1
|
Wang Y, Zhang Z, Lin L, Xing G, Jiang Y, Cao W, Zhang Y. Interspecies electron transfer and microbial interactions in a novel Fe(II)-mediated anammox coupled mixotrophic denitrification system. BIORESOURCE TECHNOLOGY 2024; 403:130852. [PMID: 38761867 DOI: 10.1016/j.biortech.2024.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This study effectively coupled anammox and mixotrophic denitrification at a high nitrogen load rate of 6.84 g N/L/d with 40 mg/L Fe(II). Fe(II) enhanced the activity of nitrate reductase, nitrite reductase, and hydrazine dehydrogenase enzymes, facilitating accelerated ATP synthesis. Through electrochemical experiments, interspecies electron transfer processes in coupled system were explored. Fe(II) promoted flavin mononucleotide secretion, enhancing electron-donating and electron-accepting capacity by 2.8 and 1.3 times, respectively. Fe(II) triggered the enrichment of autotrophic denitrifying bacteria (Azospira and Hydrogenophaga), transitioning from single organic nutrient to mixotrophic denitrification. Meanwhile, Fe(II) increased Candidatus_Kuenenia abundance from 35.2 % to 49.0 %, establishing the competitive advantage of anammox bacteria over completed denitrifying bacteria (Comamonas). The synergistic interactions between anammox and various denitrification pathways achieved a nitrogen removal rate of 5.88 g N/L/d, with anammox contribution rate of 88.3 %. This study provides insights into broadening the application of partial denitrification /anammox and electron transfer in multi-bacterial coupling systems.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zikun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Guowei Xing
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
3
|
Wang Y, Zhang Z, Jiang Y, Cao W, Lin JG, Zhang Y. Spatial difference in nitrogen removal pathways and microbial functional diversity in an EGSB reactor during the start-up of PD/Anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168004. [PMID: 37875193 DOI: 10.1016/j.scitotenv.2023.168004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
The start-up of a relatively high nitrogen load PD/Anammox in an EGSB reactor was achieved through strategies of bioaugmentation, mass transfer enhancement, and COD/NO3--N control, with NRR of 5.2 g N/L/d. Longitudinal heterogeneity in EGSB reactor induced divergent nitrogen conversion pathways and enriched different functional microorganisms between stratified sludge. Along the elevation of the reactor, the proportion of removed nitrogen through anammox increased continuously from bottom, middle and up, which were 65.0 %, 79.8 %, and 84.1 %, respectively, consistent with the trend of ex-situ activities calculated with Gompertz model. The bottom zone played a role in mixed nitrogen conversion to provide NO2--N accumulation and nitrogen removal, with higher abundance of Thauera, Denitratisoma and Ignavibacterium. The middle part was enriched Candidatus_Kuenenia (12.51 %), and up inhibited completed denitrification, together forming the anammox dominant zone. The proposed functional zones in the EGSB reactor provided approaches for the optimisation of high-load PD/Anammox systems.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zikun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; National Yang Ming Chiao Tung University, Taiwan
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Wu M, Liu X, Engelberts JP, Tyson GW, McIlroy SJ, Guo J. Anaerobic oxidation of ammonium and short-chain gaseous alkanes coupled to nitrate reduction by a bacterial consortium. THE ISME JOURNAL 2024; 18:wrae063. [PMID: 38624180 PMCID: PMC11090206 DOI: 10.1093/ismejo/wrae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The bacterial species "Candidatus Alkanivorans nitratireducens" was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) in response to nitrite accumulation. The regulation of this switch or the nature of potential syntrophic partnerships with other microorganisms remains unclear. Here, we describe anaerobic multispecies cultures of bacteria that couple the oxidation of propane and butane to nitrate reduction and the oxidation of ammonium (anammox). Batch tests with 15N-isotope labelling and multi-omic analyses collectively supported a syntrophic partnership between "Ca. A. nitratireducens" and anammox bacteria, with the former species mediating nitrate-driven oxidation of SCGAs, supplying the latter with nitrite for the oxidation of ammonium. The elimination of nitrite accumulation by the anammox substantially increased SCGA and nitrate consumption rates, whereas it suppressed DNRA. Removing ammonium supply led to its eventual production, the accumulation of nitrite, and the upregulation of DNRA gene expression for the abundant "Ca. A. nitratireducens". Increasing the supply of SCGA had a similar effect in promoting DNRA. Our results suggest that "Ca. A. nitratireducens" switches to DNRA to alleviate oxidative stress caused by nitrite accumulation, giving further insight into adaptability and ecology of this microorganism. Our findings also have important implications for the understanding of the fate of nitrogen and SCGAs in anaerobic environments.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xiawei Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - J Pamela Engelberts
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Elbon CE, LeCleir GR, Tuttle MJ, Jurgensen SK, Demas TG, Keller CJ, Stewart T, Buchan A. Microbiomes and Planctomycete diversity in large-scale aquaria habitats. PLoS One 2022; 17:e0267881. [PMID: 35551553 PMCID: PMC9098025 DOI: 10.1371/journal.pone.0267881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
In commercial large-scale aquaria, controlling levels of nitrogenous compounds is essential for macrofauna health. Naturally occurring bacteria are capable of transforming toxic nitrogen species into their more benign counterparts and play important roles in maintaining aquaria health. Nitrification, the microbially-mediated transformation of ammonium and nitrite to nitrate, is a common and encouraged process for management of both commercial and home aquaria. A potentially competing microbial process that transforms ammonium and nitrite to dinitrogen gas (anaerobic ammonium oxidation [anammox]) is mediated by some bacteria within the phylum Planctomycetes. Anammox has been harnessed for nitrogen removal during wastewater treatment, as the nitrogenous end product is released into the atmosphere rather than in aqueous discharge. Whether anammox bacteria could be similarly utilized in commercial aquaria is an open question. As a first step in assessing the viability of this practice, we (i) characterized microbial communities from water and sand filtration systems for four habitats at the Tennessee Aquarium and (ii) examined the abundance and anammox potential of Planctomycetes using culture-independent approaches. 16S rRNA gene amplicon sequencing revealed distinct, yet stable, microbial communities and the presence of Planctomycetes (~1-15% of library reads) in all sampled habitats. Preliminary metagenomic analyses identified the genetic potential for multiple complete nitrogen metabolism pathways. However, no known genes diagnostic for the anammox reaction were found in this survey. To better understand the diversity of this group of bacteria in these systems, a targeted Planctomycete-specific 16S rRNA gene-based PCR approach was used. This effort recovered amplicons that share <95% 16S rRNA gene sequence identity to previously characterized Planctomycetes, suggesting novel strains within this phylum reside within aquaria.
