1
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
2
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
3
|
Borgio JF, AlJindan R, Alghourab LH, Alquwaie R, Aldahhan R, Alhur NF, AlEraky DM, Mahmoud N, Almandil NB, AbdulAzeez S. Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. BIOLOGY 2023; 12:1296. [PMID: 37887006 PMCID: PMC10604365 DOI: 10.3390/biology12101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Lujeen H. Alghourab
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Doaa M. AlEraky
- Department of Biomedical Dental Science, Microbiology and Immunology Division, Collage of Dentistry, Dammam 31441, Saudi Arabia
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| |
Collapse
|
4
|
Rao Tatta E, Paul S, Kumavath R. Transcriptome Analysis revealed the Synergism of Novel Rhodethrin inhibition on Biofilm architecture, Antibiotic Resistance and Quorum sensing inEnterococcus faecalis. Gene 2023; 871:147436. [PMID: 37075926 DOI: 10.1016/j.gene.2023.147436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing system. sing system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
5
|
Remodeling of the Enterococcal Cell Envelope during Surface Penetration Promotes Intrinsic Resistance to Stress. mBio 2022; 13:e0229422. [PMID: 36354750 PMCID: PMC9765498 DOI: 10.1128/mbio.02294-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is a normal commensal of the human gastrointestinal tract (GIT). However, upon disruption of gut homeostasis, this nonmotile bacterium can egress from its natural niche and spread to distal organs. While this translocation process can lead to life-threatening systemic infections, the underlying mechanisms remain largely unexplored. Our prior work showed that E. faecalis migration across diverse surfaces requires the formation of matrix-covered multicellular aggregates and the synthesis of exopolysaccharides, but how enterococcal cells are reprogrammed during this process is unknown. Whether surface penetration endows E. faecalis with adaptive advantages is also uncertain. Here, we report that surface penetration promotes the generation of a metabolically and phenotypically distinct E. faecalis population with an enhanced capacity to endure various forms of extracellular stress. Surface-invading enterococci demonstrated major ultrastructural alterations in their cell envelope characterized by increased membrane glycolipid content. These changes were accompanied by marked induction of specific transcriptional programs enhancing cell envelope biogenesis and glycolipid metabolism. Notably, the surface-invading population demonstrated superior tolerance to membrane-damaging antimicrobials, including daptomycin and β-defensins produced by epithelial cells. Genetic mutations impairing glycolipid biosynthesis sensitized E. faecalis to envelope stressors and reduced the ability of this bacterium to penetrate semisolid surfaces and translocate through human intestinal epithelial cell monolayers. Our study reveals that surface penetration induces distinct transcriptional, metabolic, and ultrastructural changes that equip E. faecalis with enhanced capacity to resist external stressors and thrive in its surrounding environment. IMPORTANCE Enterococcus faecalis inhabits the GIT of multiple organisms, where its establishment could be mediated by the formation of biofilm-like aggregates. In susceptible individuals, this bacterium can overgrow and breach intestinal barriers, a process that may lead to lethal systemic infections. While the formation of multicellular aggregates promotes E. faecalis migration across surfaces, little is known about the metabolic and physiological states of the enterococci encased in these surface-penetrating structures. The present study reveals that E. faecalis cells capable of migrating through semisolid surfaces genetically reprogram their metabolism toward increased cell envelope and glycolipid biogenesis, which confers superior tolerance to membrane-damaging agents. E. faecalis's success as a pathobiont depends on its antimicrobial resistance, as well as on its rapid adaptability to overcome multiple environmental challenges. Thus, targeting adaptive genetic and/or metabolic pathways induced during E. faecalis surface penetration may be useful to better confront infections by this bacterium in the clinic.
Collapse
|
6
|
Bates KA, Sommer U, Hopkins KP, Shelton JMG, Wierzbicki C, Sergeant C, Tapley B, Michaels CJ, Schmeller DS, Loyau A, Bosch J, Viant MR, Harrison XA, Garner TWJ, Fisher MC. Microbiome function predicts amphibian chytridiomycosis disease dynamics. MICROBIOME 2022; 10:44. [PMID: 35272699 PMCID: PMC8908643 DOI: 10.1186/s40168-021-01215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Jennifer M G Shelton
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Claudia Wierzbicki
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Christopher Sergeant
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Benjamin Tapley
- ZSL London Zoo, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | | | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Adeline Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Jaime Bosch
- IMIB Biodiversity Research Institute (CSIC-University of Oviedo), 33600, Mieres, Spain
| | - Mark R Viant
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4DQ, UK
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Matthew C Fisher
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
7
|
Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. mBio 2020; 11:mBio.02962-20. [PMID: 33234689 PMCID: PMC7701990 DOI: 10.1128/mbio.02962-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis. Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.
