interaction between pathogen strains was prevented, showed that ability to establish remained unaffected, but prior infection elevates the host's resistance to the degree that subsequent infection development is significantly reduced. However, when inoculated plants and their healthy controls were planted back into their natural populations, hosts with prior infection became more heavily infected by the subsequent infections than the initially healthy plants. Hence, a controlled short-term laboratory study is a poor predictor of the host's ability to mediate multiple infection during the course of natural epidemics. These results have applied implications for priming where the plants' defenses are elicited to provide protection against further attack, highlighting the importance of testing priming under natural conditions for relevant time scales.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki Finland ; Department of Biology, University of Turku Turku, Finland
| |
Collapse
|
39
|
Bashey F, Reynolds C, Sarin T, Young SK. Virulence and competitive ability in an obligately killing parasite. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19304.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Ben-Ami F, Rigaud T, Ebert D. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. J Evol Biol 2011; 24:1307-16. [PMID: 21481055 DOI: 10.1111/j.1420-9101.2011.02264.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa.
Collapse
Affiliation(s)
- F Ben-Ami
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
41
|
Staves PA, Knell RJ. Virulence and competitiveness: testing the relationship during inter- and intraspecific mixed infections. Evolution 2011; 64:2643-52. [PMID: 20394652 DOI: 10.1111/j.1558-5646.2010.00999.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the reasons why different parasites cause different degrees of harm to their hosts is an important objective in evolutionary biology. One group of models predicts that if hosts are infected with more than one strain or species of parasite, then competition between the parasites will select for higher virulence. While this idea makes intuitive sense, empirical data to support it are rare and equivocal. We investigated the relationship between fitness and virulence during both inter- and intraspecific competition for a fungal parasite of insects, Metarhizium anisopliae. Contrary to theoretical expectations, competition favored parasite strains with either a lower or a higher virulence depending on the competitor: when in interspecific competition with an entomopathogenic nematode, Steinernema feltiae, less virulent strains of the fungus were more successful, but when competing against conspecific fungi, more virulent strains were better competitors. We suggest that the nature of competition (direct via toxin production when competing against the nematode, indirect via exploitation of the host when competing against conspecific fungal strains) determines the relationship between virulence and competitive ability.
Collapse
Affiliation(s)
- Peter A Staves
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom.
| | | |
Collapse
|
42
|
Tompkins DM, Dunn AM, Smith MJ, Telfer S. Wildlife diseases: from individuals to ecosystems. J Anim Ecol 2010; 80:19-38. [PMID: 20735792 DOI: 10.1111/j.1365-2656.2010.01742.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. We review our ecological understanding of wildlife infectious diseases from the individual host to the ecosystem scale, highlighting where conceptual thinking lacks verification, discussing difficulties and challenges, and offering potential future research directions. 2. New molecular approaches hold potential to increase our understanding of parasite interactions within hosts. Also, advances in our knowledge of immune systems makes immunological parameters viable measures of parasite exposure, and useful tools for improving our understanding of causal mechanisms. 3. Studies of transmission dynamics have revealed the importance of heterogeneity in host behaviour and physiology, and of contact processes operating at different spatial and temporal scales. An important future challenge is to determine the key transmission mechanisms maintaining the persistence of different types of diseases in the wild. 4. Regulation of host populations is too complex to consider parasite effects in isolation from other factors. One solution is to seek a unified understanding of the conditions under which (and the ecological rules determining when) population scale impacts of parasites can occur. 5. Good evidence now shows that both direct effects of parasites, and trait mediated indirect effects, frequently mediate the success of invasive species and their impacts on recipient communities. A wider exploration of these effects is now needed. 6. At the ecosystem scale, research is needed to characterize the circumstances and conditions under which both fluxes in parasite biomass, and trait mediated effects, are significant in ecosystem processes, and to demonstrate that parasites do indeed increase 'ecosystem health'. 7. There is a general need for more empirical testing of predictions and subsequent development of theory in the classic research cycle. Experimental field studies, meta-analyses, the collection and analysis of long-term data sets, and data constrained modelling, will all be key to advancing our understanding. 8. Finally, we are only now beginning to understand the importance of cross-scale interactions associated with parasitism. Such interactions may offer key insights into bigger picture questions such as when and how different regulatory factors are important, when disease can cause species extinctions, and what characteristics are indicative of functionally resilient ecosystems.