Collapse
Affiliation(s)
- Claire E. Elbon
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gary R. LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Matthew J. Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sophie K. Jurgensen
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas G. Demas
- Tennessee Aquarium, Chattanooga, Tennessee, United States of America
| | | | - Tina Stewart
- Tennessee Aquarium, Chattanooga, Tennessee, United States of America
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
6
|
Oshiki M, Gao L, Zhang L, Okabe S. NH 2OH Disproportionation Mediated by Anaerobic Ammonium-oxidizing (Anammox) Bacteria. Microbes Environ 2022; 37. [PMID: 35418545 PMCID: PMC9530737 DOI: 10.1264/jsme2.me21092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anammox bacteria produce N2 gas by oxidizing NH4+ with NO2–, and hydroxylamine (NH2OH) is a potential intermediate of the anammox process. N2 gas production occurs when anammox bacteria are incubated with NH2OH only, indicating their capacity for NH2OH disproportionation with NH2OH serving as both the electron donor and acceptor. Limited information is currently available on NH2OH disproportionation by anammox bacteria; therefore, the stoichiometry of anammox bacterial NH2OH disproportionation was examined in the present study using 15N-tracing techniques. The anammox bacteria, Brocadia sinica, Jettenia caeni, and Scalindua sp. were incubated with the addition of 15NH2OH, and the production of 15N-labeled nitrogenous compounds was assessed. The anammox bacteria tested performed NH2OH disproportionation and produced 15-15N2 gas and NH4+ as reaction products. The addition of acetylene, an inhibitor of the anammox process, reduced the activity of NH2OH disproportionation, but not completely. The growth of B. sinica by NH2OH disproportionation (–240.3 kJ mol NH2OH–1 under standard conditions) was also tested in 3 up-flow column anammox reactors fed with 1) 0.7 mM NH2OH only, 2) 0.7 mM NH2OH and 0.5 mM NH4+, and 3) 0.7 mM NH2OH and 0.5 mM NO2–. NH2OH consumption activities were markedly reduced after 7 d of operation, indicating that B. sinica was unable to maintain its activity or biomass by NH2OH disproportionation.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Lin Gao
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Lei Zhang
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| |
Collapse
|
7
|
Lodha T, Narvekar S, Karodi P. Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Syst Appl Microbiol 2021; 44:126272. [PMID: 34735804 DOI: 10.1016/j.syapm.2021.126272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The phylum Planctomycetes is metabolically unique group of bacteria divided in two classes Planctomycetia and Phycisphaerae. Anaerobic ammonia-oxidizing (anammox) bacteria are the uncultured representatives of the phylum Planctomycetes. Anammox bacterial genera are placed in the family Candidatus (Ca.) Brocadiaceae of the order Ca. Brocadiales, assigned to the class Planctomycetia. Phylogenetic analysis, showed that the anammox bacteria and Ca. Uabimicrobium form a divergent clade from the rest of the cultured representatives of the phylum Planctomycetes. The phylogenetic study, pairwise distance and Average Amino acid Identity (AAI) showed that anammox bacteria don't belong to the classes Planctomycetia and Phycisphaerae. Anammox bacteria and Ca. Uabimicrobium form a deep-branching third clade in the phylogenetic analysis indicating that it is the most ancient third class within the phylum Planctomycetes. Phenotypic characters also separate anammox bacteria from classes Planctomycetia and Phycisphaerae. Therefore, based on phenotypic, phylogenetic, pairwise distance, AAI and phylogenomic analysis we propose a novel class Ca. Brocadiia to accommodate the order Ca. Brocadiales of anammox bacteria except Ca. Anammoximicrobium. Genera Ca. Jettenia, Ca. Anammoxoglobus, Ca. Kuenenia and Ca. Brocadia show their phylogenetic affiliation to the family Ca. Brocadiaceae. However, Ca. Scalindua showed a distant relationship with the family Ca. Brocadiaceae. Therefore, we suggest the exclusion of the genus Ca. Scalindua from the family Ca. Brocadiaceae; and propose its inclusion under a novel family with a provisional name as Ca. Scalinduaceae fam. nov. Similarly, Ca. Uabimicrobium amporphum showed distinct phylogenetic affiliation, therefore we propose a novel class Ca. Uabimicrobiia classis nov. to accommodate the genus Ca. Uabimicrobium.
Collapse
Affiliation(s)
- Tushar Lodha
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India.
| | - Simran Narvekar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India
| | - Prachi Karodi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India
| |
Collapse
|
8
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
9
|
Kouba V, Gerlein JC, Benakova A, Lopez Marin MA, Rysava E, Vejmelkova D, Bartacek J. Adaptation of flocculent anammox culture to low temperature by cold shock: long-term response of the microbial population. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-8. [PMID: 34240689 DOI: 10.1080/09593330.2021.1950842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Partial nitritation-anammox (PN/A) process will substantially reduce the costs for the removal of nitrogen in the mainstream of municipal sewage. However, one of the mainstream PN/A challenges is to reduce the time necessary for the adaptation of anammox bacteria to lower temperatures in mild climates. In this study, we exposed anammox flocculent culture to cold shocks [35°C → 5°C (8 h) → 15°C] and evaluated long-term cold shock response. Over a post-shock period of 40 d at 15°C, the nitrogen removal rates in the shocked culture were significantly higher compared to control, with maximum rates up to 0.082 and 0.033 kg-N/kg-VSS/d or 0.164 and 0.076 kg-N/m3/d, for shocked culture and control, respectively. In the corresponding semi-batch cycles, the shocked culture was on average 136 ± 101% more active than the control, due to the negative effect of cold shock on side populations and more active anammox cells. Per FISH, Ca. Brocadia anammoxidans and Ca. Scalindua survived the shock and remained present throughout. Thus, both anammox microorganisms seem to respond favourably to cold shocks. In sum, we provide further evidence that cold shocks accelerate the adaptation of anammox to the mainstream of municipal WWTPs. Further, for the first time, we report the long-term adaptive response of anammox to cold shocks.
Collapse
Affiliation(s)
- Vojtech Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Juan Camilo Gerlein
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Andrea Benakova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Marco Antonio Lopez Marin
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Eva Rysava
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Dana Vejmelkova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Bartacek
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| |
Collapse
|
10
|
Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Appl Microbiol Biotechnol 2020; 104:7201-7212. [PMID: 32607646 PMCID: PMC7374466 DOI: 10.1007/s00253-020-10748-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 10/29/2022]
Abstract
Anaerobic wastewater treatment offers several advantages; however, the effluent of anaerobic digesters still contains high levels of ammonium and dissolved methane that need to be removed before these effluents can be discharged to surface waters. The simultaneous anaerobic removal of methane and ammonium by denitrifying (N-damo) methanotrophs in combination with anaerobic ammonium-oxidizing (anammox) bacteria could be a potential solution to this challenge. After a molecular survey of a wastewater plant treating brewery effluent, indicating the presence of both N-damo and anammox bacteria, we started an anaerobic bioreactor with a continuous supply of methane, ammonium, and nitrite to enrich these anaerobic microorganisms. After 14 months of operation, a stable enrichment culture containing two types of 'Candidatus Methylomirabilis oxyfera' bacteria and two strains of 'Ca. Brocadia'-like anammox bacteria was achieved. In this community, anammox bacteria converted 80% of the nitrite with ammonium, while 'Ca. Methylomirabilis' contributed to 20% of the nitrite consumption. The analysis of metagenomic 16S rRNA reads and fluorescence in situ hybridization (FISH) correlated well and showed that, after 14 months, 'Ca. Methylomirabilis' and anammox bacteria constituted approximately 30 and 20% of the total microbial community. In addition, a substantial part (10%) of the community consisted of Phycisphaera-related planctomycetes. Assembly and binning of the metagenomic sequences resulted in high-quality draft genome of two 'Ca. Methylomirabilis' species containing the marker genes pmoCAB, xoxF, and nirS and putative NO dismutase genes. The anammox draft genomes most closely related to 'Ca. Brocadia fulgida' included the marker genes hzsABC, hao, and hdh. Whole-reactor and batch anaerobic activity measurements with methane, ammonium, nitrite, and nitrate revealed an average anaerobic methane oxidation rate of 0.12 mmol h-1 L-1 and ammonium oxidation rate of 0.5 mmol h-1 L-1. Together, this study describes the enrichment and draft genomes of anaerobic methanotrophs from a brewery wastewater treatment plant, where these organisms together with anammox bacteria can contribute significantly to the removal of methane and ammonium in a more sustainable way. KEY POINTS: • An enrichment culture containing both N-damo and anammox bacteria was obtained. • Simultaneous consumption of ammonia, nitrite, and methane under anoxic conditions. • In-depth metagenomic biodiversity analysis of inoculum and enrichment culture.