Collapse
|
8
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
9
|
Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0053-2018. [PMID: 31298205 PMCID: PMC6629438 DOI: 10.1128/microbiolspec.gpp3-0053-2018] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Enterococci are unusually well adapted for survival and persistence in a variety of adverse environments, including on inanimate surfaces in the hospital environment and at sites of infection. This intrinsic ruggedness undoubtedly played a role in providing opportunities for enterococci to interact with other overtly drug-resistant microbes and acquire additional resistances on mobile elements. The rapid rise of antimicrobial resistance among hospital-adapted enterococci has rendered hospital-acquired infections a leading therapeutic challenge. With about a quarter of a genome of additional DNA conveyed by mobile elements, there are undoubtedly many more properties that have been acquired that help enterococci persist and spread in the hospital setting and cause diseases that have yet to be defined. Much remains to be learned about these ancient and rugged microbes, particularly in the area of pathogenic mechanisms involved with human diseases.
Collapse
Affiliation(s)
- Elizabeth Fiore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Daria Van Tyne
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Zhou L, Wang L, Tian P, Bao T, Li L, Zhao X. The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates. Front Microbiol 2019; 10:1048. [PMID: 31134041 PMCID: PMC6522849 DOI: 10.3389/fmicb.2019.01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts - an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium.
Collapse
Affiliation(s)
- Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Tian
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tingting Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lianbin Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
12
|
Muller C, Massier S, Le Breton Y, Rincé A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol Microbiol 2017; 107:416-427. [PMID: 29205552 DOI: 10.1111/mmi.13891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.
Collapse
Affiliation(s)
- Cécile Muller
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Sébastien Massier
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Yoann Le Breton
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| |
Collapse
|
13
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
14
|
Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. J Bacteriol 2016; 198:1326-36. [PMID: 26883822 DOI: 10.1128/jb.00995-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. IMPORTANCE TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis.
Collapse
|
15
|
Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, Shirtliff ME, El-Sayed NM, McIver KS. Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes. Sci Rep 2015; 5:9838. [PMID: 25996237 PMCID: PMC4440532 DOI: 10.1038/srep09838] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) remains a major public health burden worldwide, infecting over 750 million people leading to over 500,000 deaths annually. GAS pathogenesis is complex, involving genetically distinct GAS strains and multiple infection sites. To overcome fastidious genetic manipulations and accelerate pathogenesis investigations in GAS, we developed a mariner-based system (Krmit) for en masse monitoring of complex mutant pools by transposon sequencing (Tn-seq). Highly saturated transposant libraries (Krmit insertions in ca. every 25 nucleotides) were generated in two distinct GAS clinical isolates, a serotype M1T1 invasive strain 5448 and a nephritogenic serotype M49 strain NZ131, and analyzed using a Bayesian statistical model to predict GAS essential genes, identifying sets of 227 and 241 of those genes in 5448 and NZ131, respectively. A large proportion of GAS essential genes corresponded to key cellular processes and metabolic pathways, and 177 were found conserved within the GAS core genome established from 20 available GAS genomes. Selected essential genes were validated using conditional-expression mutants. Finally, comparison to previous essentiality analyses in S. sanguinis and S. pneumoniae revealed significant overlaps, providing valuable insights for the development of new antimicrobials to treat infections by GAS and other pathogenic streptococci.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Kayla M. Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Patrick Curry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mark E. Shirtliff
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
- Center for Bioinformatics and Computation Biology, University of Maryland, College Park, MD USA
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| |
Collapse
|
16
|
The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF. Infect Immun 2014; 83:389-95. [PMID: 25385790 DOI: 10.1128/iai.02587-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence.