Collapse
|
43
|
Rigaud T, Perrot-Minnot MJ, Brown MJF. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc Biol Sci 2010; 277:3693-702. [PMID: 20667874 DOI: 10.1098/rspb.2010.1163] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host-parasite interactions impact the evolution of host-parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.
Collapse
Affiliation(s)
- Thierry Rigaud
- Laboratoire Biogéosciences, CNRS UMR 5561, Université de Bourgogne, Equipe Ecologie Evolutive, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | |
Collapse
|
44
|
Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Knols BGJ, Takken W, Russell TL. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malar J 2009; 8:309. [PMID: 20030834 PMCID: PMC2808315 DOI: 10.1186/1475-2875-8-309] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/23/2009] [Indexed: 01/26/2023] Open
Abstract
Background Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana isolates have been shown to infect and reduce the survival of mosquito vectors. Methods Here four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and persistence of the isolates M. anisopliae ICIPE-30 and B. bassiana I93-925 on infection and survival rates of female Anopheles gambiae sensu stricto. Test concentrations and exposure times ranged between 1 × 107 - 4 × 1010 conidia m-2 and 15 min - 6 h. In co-formulations, 2 × 1010 conidia m-2 of both fungus isolates were mixed at ratios of 4:1, 2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 109, 2 × 1010 or 4 × 1010. Results Mosquito survival varied with conidia concentration; 2 × 1010 conidia m-2 was the concentration above which no further reductions in survival were detectable for both isolates of fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still achieved considerable mortality rates (100% mortality by 14 d) of mosquitoes, but at lower speed than with 30 min exposure (100% mortality by 9 d). Conidia remained infective up to 28 d post-application but higher concentrations did not increase persistence. Conclusion Both fungus isolates are effective and persistent at low concentrations and short exposure times.
Collapse
Affiliation(s)
- Ladslaus L Mnyone
- Biomedical and Environmental Group, Ifakara Health Institute, PO Box 53, Off Mlabani Passage, Ifakara, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cost of co-infection controlled by infectious dose combinations and food availability. Oecologia 2009; 162:935-40. [DOI: 10.1007/s00442-009-1535-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
|
46
|
Guzmán-Franco AW, Clark SJ, Alderson PG, Pell JK. Competition and co-existence of Zoophthora radicans and Pandora blunckii, two co-occurring fungal pathogens of the diamondback moth, Plutella xylostella. ACTA ACUST UNITED AC 2009; 113:1312-21. [DOI: 10.1016/j.mycres.2009.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 08/20/2009] [Accepted: 08/28/2009] [Indexed: 11/25/2022]
|
47
|
Laine AL. Role of coevolution in generating biological diversity: spatially divergent selection trajectories. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2957-2970. [PMID: 19528527 DOI: 10.1093/jxb/erp168] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Geographic Mosaic Theory of Coevolution predicts that divergent coevolutionary selection produces genetic differentiation across populations. The 29 studies reviewed here support this hypothesis as they all report spatially diverged selection trajectories which have generated variable outcomes in the interaction traits among populations. This holds for both mutualistic interactions such as those between host plants and their root symbionts, or plants and their pollinators, as well as for antagonistic interactions such as plants and their pathogens or herbivores. Most often, it is the strength of selection that varies across landscapes. Variation may be generated by both the physical environment (namely temperature), and the local community--competitors, parasites, and alternative hosts--that intensify or dilute selection locally for a wide range of species interactions. At its extreme, selection trajectories may be reversed with an antagonistic interaction being commensalistic in some populations and mutualistic in yet others, depending on the local community context. Selection trajectories were found to diverge among continents, but also more locally among neighbouring populations and even within a single population. This result highlights the importance of coevolutionary selection generating biological diversity with far-reaching implications for both biodiversity conservation as well as applied biology.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Applied Biology, PO Box 27 (Latokartanonkaari 7), FI-00014 University of Helsinki, Finland.
| |
Collapse
|
48
|
Seabloom E, Hosseini P, Power A, Borer E. Diversity and Composition of Viral Communities: Coinfection of Barley and Cereal Yellow Dwarf Viruses in California Grasslands. Am Nat 2009; 173:E79-98. [DOI: 10.1086/596529] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Vojvodic S, McCreadie JW. Do different species of Smittium (Harpellales, Legeriomycetaceae) influence each other in the host gut? ACTA ACUST UNITED AC 2008; 112:1409-13. [DOI: 10.1016/j.mycres.2008.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/10/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
|
50
|
Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. J Invertebr Pathol 2008; 99:103-11. [DOI: 10.1016/j.jip.2008.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
|