Collapse
|
11
|
Lu Y, Ding Z, Gao K, Duo Z, Xu S, Zhao X, Li W, Zheng P. The effect of hydraulic retention time on ammonia and nitrate bio-removal over nitrite process. ENVIRONMENTAL TECHNOLOGY 2020; 41:1275-1283. [PMID: 30301408 DOI: 10.1080/09593330.2018.1530697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Ammonia and Nitrate Bio-removal Over Nitrite (ANBON) is a new biological process, which couples denitratation with Anaerobic Ammonium Oxidation (ANAMMOX) to carry out simultaneous removal of nitrate nitrogen and ammonia nitrogen. The effect of hydraulic retention time (HRT) on the performance of ANBON process was investigated. The results showed that the optimal HRT was about 0.7 h and the nitrogen removal rate was 26.2 ± 0.7 g N·L-1·d-1, which was at top level reported in previous literatures. The change of HRT was found to trigger the change of microbial community in the reactor, which exerted a great effect on the performance of ANBON process. The community analysis based on 16S rRNA gene indicated that Halomonas and Candidatus Kuenenia were the dominant functional bacteria in the denitratation unit and the ANAMMOX unit respectively. These results are helpful for the development and application of ANBON process.
Collapse
Affiliation(s)
- Yaofeng Lu
- Department of Environmental Engineering, College of Environmental and Resources, Zhejiang University, Hangzhou, People's Republic of China
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, People's Republic of China
| | - Zhibin Ding
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, People's Republic of China
| | - Kexin Gao
- Department of Environmental Engineering, College of Environmental and Resources, Zhejiang University, Hangzhou, People's Republic of China
| | - Zijun Duo
- Department of Environmental Engineering, College of Environmental and Resources, Zhejiang University, Hangzhou, People's Republic of China
| | - Shaoyi Xu
- Department of Environmental Engineering, College of Environmental and Resources, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaolan Zhao
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, People's Republic of China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resources, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Key Lab Water Pollution control & Environmental, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Ma A, Liu G, Ma J, Wei J, Zhou H, Brandt KK, Zhuang G. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. GLOBAL CHANGE BIOLOGY 2020; 26:697-708. [PMID: 31782204 DOI: 10.1111/gcb.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.
Collapse
Affiliation(s)
- Yuwan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianpeng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Batani G, Bayer K, Böge J, Hentschel U, Thomas T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci Rep 2019; 9:18618. [PMID: 31819112 PMCID: PMC6901588 DOI: 10.1038/s41598-019-55049-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the development of several cultivation methods, the rate of discovery of microorganisms that are yet-to-be cultivated outpaces the rate of isolating and cultivating novel species in the laboratory. Furthermore, no current cultivation technique is capable of selectively isolating and cultivating specific bacterial taxa or phylogenetic groups independently of morphological or physiological properties. Here, we developed a new method to isolate living bacteria solely based on their 16S rRNA gene sequence. We showed that bacteria can survive a modified version of the standard fluorescence in situ hybridization (FISH) procedure, in which fixation is omitted and other factors, such as centrifugation and buffers, are optimized. We also demonstrated that labelled DNA probes can be introduced into living bacterial cells by means of chemical transformation and that specific hybridization occurs. This new method, which we call live-FISH, was then combined with fluorescence-activated cell sorting (FACS) to sort specific taxonomic groups of bacteria from a mock and natural bacterial communities and subsequently culture them. Live-FISH represents the first attempt to systematically optimize conditions known to affect cell viability during FISH and then to sort bacterial cells surviving the procedure. No sophisticated probe design is required, making live-FISH a straightforward method to be potentially used in combination with other single-cell techniques and for the isolation and cultivation of new microorganisms.
Collapse
Affiliation(s)
- Giampiero Batani
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Science - Department of Parasitology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Kristina Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Julia Böge
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Engelbrecht S, Mozooni M, Rathsack K, Böllmann J, Martienssen M. Effect of increasing salinity to adapted and non-adapted Anammox biofilms. ENVIRONMENTAL TECHNOLOGY 2019; 40:2880-2888. [PMID: 29560803 DOI: 10.1080/09593330.2018.1455748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The Anammox process is an efficient low energy alternative for the elimination of nitrogen from wastewater. The process is already in use for side stream applications. However, some industrial wastewaters, e.g. from textile industry are highly saline. This may be a limit for the application of the Anammox process. The aim of this study was to evaluate the effects of different NaCl concentrations on the efficiency of adapted and non-adapted Anammox biofilms. The tested NaCl concentrations ranged from 0 to 50 g NaCl*L-1. Concentrations below 30 g NaCl*L-1 did not significantly result in different nitrogen removal rates between adapted and non-adapted bacteria. However, adapted bacteria were significantly more resilient to salt at higher concentrations (40 and 50 g NaCl*L-1). The IC50 for adapted and non-adapted Anammox bacteria were 19.99 and 20.30 g NaCl*L-1, respectively. Whereas adapted biomass depletes the nitrogen in ratios of NO2- / NH4+ around 1.20 indicating a mainly Anammox-driven consumption of the nitrogen, the ratio increases to 2.21 at 40 g NaCl*L-1 for non-adapted biomass. This indicates an increase of other processes like denitrification. At lower NaCL concentrations up to 10 g NaCl*L-1, a stimulating effect of NaCl to the Anammox process has been observed.