Collapse
|
17
|
Abrantes MC, Kok J, Silva Lopes MDF. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress. MICROBIOLOGY-SGM 2014; 160:2755-2762. [PMID: 25312746 DOI: 10.1099/mic.0.080341-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the promoter regions of these genes. Both proteins were further studied with respect to their involvement in zinc homeostasis and invasion of the host. EF0759 contributed to intramacrophage survival by an as-yet unknown mechanism(s). EF1400, here renamed ZntAEf, is an ATPase with specificity for zinc and plays a role in dealing with several host defences, i.e. zinc overload, oxidative stress and lysozyme; it provides E. faecalis cells with the ability to survive inside macrophages. As these three host defence mechanisms are important at several sites in the host, i.e. inside macrophages and in saliva, this work suggested that ZntAEf constitutes a crucial E. faecalis defence mechanism that is likely to contribute to the ability of this bacterium to endure life inside its host.
Collapse
Affiliation(s)
- Marta C Abrantes
- Department of Molecular Genetics, University of Groningen, The Netherlands.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, The Netherlands
| | - Maria de Fátima Silva Lopes
- IBET, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
18
|
Genes important for catalase activity in Enterococcus faecalis. PLoS One 2012; 7:e36725. [PMID: 22590595 PMCID: PMC3349705 DOI: 10.1371/journal.pone.0036725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly.
Collapse
|
19
|
SalB inactivation modulates culture supernatant exoproteins and affects autolysis and viability in Enterococcus faecalis OG1RF. J Bacteriol 2012; 194:3569-78. [PMID: 22563054 DOI: 10.1128/jb.00376-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Collapse
|
20
|
Kropec A, Sava IG, Vonend C, Sakinc T, Grohmann E, Huebner J. Identification of SagA as a novel vaccine target for the prevention of Enterococcus faecium infections. Microbiology (Reading) 2011; 157:3429-3434. [DOI: 10.1099/mic.0.053207-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Enterococci, especially Enterococcus faecium, are well-known pathogens of hospitalized patients and are frequently linked with resistance against multiple antibiotics, which compromises effective therapy. Rabbit immune serum raised against heat-killed E. faecium E155, a HiRECC clone, was used in an opsonophagocytic assay, an inhibition assay and a mouse bacteraemia model to identify targets of opsonic and protective antibodies. Serum against whole heat-killed bacteria was opsonic and recognized a protein of about 72 kDa that was abundantly secreted. This protein, identified as SagA by LC-ES-MS/MS, was expressed in Escherichia coli and purified. Rabbit serum raised against the purified protein showed opsonic killing activity that was inhibited by almost 100 % using 100 µg purified protein ml−1. In a mouse bacteraemia model, a statistically significant reduction of the colony counts in blood was shown with immune rabbit serum compared with preimmune serum using the homologous and a heterologous vancomycin-resistant enterococci (VRE) strain. These results indicate that SagA could be used as a promising vaccine target to treat and/or prevent VRE bacteraemia.
Collapse
Affiliation(s)
- A. Kropec
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - I. G. Sava
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - C. Vonend
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - T. Sakinc
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - E. Grohmann
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - J. Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
21
|
Kaur G, Malik RK, Mishra SK, Singh TP, Bhardwaj A, Singroha G, Vij S, Kumar N. Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Microb Drug Resist 2011; 17:197-205. [PMID: 21417775 DOI: 10.1089/mdr.2010.0054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Microbial Metabolites Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions. Appl Environ Microbiol 2010; 77:1516-9. [PMID: 21183633 DOI: 10.1128/aem.02176-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus casei BL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed.
Collapse
|
23
|
Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rincé A, Gilmore MS, Auffray Y, Pichereau V. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. MICROBIOLOGY-SGM 2009; 155:3226-3237. [PMID: 19608607 DOI: 10.1099/mic.0.026146-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Guanosine penta- and tetraphosphate [(p)ppGpp] are two unusual nucleotides implied in the bacterial stringent response. In many pathogenic bacteria, mutants unable to synthesize these molecules lose their virulence. In Gram-positive bacteria such as Enterococcus faecalis, the synthesis and degradation of (p)ppGpp mainly depend on the activity of a bifunctional enzyme, encoded by the relA gene. By analysing DeltarelA and DeltarelQ (which encodes a protein harbouring a ppGpp synthetase activity) deletion mutants, we showed that RelA is by far the main system leading to (p)ppGpp production under our experimental conditions, and during the development of a stringent response induced by mupirocin. We also constructed a mutant (DeltarelAsp) in which a small part of the relA gene (about 0.7 kbp) encoding the carboxy-terminal domain of the RelA protein was deleted. Both relA mutants were more resistant than the wild-type strain to 0.3 % bile salts, 25 % ethanol and acid (pH 2.3) challenges. Interestingly, the DeltarelAsp mutant grew better than the two other strains in the presence of 1 mM H(2)O(2), but did not display increased tolerance when subjected to lethal doses of H(2)O(2) (45 mM). By contrast, the DeltarelA mutant was highly sensitive to 45 mM H(2)O(2) and displayed reduced growth in a medium containing 1 M NaCl. The two mutants also displayed contrasting virulence phenotypes towards larvae of the Greater Wax Moth infection model Galleria mellonella. Indeed, although the DeltarelA mutant did not display any phenotype, the DeltarelAsp mutant was more virulent than the wild-type strain. This virulent phenotype should stem from its increased ability to proliferate under oxidative environments.