Collapse
Affiliation(s)
- Steffen Engelbrecht
- a Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg , Cottbus , Germany
| | - Mohammad Mozooni
- a Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg , Cottbus , Germany
| | - Kristina Rathsack
- a Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg , Cottbus , Germany
| | - Jörg Böllmann
- a Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg , Cottbus , Germany
| | - Marion Martienssen
- a Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg , Cottbus , Germany
| |
Collapse
|
15
|
Stultiens K, Cruz SG, van Kessel MAHJ, Jetten MSM, Kartal B, Op den Camp HJM. Interactions between anaerobic ammonium- and methane-oxidizing microorganisms in a laboratory-scale sequencing batch reactor. Appl Microbiol Biotechnol 2019; 103:6783-6795. [PMID: 31227868 PMCID: PMC6667409 DOI: 10.1007/s00253-019-09976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The reject water of anaerobic digestors still contains high levels of methane and ammonium that need to be treated before these effluents can be discharged to surface waters. Simultaneous anaerobic methane and ammonium oxidation performed by nitrate/nitrite-dependent anaerobic methane-oxidizing(N-damo) microorganisms and anaerobic ammonium-oxidizing(anammox) bacteria is considered a potential solution to this challenge. Here, a stable coculture of N-damo archaea, N-damo bacteria, and anammox bacteria was obtained in a sequencing batch reactor fed with methane, ammonium, and nitrite. Nitrite and ammonium removal rates of up to 455 mg N-NO2- L-1 day-1 and 228 mg N-NH4+ L-1 were reached. All nitrate produced by anammox bacteria (57 mg N-NO3- L-1 day-1) was consumed, leading to a nitrogen removal efficiency of 97.5%. In the nitrite and ammonium limited state, N-damo and anammox bacteria each constituted about 30-40% of the culture and were separated as granules and flocs in later stages of the reactor operation. The N-damo archaea increased up to 20% and mainly resided in the granular biomass with their N-damo bacterial counterparts. About 70% of the nitrite in the reactor was removed via the anammox process, and batch assays confirmed that anammox activity in the reactor was close to its maximal potential activity. In contrast, activity of N-damo bacteria was much higher in batch, indicating that these bacteria were performing suboptimally in the sequencing batch reactor, and would probably be outcompeted by anammox bacteria if ammonium was supplied in excess. Together these results indicate that the combination of N-damo and anammox can be implemented for the removal of methane at the expense of nitrite and nitrate in future wastewater treatment systems.
Collapse
Affiliation(s)
- Karin Stultiens
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Simon Guerrero Cruz
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Chen R, Ji J, Chen Y, Takemura Y, Liu Y, Kubota K, Ma H, Li YY. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater. WATER RESEARCH 2019; 155:288-299. [PMID: 30852316 DOI: 10.1016/j.watres.2019.02.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The stable operation of the partial nitritation and anammox (PN/A) process is a challenge in the treatment of low-strength ammonia wastewater like sewage mainstream. This study demonstrated the feasibility of achieving stable operation in the treatment of 50 mg/L ammonia wastewater with a micro granule-based PN/A reactor. The long-term operation results showed nitrogen removal efficiencies of 71.8 ± 9.9% were stably obtained under a relatively short hydraulic retention time (HRT) of 2 h. The analysis on the physicochemical properties of the granules indicated most of the granules were in a size in a range of 265-536 μm, and the elementary composition of the granules was determined to be CH1.61O0.61N0.17S0.01P0.03. The microbial analysis revealed Candidatus Kuenenia stuttgartiensis anammox bacteria and Nitrosomonas-like AOB were the two most dominant bacteria with 27.6% and 10.5% abundance, respectively, both of which formed spatially syntrophic co-immobilization within the micro-granules. The ex-situ activity tests showed the activity of NOB was well limited through DO regulation in the reactor. These results provide an alternative PN/A process configuration for low-strength wastewater treatment by sustaining microstate granules. Optimization of the nitrogen sludge loading rate and DO regulation are important for the successful performance.
Collapse
Affiliation(s)
- Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yasuyuki Takemura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yuan Liu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Haiyuan Ma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
17
|
Zhou X, Wang M, Wen C, Liu D. Nitrogen release and its influence on anammox bacteria during the decay of Potamogeton crispus with different values of initial debris biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:604-615. [PMID: 30208346 DOI: 10.1016/j.scitotenv.2018.08.358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/03/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Aquatic macrophytes play a significant role in the nutrient cycle of freshwater ecosystems. However, nutrients from plant debris release into both sediments and overlying water if not timely harvested. To date, minimal information is available regarding nutrient release and its subsequent influences on bacterial communities with decaying debris. In this study, Potamogeton crispus was used as a model plant. Debris biomass levels of 0 g (control, J-CK), 10 g dry weight (DW) (100 g DW/m2, J-10 g), 40 g DW (400 g DW/m2, J-40 g) and 80 g DW (800 g DW/m2, J-80 g) were used to simulate the different biomass densities of P. crispus in field. The physicochemical parameters of overlying water and sediment samples were analysed. The community composition of anammox bacteria in the sediment was also analysed using 16S rRNA genes as markers. The results showed that dissolved oxygen and pH dramatically decreased, whereas total nitrogen (TN) and NH4+-N concentrations increased in the overlying water in the initial stage of P. crispus decomposition. However, NO3--N concentration changes in the overlying water were more complicated. The concentrations of organic matter, TN and NH4+-N in the sediment all increased, but the rate of increase varied among the groups with different initial biomass levels, indicating that these physicochemical properties in sediment are significantly affected by debris biomass level and decay time. In addition, the order of anammox bacteria abundance was J-40 g > J-CK > J-80 g > J-10 g. Moreover, the community structure of anammox bacteria were simpler compared to that of J-CK as debris biomass level increased. The results demonstrate that P. crispus debris decomposition could affect the ecological distribution of anammox bacteria. Such influence clearly varies with varying amounts of P. crispus biomass debris. This information could be useful for the management of aquatic macrophytes in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunzi Wen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
18
|
Böllmann J, Engelbrecht S, Martienssen M. Autofluorescent characteristics of Candidatus Brocadia fulgida and the consequences for FISH and microscopic detection. Syst Appl Microbiol 2018; 42:135-144. [PMID: 30269994 DOI: 10.1016/j.syapm.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022]
Abstract
An enrichment culture of Candidatus Brocadia fulgida was identified by three independent methods: analysis of autofluorescence using different microscope filter blocks and a fluorescence spectrometer, fluorescence in situ hybridization (FISH) with anammox-specific probes and partial sequencing of the 16S rDNA, hydrazine synthase hzsA and hydrazine oxidoreductase hzo. The filter block BV-2A (400-440, 470 LP, Nikon) was suitable for preliminary detection of Ca. B. fulgida. An excitation-emission matrix revealed three pairs of excitation-emission maxima: 288-330 nm, 288-478 nm and 417-478 nm. Several autofluorescent cell clusters could not be stained with DAPI or by FISH, suggesting empty but intact cells (ghost cells) or inhibited permeability. Successful staining of autofluorescent cells with the FISH probes Ban162 and Bfu613, even at higher formamide concentrations, suggested insufficient specificity of Ban162. Under certain conditions, Ca. B. fulgida lost its autofluorescence, which reduced the reliability of autofluorescence for identification and detection. Non-fluorescent Ca. Brocadia cells could not be stained with Ban162, but with Bfu613 at higher formamide concentrations, suggesting a dependency between both parameters. The phylogenetic analysis showed only good taxonomical clustering of the 16S rDNA and hzsA. In conclusion, careful consideration of autofluorescent characteristics is recommended when analysing and presenting FISH observations of Ca. B. fulgida to avoid misinterpretations and misidentifications.
Collapse
Affiliation(s)
- Jörg Böllmann
- Department of Biotechnology for Water Treatment, BTU-Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany.
| | - Steffen Engelbrecht
- Department of Biotechnology for Water Treatment, BTU-Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
| | - Marion Martienssen
- Department of Biotechnology for Water Treatment, BTU-Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
| |
Collapse
|
19
|
Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Biosens Bioelectron 2018; 118:9-15. [DOI: 10.1016/j.bios.2018.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
|
20
|
Lin X, Wang Y, Ma X, Yan Y, Wu M, Bond PL, Guo J. Evidence of differential adaptation to decreased temperature by anammox bacteria. Environ Microbiol 2018; 20:3514-3528. [PMID: 30051608 DOI: 10.1111/1462-2920.14306] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022]
Abstract
Low temperature is recognized as one of the major barriers for the application of the anaerobic ammonium oxidation (anammox) process to treat mainstream wastewater. Studies are yet to reveal the underlying biological limitations and molecular mechanisms associated with the inhibition of low temperature on the anammox process. In this study, metaproteomics was used to examine proteome modulation patterns of the anammox community occurring at different temperatures. The anammox community remarkably altered their proteomes when the temperature decreased from 35 °C to 20 °C. This was especially for proteins involved in energy conversion, transcription and translation and inorganic ion transport. However, at 15 °C the anammox activities became distinctly inhibited, and there was evidence of energy limitations and severe stress in Candidatus Kuenenia and to a lesser degree in Candidatus Brocadia. Candidatus Jettenia exhibited more changes in its proteome at 15 °C. From the proteomes, at the lower temperatures there was evidence of stress caused by toxic nitrogen compounds or reactive oxygen species in the anammox bacteria. Hydroxylamine oxidoreductase (HAO)-like proteins and an oxidative stress response protein (a catalase) were in high abundance to potentially ameliorate these inhibitory effects. This study offers metaproteomic insight into the anammox community-based physiological response to decreasing temperatures.
Collapse
Affiliation(s)
- Ximao Lin
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Xiao Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD, St. Lucia, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD, St. Lucia, 4072, Australia
| |
Collapse
|
21
|
Jetten MSM. Fortune favours the well-read audience, authors and editors of environmental microbiology. Environ Microbiol 2018; 20:1947-1948. [PMID: 29732672 DOI: 10.1111/1462-2920.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mike S M Jetten
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
22
|
Nikolaev Y, Kallistova A, Kevbrina M, Dorofeev A, Agarev A, Mardanov A, Ravin N, Kozlov M, Pimenov N. Novel design and optimisation of a nitritation/anammox set-up for ammonium removal from filtrate of digested sludge. ENVIRONMENTAL TECHNOLOGY 2018; 39:593-606. [PMID: 28303746 DOI: 10.1080/09593330.2017.1308442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Although the anammox process is extensively applied for the treatment of NH4-rich wastewater, new technical solutions overcoming the operational difficulties remain an important task. An innovative design of anammox-based set-up was employed to improve sludge settling under high ammonium load. The set-up included a completely mixed bioreactor with suspended and immobilised activated sludge. To prevent sludge flotation, recycled suspended sludge was additionally treated in an aerated tank at dissolved oxygen (DO) concentration of 1.5 ± 0.2 mg/l followed by processing in a flow-homogeniser. Introduction of these elements resulted in a 3.5-fold increase in total nitrogen removal efficiency (TNRE). The bioreactor achieved maximal TNRE of 86% corresponding to total nitrogen removal rate of 0.77 kg N/m3/d under defined optimal conditions: temperature of 35 ± 2°C, DO of 0.6 ± 0.2 mg/l, hydraulic retention time of 12 h, and dose of suspended sludge of 1.5 ± 0.1 g total suspended solids (TSS)/l. A weakly attached sludge was first described as a technologically important factor. Suspended, weakly and firmly attached sludge exhibited the highest heterotrophic, nitrifying, and anammox activities, respectively. New probes were constructed to detect anammox bacteria by fluorescence in situ hybridisation. Probe for Candidatus 'Jettenia' could be recommended for widespread use.
Collapse
Affiliation(s)
- Yury Nikolaev
- a Wastewater and Sludge Treatment Division of Engineering and Technology Centre , JSC Mosvodokanal , Moscow , Russia
| | - Anna Kallistova
- b Winogradsky Institute of Microbiology , The Research Center of Biotechnology of Russian Academy of Sciences , Moscow , Russia
| | - Marina Kevbrina
- a Wastewater and Sludge Treatment Division of Engineering and Technology Centre , JSC Mosvodokanal , Moscow , Russia
| | - Alexander Dorofeev
- a Wastewater and Sludge Treatment Division of Engineering and Technology Centre , JSC Mosvodokanal , Moscow , Russia
| | - Anton Agarev
- a Wastewater and Sludge Treatment Division of Engineering and Technology Centre , JSC Mosvodokanal , Moscow , Russia
| | - Andrey Mardanov
- c Centre 'Bioengineering' , The Research Center of Biotechnology of Russian Academy of Sciences , Moscow , Russia
| | - Nikolay Ravin
- c Centre 'Bioengineering' , The Research Center of Biotechnology of Russian Academy of Sciences , Moscow , Russia
| | - Michail Kozlov
- a Wastewater and Sludge Treatment Division of Engineering and Technology Centre , JSC Mosvodokanal , Moscow , Russia
| | - Nikolay Pimenov
- b Winogradsky Institute of Microbiology , The Research Center of Biotechnology of Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
23
|
Wang G, Xu X, Zhou L, Wang C, Yang F. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment. BIORESOURCE TECHNOLOGY 2017; 241:181-189. [PMID: 28558348 DOI: 10.1016/j.biortech.2017.02.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Treatment of sludge digester liquor was successfully accomplished using a pilot-scale partial nitrification-anammox (PN/A) reactor with a nitrogen removal rate (NRR) of 1.23kgN/m3/d. A stable and efficient PN process was attained by controlling the concentration of free ammonia (0.7-8.4mg/L) and free nitrous acid (0.02-1.0mg/L). The application of hydroxylamine played a vital role in the reactivation of anammox bacteria. The bacteria exhibited improved granule properties at a specific input power between 0.065 and 0.097kW/m3, and achieved a specific anammox activity (SAA) of 1.01kgN/kgVSS/d on day 148. From day 0 to 120, the heme c content in the granules increased from 0.42±0.1 to 5.77±1.0µmol/gVSS, with a corresponding increase in NRRs and SAAs. High-throughput sequencing techniques revealed that the dominant anammox bacterial genus was Candidatus Brocadia. These conclusions provide valuable information for the full-scale treatment of sludge digester liquor.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Liang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
24
|
Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’. Syst Appl Microbiol 2017; 40:448-457. [DOI: 10.1016/j.syapm.2017.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
|
25
|
Zhou X, Zhang J, Wen C. Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages. Curr Microbiol 2017; 74:1349-1357. [DOI: 10.1007/s00284-017-1324-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
26
|
Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland. Appl Environ Microbiol 2017; 83:AEM.00782-17. [PMID: 28526796 DOI: 10.1128/aem.00782-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/14/2017] [Indexed: 02/01/2023] Open
Abstract
Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater with unexpected contributions from anammox processes. In exploring mechanistic drivers of anammox, 16S rRNA gene sequencing profiles of the biomat revealed significant microbial community shifts along the flow path and with depth. Notably, there was an increasing abundance of sulfate reducers (Desulfococcus and other Deltaproteobacteria) and anammox microorganisms (Brocadiaceae) with depth. Pore water profiles demonstrated that nitrate and sulfate concentrations exhibited a commensurate decrease with biomat depth accompanied by the accumulation of ammonium. Quantitative PCR targeting the anammox hydrazine synthase gene, hzsA, revealed a 3-fold increase in abundance with biomat depth as well as a 2-fold increase in the sulfate reductase gene, dsrA These microbial and geochemical trends were most pronounced in proximity to the influent region of the wetland where the biomat was thickest and influent nitrate concentrations were highest. While direct genetic queries for dissimilatory nitrate reduction to ammonium (DNRA) microorganisms proved unsuccessful, an increasing depth-dependent dominance of Gammaproteobacteria and diatoms that have previously been functionally linked to DNRA was observed. To further explore this potential, a series of microcosms containing field-derived biomat material confirmed the ability of the community to produce sulfide and reduce nitrate; however, significant ammonium production was observed only in the presence of hydrogen sulfide. Collectively, these results suggest that biogenic sulfide induces DNRA, which in turn can explain the requisite coproduction of ammonium and nitrite from nitrified effluent necessary to sustain the anammox community.IMPORTANCE This study aims to increase understanding of why and how anammox is occurring in an engineered wetland with limited exogenous contributions of ammonium and nitrite. In doing so, the study has implications for how geochemical parameters could potentially be leveraged to impact nutrient cycling and attenuation during the operation of treatment wetlands. The work also contributes to ongoing discussions about biogeochemical signatures surrounding anammox processes and enhances our understanding of the contributions of anammox processes in freshwater environments.