Collapse
Affiliation(s)
- Xue Yan
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Chen Zhao
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Aurélie Budin-Verneuil
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Axel Hartke
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Alain Rincé
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Michael S Gilmore
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yanick Auffray
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| | - Vianney Pichereau
- Laboratoire Microbiologie de l'Environnement, EA956 - USC INRA 2017 - IFR146 ICORE, Université de Caen, 14032 Caen Cedex, France
| |
Collapse
|
24
|
Ma P, Ma P, Yuille HM, Ma P, Yuille HM, Blessie V, Göhring N, Iglói Z, Nishiguchi K, Nakayama J, Henderson PJF, Phillips-Jones MK. Expression, purification and activities of the entire family of intact membrane sensor kinases fromEnterococcus faecalis. Mol Membr Biol 2009; 25:449-73. [DOI: 10.1080/09687680802359885] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Qian W, Han ZJ, Tao J, He C. Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1128-1138. [PMID: 18616409 DOI: 10.1094/mpmi-21-8-1128] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The gram-negative bacterium Xanthomonas campestris pv. campestris is the causal agent of black rot disease of cruciferous plants. Its genome encodes a large repertoire of two-component signal transduction systems (TCSTSs), which consist of histidine kinases and response regulators (RR) to monitor and respond to environmental stimuli. To investigate the biological functions of these TCSTS genes, we aimed to inactivate all 54 RR genes in X. campestris pv. campestris ATCC 33913, and successfully generated 51 viable mutants using the insertion inactivation method. Plant inoculation identified two novel response regulator genes (XCC1958 and XCC3107) that are involved in virulence of this strain. Genetic complementation demonstrated that XCC3107, designated as vgrR (virulence and growth regulator), also affects bacterial growth and activity of extracellular proteases. In addition, we assessed the survival of these mutants under various stresses, including osmotic stress, high sodium concentration, heat shock, and sodium dodecyl sulfate exposure, and identified a number of genes that may be involved in the general stress response of X. campestris pv. campestris. Mutagenesis and phenotypic characterization of RR genes in this study will facilitate future studies on signaling networks in this important phytopathogenic bacterium.
Collapse
Affiliation(s)
- Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
26
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
27
|
Calvez S, Rincé A, Auffray Y, Prévost H, Drider D. Identification of new genes associated with intermediate resistance of Enterococcus faecalis to divercin V41, a pediocin-like bacteriocin. MICROBIOLOGY-SGM 2007; 153:1609-1618. [PMID: 17464076 DOI: 10.1099/mic.0.2006/004812-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that resistance to class IIa bacteriocins occurs at either a low or a high level. In listerial strains, low-level resistance (2-4-fold) to class IIa bacteriocins is attributed to alterations in membrane lipid composition. In Listeria monocytogenes and Enterococcus faecalis, high-level resistance (1000-fold) correlates with inactivation of the mptACD operon, which encodes the EII(Man)(t) mannose permease of the phosphotransferase system (PTS). Previous studies reported that in L. monocytogenes, high-level resistance involved the sigma(54) factor and the ManR activator. In this investigation, three genes associated with the resistance of Ent. faecalis JH2-2 to divercin V41, a pediocin-like bacteriocin from Carnobacterium divergens V41, were clearly identified by screening an insertional mutant library of Ent. faecalis JH2-2. These genes correspond to the well-known rpoN gene, which encodes sigma(54) factor, and to genes encoding a glycerophosphoryl diester phosphodiesterase (GlpQ) and a protein with a putative phosphodiesterase function (PDE). Resistance of the three mutants defective in the aforementioned genes appeared to be graduated: the rpoN mutant was more resistant than the glpQ mutant, which was more resistant than the pde mutant. Moreover, this resistance was specific to class IIa bacteriocins.