Collapse
|
27
|
Phan TN, Van Truong TT, Ha NB, Nguyen PD, Bui XT, Dang BT, Doan VT, Park J, Guo W, Ngo HH. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment. BIORESOURCE TECHNOLOGY 2017; 234:281-288. [PMID: 28334664 DOI: 10.1016/j.biortech.2017.02.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the performance of a high rate nitrogen removal lab-scale ANAMMOX reactor, namely Internal Circulation (IC) reactor, for old landfill leachate treatment. The reactor was operated with pre-treated leachate from a pilot Partial Nitritation Reactor (PNR) using a high nitrogen loading rate ranging from 2 to 10kgNm-3d-1. High rate removal of nitrogen (9.52±1.11kgNm-3d-1) was observed at an influent nitrogen concentration of 1500mgNL-1. The specific ANAMMOX activity was found to be 0.598±0.026gN2-NgVSS-1d-1. Analysis of ANAMMOX granules suggested that 0.5-1.0mm size granular sludge was the dominant group. The results of DNA analysis revealed that Candidatus Kueneniastuttgartiensis was the dominant species (37.45%) in the IC reactor, whereas other species like uncultured Bacteroidetes bacterium only constituted 5.37% in the system, but they were still responsible for removing recalcitrant organic matter.
Collapse
Affiliation(s)
- The Nhat Phan
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam
| | - Thi Thanh Van Truong
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam
| | - Nhu Biec Ha
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam
| | - Phuoc Dan Nguyen
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam
| | - Xuan Thanh Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam.
| | - Bao Trong Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, Viet Nam
| | - Van Tuan Doan
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
28
|
Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures. J Biosci Bioeng 2017; 123:505-511. [DOI: 10.1016/j.jbiosc.2016.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/21/2022]
|
29
|
Pelissari C, Ávila C, Trein CM, García J, de Armas RD, Sezerino PH. Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:390-399. [PMID: 27639475 DOI: 10.1016/j.scitotenv.2016.08.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to characterize the nitrogen transforming bacterial communities within a partially saturated vertical subsurface flow constructed wetland (VF) treating urban wastewater in southern Brazil. The VF had a surface area of 3144m2, and was divided into four wetland cells, out of which two were operated while the other two rested, alternating cycles of 30days. The nitrifying and denitrifying bacterial communities were characterized in wetland cell 3 (764m2 surface area) over a period of 12months by using the FISH technique. Samples were collected monthly (from Feb 2014 to Feb 2015) from different layers within the vertical profile, during operation and rest periods, comprising a total of 6 sampling campaigns while the cell was in operation and another 6 when the cell was at rest. This wetland cell operated with an average organic loading rate (OLR) of 4gCODm-2d-1 and a hydraulic loading rate of 24.5mmd-1. The rest periods of the wetland cell presented influences on the abundance of ammonia-oxidizing bacteria (AOB) (8% and 3% for feed and rest periods, respectively), and nitrite-oxidizing bacteria (NOB) (5% and 2% for feed and rest periods, respectively). However, there was no influence of the rest periods on the denitrifying bacteria. AOB were only identified in the top layer (AOB β-proteobacteria) in both operational and rest periods. On the other hand, the NOB (Nistrospirae and Nitrospina gracilis) were identified in feed periods just in the top layer and during rest periods just in the intermediate layer. The denitrifying bacteria (Pseudomonas spp. and Thiobacillus denitrificans) were identified from the intermediate layer downwards, and remained stable in both periods. Based on the identified bacterial dynamics, the partially saturated VF wetland operated under low OLR enabled favorable conditions for simultaneous nitrification and denitrification.
Collapse
Affiliation(s)
- Catiane Pelissari
- GESAD-Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina Zip Code 88040-900, Brazil
| | - Cristina Ávila
- GEMMA-Environmental Engineering and Microbiology Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Camila Maria Trein
- GESAD-Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina Zip Code 88040-900, Brazil
| | - Joan García
- GEMMA-Environmental Engineering and Microbiology Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Rafael Dultra de Armas
- Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, Trindade, Santa Catarina Zip Code 88040-900, Florianópolis, Brazil
| | - Pablo Heleno Sezerino
- GESAD-Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina Zip Code 88040-900, Brazil.
| |
Collapse
|
30
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Engelbrecht S, Fondengcap MT, Rathsack K, Martienssen M. Highly efficient long-term storage of carrier-bound anammox biomass. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1911-1918. [PMID: 27789891 DOI: 10.2166/wst.2016.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The anammox process is a potential alternative to the conventional nitrogen removal from wastewater. However, due to large generation times of anammox bacteria, the start-up of treatment reactors may be impeded. An efficient storage technique can handle this drawback and may be also suitable for seasonally operated treatment plants like in touristic areas. In the current study, several storage techniques were investigated with respect to its suitability for the preservation of the specific anammox activity after long-term storage. Storing conditions differed in terms of temperature, redox buffer and nutrient supplementation. The specific activity of immobilized anammox bacteria (Candidatus Kuenenia stuttgartiensis) was determined three times during a long-term preservation of 78 days and 106 days, respectively. The highest activity was ensured at a storing temperature of 4 °C, providing nitrate as redox buffer and a nutrient supplement every 23 days. Thus, 91.4% of the initial anammox activity could be preserved after a storage of 106 days. Superiority of the presented treatment condition was confirmed by a calculated nitrate-ammonium consumption rate close to the optimal ratio of 1.32. This technique provided an economical and simple method suitable for long-term storage of immobilized anammox biomass.
Collapse
Affiliation(s)
- Steffen Engelbrecht
- Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg, PO BOX 10 13 44, Cottbus 03013, Germany E-mail:
| | - Mbengamina Terence Fondengcap
- Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg, PO BOX 10 13 44, Cottbus 03013, Germany E-mail:
| | - Kristina Rathsack
- Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg, PO BOX 10 13 44, Cottbus 03013, Germany E-mail:
| | - Marion Martienssen
- Department of Biotechnology for Water Treatment, Brandenburg University of Technology Cottbus - Senftenberg, PO BOX 10 13 44, Cottbus 03013, Germany E-mail:
| |
Collapse
|
32
|
Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus
Brocadia sinica”. Environ Microbiol 2016; 18:3133-43. [DOI: 10.1111/1462-2920.13355] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering; National Institute of Technology, Nagaoka College; Nagaoka Niigata 940-8532 Japan
| | - Muhammad Ali
- Division of Environmental Engineering, Faculty of Engineering; Hokkaido University; North-13, West-8 Sapporo Hokkaido 060-8628 Japan
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST),Thuwal; 23955-6900 Saudi Arabia
| | - Kaori Shinyako-Hata
- Tokyo Engineering Consultants Co., Ltd., Kasumigaseki, Chioyadaku, Tokyo 100-0013, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering; Hokkaido University; North-13, West-8 Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering; Hokkaido University; North-13, West-8 Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
33
|
Varas R, Guzmán-Fierro V, Giustinianovich E, Behar J, Fernández K, Roeckel M. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor. BIORESOURCE TECHNOLOGY 2015; 190:345-351. [PMID: 25965951 DOI: 10.1016/j.biortech.2015.04.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species.
Collapse
Affiliation(s)
- Rodrigo Varas
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile
| | - Víctor Guzmán-Fierro
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile
| | - Elisa Giustinianovich
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile
| | - Jack Behar
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile
| | - Katherina Fernández
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile
| | - Marlene Roeckel
- Departamento de Ingeniería Química, Universidad de Concepción, Casilla 160 C Correo 3, Concepción, Chile.
| |
Collapse
|
34
|
Sánchez Guillén JA, Cuéllar Guardado PR, Lopez Vazquez CM, de Oliveira Cruz LM, Brdjanovic D, van Lier JB. Anammox cultivation in a closed sponge-bed trickling filter. BIORESOURCE TECHNOLOGY 2015; 186:252-260. [PMID: 25836033 DOI: 10.1016/j.biortech.2015.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
A feasibility study was carried out to assess the cultivation of Anammox bacteria in lab-scale closed sponge-bed trickling filter (CSTF) reactors, namely: CSTF-1 at 20°C and CSTF-2 at 30°C. Stable conditions were reached from day 66 in CSTF-2 and from day 104 in CSTF-1. The early stability of CSTF-2 is attributable to the influence of temperature; nevertheless, by day 405, the nitrogen removal performed by CSTF-1 increased up to similar values of CSTF-2. The maximum total nitrogen removal efficiency was 82% in CSTF-1 and 84% in CSTF-2. After more than 400 days of operation, CSTF-1 and CSTF-2 were capable to attain a total nitrogen removal efficiency of 74±5% and 78±4% with a total nitrogen conversion rate of 1.52 and 1.60kg-N/m(sponge)(3)d, respectively. The proposed technology could be a suitable alternative for mainstream nitrogen removal in post-treatment units via the Anammox conversion pathway.
Collapse
Affiliation(s)
- J A Sánchez Guillén
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| | - P R Cuéllar Guardado
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - C M Lopez Vazquez
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - L M de Oliveira Cruz
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - D Brdjanovic
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - J B van Lier
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| |
Collapse
|
35
|
Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, Mavinic DS, Ramey WD, Hallam SJ. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol 2015; 17:4979-93. [PMID: 25857222 DOI: 10.1111/1462-2920.12875] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 12/01/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Blake J Strachan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Niels W Hanson
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Aria S Hahn
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Eric R Hall
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Barry Rabinowitz
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,CH2M Hill Canada, 4720 Kingsway Suite 2100, Burnaby, BC, Canada
| | - Donald S Mavinic
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - William D Ramey
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Hatzenpichler R, Orphan VJ. Detection of Protein-Synthesizing Microorganisms in the Environment via Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT). SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_61] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
38
|
Awata T, Goto Y, Kindaichi T, Ozaki N, Ohashi A. Nitrogen removal using an anammox membrane bioreactor at low temperature. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:2148-53. [PMID: 26676002 DOI: 10.2166/wst.2015.436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Membrane bioreactors (MBRs) have the ability to completely retain biomass and are thus suitable for slowly growing anammox bacteria. In the present study, an anammox MBR was operated to investigate whether the anammox activity would remain stable at low temperature, without anammox biomass washout. The maximum nitrogen removal rates were 6.7 and 1.1 g-N L⁻¹ day⁻¹ at 35 °C and 15 °C, respectively. Fluorescence in situ hybridization and 16S rRNA-based phylogenetic analysis revealed no change in the predominant anammox species with temperature because of the complete retention of anammox biomass in the MBR. These results indicate that the predominant anammox bacteria in the MBR cannot adapt to a low temperature during short-term operation. Conversely, anammox activity recovered rapidly after restoring the temperature from the lower value to the optimal temperature (35 °C). The rapid recovery of anammox activity is a distinct advantage of using an MBR anammox reactor.
Collapse
Affiliation(s)
- Takanori Awata
- EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
| | - Yumiko Goto
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan E-mail:
| | - Tomonori Kindaichi
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan E-mail:
| | - Noriatsu Ozaki
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan E-mail:
| | - Akiyoshi Ohashi
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan E-mail:
| |
Collapse
|
39
|
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2014; 112:E194-203. [PMID: 25550518 DOI: 10.1073/pnas.1420406112] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.
Collapse
|
40
|
Gladkikh AS, Kalyuzhnaya OV, Belykh OI, Ahn TS, Parfenova VV. Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171406006x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. WATER RESEARCH 2014; 60:1-14. [PMID: 24813505 DOI: 10.1016/j.watres.2014.04.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 05/21/2023]
Abstract
Anammox related technologies are currently widely applied for nitrogen removal from sewage sludge digester rejection water. Nevertheless, many aspects of the anammox process like the kinetic characteristics and the reaction stoichiometry are still subject of debate. Parameter values reported in literature are often hampered by mass transfer limitation or by the presence of a significant side population. In this study a membrane bioreactor (MBR) based method for growing a highly enriched anammox microbial community is described. The almost pure free-cells suspension of highly active anammox bacteria was used for detailed kinetic and stoichiometric analysis of the anammox process. The anammox culture enriched during this study had a biomass specific maximum growth rate of 0.21 d(-)(1) which is higher than ever reported before in literature. Using an experimental methodology based on imposing dynamic process conditions combined with process modeling and parameter estimation, the intrinsic nitrite half saturation constant was identified to be as low as 35 μg-N L(-)(1). This was confirmed to be an accurate estimation in the pH range of 6.8-7.5.
Collapse
Affiliation(s)
- T Lotti
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, the Netherlands.