Collapse
Affiliation(s)
- Ségolène Calvez
- UMR-INRA 1014 SECALIM, ENITIAA, Rue de la Géraudière, BP 82225, Nantes Cedex 3, France
| | - Alain Rincé
- Laboratoire de Microbiologie de l'Environnement, EA 956, USC INRA 2017, IRBA, Université de Caen, Caen Cedex, France
| | - Yanick Auffray
- Laboratoire de Microbiologie de l'Environnement, EA 956, USC INRA 2017, IRBA, Université de Caen, Caen Cedex, France
| | - Hervé Prévost
- UMR-INRA 1014 SECALIM, ENITIAA, Rue de la Géraudière, BP 82225, Nantes Cedex 3, France
| | - Djamel Drider
- UMR-INRA 1014 SECALIM, ENITIAA, Rue de la Géraudière, BP 82225, Nantes Cedex 3, France
| |
Collapse
|
28
|
Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J Bacteriol 2007; 190:68-77. [PMID: 17965153 DOI: 10.1128/jb.00990-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gram-positive bacterium Streptococcus mutans is the primary causative agent in the formation of dental caries in humans. The ability of S. mutans to adapt and to thrive in the hostile environment of the oral cavity suggests that this cariogenic pathogen is capable of sensing and responding to different environmental stimuli. This prompted us to investigate the role of two-component signal transduction systems (TCS), particularly the sensor kinases, in response to environmental stresses. Analysis of the annotated genome sequence of S. mutans indicates the presence of 13 putative TCS. Further bioinformatics analysis in our laboratory has identified an additional TCS in the genome of S. mutans. We verified the presence of the 14 sensor kinases by using PCR and Southern hybridization in 13 different S. mutans strains and found that not all of the sensor kinases are encoded by each strain. To determine the potential role of each TCS in the stress tolerance of S. mutans UA159, insertion mutations were introduced into the genes encoding the individual sensor kinases. We were successful in inactivating all of the sensor kinases, indicating that none of the TCS are essential for the viability of S. mutans. The mutant S. mutans strains were assessed for their ability to withstand various stresses, including osmotic, thermal, oxidative, and antibiotic stress, as well as the capacity to produce mutacin. We identified three sensor kinases, Smu486, Smu1128, and Smu1516, which play significant roles in stress tolerance of S. mutans strain UA159.
Collapse
|
29
|
Muller C, Sanguinetti M, Riboulet E, Hébert L, Posteraro B, Fadda G, Auffray Y, Rincé A. Characterization of Two Signal Transduction Systems Involved in Intracellular Macrophage Survival and Environmental Stress Response in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 14:59-66. [DOI: 10.1159/000106083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Le Breton Y, Muller C, Auffray Y, Rincé A. New insights into the Enterococcus faecalis CroRS two-component system obtained using a differential-display random arbitrarily primed PCR approach. Appl Environ Microbiol 2007; 73:3738-41. [PMID: 17434998 PMCID: PMC1932664 DOI: 10.1128/aem.00390-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a modified random arbitrarily primed PCR approach, the operon encoding the Enterococcus faecalis JH2-2 CroRS two-component regulatory system was shown to be repressed during stationary phase, and a CroRS-regulated operon (glnQHMP) was identified. Gel retardation assays showed that the CroR regulator binds specifically to the glnQHMP promoter.
Collapse
Affiliation(s)
- Yoann Le Breton
- Laboratoire Microbiologie de l'Environnement, EA 956, USC INRA 2017, IRBA, Université de Caen, France.
| | | | | | | |
Collapse
|
31
|
Muller C, Le Breton Y, Morin T, Benachour A, Auffray Y, Rincé A. The response regulator CroR modulates expression of the secreted stress-induced SalB protein in Enterococcus faecalis. J Bacteriol 2006; 188:2636-45. [PMID: 16547051 PMCID: PMC1428392 DOI: 10.1128/jb.188.7.2636-2645.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Enterococcus faecalis two-component signal transduction system CroRS, also referred as the RR-HK05 pair, is required for intrinsic beta-lactam resistance (Y. R. Comenge, R. Quintiliani, Jr., L. Li, L. Dubost, J. P. Brouard, J. E. Hugonnet, and M. Arthur, J. Bacteriol. 185:7184-7192, 2003) and is also suspected to be involved in the expression of salB (previously referred to as sagA), a gene important for resistance to environmental stress and cell morphology (Y. Le Breton, G. Boël, A. Benachour, H. Prévost, Y. Auffray, and A. Rincé, Environ. Microbiol. 5:329-337, 2003). In this report, we provide genetic and biochemical evidence that salB encodes a secreted protein that is expressed from a monocistronic stress-inducible operon. Consistent with CroR being a direct transcriptional activator of the salB expression, CroR was found to bind to the salB promoter region in electrophoretic mobility shift assays. Interestingly, we provide evidence that SalB does not play a role in the intrinsic beta-lactam resistance associated with CroRS. We also show that the CroRS system is able to regulate its own expression. The sequence of the CroRS binding site in the salB and croR promoter regions was determined using DNase I footprinting assays.