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, the Netherlands
| | - C Lubello
- Department of Civil and Environmental Engineering, University of Florence, Via di S.Marta 3, 50139 Florence, Italy
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, the Netherlands.
| |
Collapse
|
42
|
Research of Iron Reduction and the Iron Reductase Localization of Anammox Bacteria. Curr Microbiol 2014; 69:880-7. [DOI: 10.1007/s00284-014-0668-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/15/2014] [Indexed: 10/24/2022]
|
43
|
Abstract
Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology.
Collapse
|
44
|
Lotti T, Kleerebezem R, van Erp Taalman Kip C, Hendrickx TLG, Kruit J, Hoekstra M, van Loosdrecht MCM. Anammox growth on pretreated municipal wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7874-80. [PMID: 24927034 DOI: 10.1021/es500632k] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autotrophic nitrogen removal from municipal wastewater enables development of energy autarkic wastewater treatment plants. In this study we report the evaluation of the anammox process in a granular sludge fluidized bed lab-scale reactor continuously fed with the actual effluent of the A-stage of the WWTP of Dokhaven, Rotterdam. The reactor was anoxic, and nitrite was dosed continuously to support anammox activity only. The system was operated for more than ten months at temperatures between 20 and 10 °C. COD was also consumed during the process, but heterotrophs could not outcompete anammox bacteria. Volumetric N-removal rates obtained were comparable or higher than those of conventional N-removal systems, with values higher than 0.4 g-N L(-1) d(-1) when operated at 10 °C. The biomass specific N-removal rate at 10 °C was on average 50±7 mg-N g-VSS(-1) d(-1) during the last month of operations, almost two times higher than previously reported activities at this temperature. FISH analysis revealed that the dominant anammox species was Candidatus Brocadia Fulgida throughout the experimentation. Evidence for growth of anammox bacteria at mainstream conditions was demonstrated for the entire temperature range tested (10-20 °C), and new granules were shown to be actively formed and efficiently retained in the system.
Collapse
Affiliation(s)
- Tommaso Lotti
- Department of Biotechnology, Delft University of Technology , Julianalaan 67, Delft 2628 BC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Sun W, Xia C, Xu M, Guo J, Wang A, Sun G. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China. Microbiol Res 2014; 169:897-906. [PMID: 24932882 DOI: 10.1016/j.micres.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/16/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem.
Collapse
Affiliation(s)
- Wei Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Chunyu Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China.
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Aijie Wang
- Harbin Institute of Technology, Harbin 150090, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China.
| |
Collapse
|
46
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014; 16:2568-90. [PMID: 24571640 PMCID: PMC4122687 DOI: 10.1111/1462-2920.12436] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014. [PMID: 24571640 DOI: 10.1111/1462‐2920.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
48
|
Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (anammox) bacteria using membrane bioreactor. Microbes Environ 2013; 28:436-43. [PMID: 24200833 PMCID: PMC4070702 DOI: 10.1264/jsme2.me13077] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/11/2013] [Indexed: 01/09/2023] Open
Abstract
Enrichment cultures of anaerobic ammonium oxidation (anammox) bacteria as planktonic cell suspensions are essential for studying their ecophysiology and biochemistry, while their cultivation is still laborious. The present study aimed to cultivate two phylogenetically distinct anammox bacteria, "Candidatus Brocadia sinica" and "Ca. Scalindua sp." in the form of planktonic cells using membrane bioreactors (MBRs). The MBRs were continuously operated for more than 250 d with nitrogen loading rates of 0.48-1.02 and 0.004-0.09 kgN m(-3) d(-1) for "Ca. Brocadia sinica" and "Ca. Scalindua sp.", respectively. Planktonic anammox bacterial cells were successfully enriched (>90%) in the MBRs, which was confirmed by fluorescence in-situ hybridization and 16S rRNA gene sequencing analysis. The decay rate and half-saturation constant for NO2(-) of "Ca. Brocadia sinica" were determined to be 0.0029-0.0081 d(-1) and 0.47 mgN L(-1), respectively, using enriched planktonic cells. The present study demonstrated that MBR enables the culture of planktonic anammox bacterial cells, which are suitable for studying their ecophysiology and biochemistry.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West-8, Sapporo, Hokkaido 060–8628, Japan
| | - Takanori Awata
- Department of Civil and Environmental Engineering, Graduate School of Engineerging, Hiroshima University, 1–4–1 Kagamiyama, Higashihiroshima 739–8527, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineerging, Hiroshima University, 1–4–1 Kagamiyama, Higashihiroshima 739–8527, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West-8, Sapporo, Hokkaido 060–8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West-8, Sapporo, Hokkaido 060–8628, Japan
| |
Collapse
|
49
|
Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, Wang AJ. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol 2013; 116:464-76. [DOI: 10.1111/jam.12367] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- W. Sun
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Institute of Microbiology; Guangzhou China
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China; Guangzhou China
| | - M.-Y. Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Institute of Microbiology; Guangzhou China
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China; Guangzhou China
| | - W.-M. Wu
- Department of Civil & Environmental Engineering; Center for Sustainable Development & Global Competitiveness; Stanford University; Stanford CA USA
| | - J. Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Institute of Microbiology; Guangzhou China
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China; Guangzhou China
| | - C.-Y. Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Institute of Microbiology; Guangzhou China
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China; Guangzhou China
| | - G.-P. Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Institute of Microbiology; Guangzhou China
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China; Guangzhou China
| | - A.-J. Wang
- Harbin Institute of Technology; Harbin China
| |
Collapse
|
50
|
Zhao Y, Xia Y, Kana TM, Wu Y, Li X, Yan X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. CHEMOSPHERE 2013; 93:2124-2131. [PMID: 23978673 DOI: 10.1016/j.chemosphere.2013.07.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been recently recognized as an important pathway for the removal of fixed nitrogen (N) from aquatic systems. However, the functions of anammox in freshwater river systems remain uncertain. In this study, we evaluated the occurrence of anammox activity in two rivers in the Taihu Lake region in China during a seasonal survey. Homogenized sediments were incubated with (15)N-labeled NO3(-) and NH4(+) amendments to determine the potential importance of the anammox process relative to canonical denitrification. Production of (29)N2 and (30)N2 in slurries was determined using membrane inlet mass spectrometry. Potential anammox rates in the two river sediments ranged from 0.11±0.07 to 6.79±1.28 μmol N m(-2) h(-1) and the remove of N by anammox accounted for 0.8±0.00% to 10.7±0.03% of total N2 production. Potential anammox rates varied spatially and temporally in the two rivers, with the highest and lowest mean anammox rates appearing during summer and early autumn and during winter, respectively. The variation of the percentage of anammox to total N2 production displayed the same trend with potential anammox rates. Water temperature and NO3(-) content in sediments were the main factors affecting anammox activity. Anammox bacteria were detected in sediment samples using barcode pyrosequencing. The 16S rRNA anammox gene sequences in the river sediments were affiliated with Candidatus Kuenenia, Candidatus Jettenia, and Candidatus Scalindua, among which C. Kuenenia dominated the anammox bacterial communities. Our results confirmed the presence of anammox bacteria but their role is relatively small in removing fixed N from freshwater river systems.
Collapse
Affiliation(s)
- Yongqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | |
Collapse
|