Collapse
Affiliation(s)
- Cécile Muller
- USC INRA 2017 Microbiologie de l'Environnement, EA 956, IRBA, Université de Caen, 14032 CAEN cedex, France.
| | | | | | | | | | | |
Collapse
|
32
|
Calva E, Oropeza R. Two-component signal transduction systems, environmental signals, and virulence. MICROBIAL ECOLOGY 2006; 51:166-76. [PMID: 16435167 DOI: 10.1007/s00248-005-0087-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 09/19/2005] [Indexed: 05/06/2023]
Abstract
The relevance toward virulence of a variety of two-component signal transduction systems is reviewed for 16 pathogenic bacteria, together with the wide array of environmental signals or conditions that have been implicated in their regulation. A series of issues is raised, concerning the need to understand the environmental cues that determine their regulation in the infected host and in the environment outside the laboratory, which shall contribute toward the bridging of bacterial pathogenesis and microbial ecology.
Collapse
Affiliation(s)
- E Calva
- Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, 62210, Mexico.
| | | |
Collapse
|
33
|
Gilmour R, Foster JE, Sheng Q, McClain JR, Riley A, Sun PM, Ng WL, Yan D, Nicas TI, Henry K, Winkler ME. New class of competitive inhibitor of bacterial histidine kinases. J Bacteriol 2005; 187:8196-200. [PMID: 16291694 PMCID: PMC1291283 DOI: 10.1128/jb.187.23.8196-8200.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.
Collapse
|
34
|
Verneuil N, Rincé A, Sanguinetti M, Auffray Y, Hartke A, Giard JC. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252:137-41. [PMID: 16216443 DOI: 10.1016/j.femsle.2005.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/22/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022] Open
Abstract
HypR has recently been described as the first transcriptional regulator involved in the oxidative stress response and in the intracellular survival of Enterococcus faecalis within macrophages. In order to characterize the HypR regulon, real-time quantitative RT-PCR experiments were performed. The expression of four genes involved in the oxidative stress response encoding catalase, glutathione reductase, and the two subunits of alkyl hydroperoxide reductase were down regulated in the hypR background under H(2)O(2) condition. These findings show that HypR acts as a transcriptional activator, especially during oxidative stress. In addition, DNAse I footprinting assays allowed us to identify the HypR-protected DNA regions corresponding to the "HypR box" in the hypR promoter. Moreover, the effect of the hypR mutation on the virulence of E. faecalis was evaluated in comparison with the wild-type JH2-2 strain using a mouse peritonitis model. Our results revealed that HypR appears to be an important virulence factor in E. faecalis.
Collapse
Affiliation(s)
- Nicolas Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Aakra A, Vebø H, Snipen L, Hirt H, Aastveit A, Kapur V, Dunny G, Murray BE, Murray B, Nes IF. Transcriptional response of Enterococcus faecalis V583 to erythromycin. Antimicrob Agents Chemother 2005; 49:2246-59. [PMID: 15917518 PMCID: PMC1140525 DOI: 10.1128/aac.49.6.2246-2259.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A transcriptional profile of Enterococcus faecalis V583 (V583) treated with erythromycin is presented. This is the first study describing a complete transcriptional profile of Enterococcus. E. faecalis is a common and nonvirulent bacterium in many natural environments, but also an important cause of nosocomial infections. We have used a genome-wide microarray based on the genome sequence of V583 to study gene expression in cells exposed to erythromycin. V583 is resistant to relatively high concentrations of erythromycin, but growth is retarded by the treatment. The effect of erythromycin treatment on V583 was studied by a time course experiment; samples were extracted at five time points over a period of 90 min. A drastic change in gene transcription was seen with the erythromycin-treated cells compared to the untreated cells. Altogether, 260 genes were down-regulated at one or more time points, while 340 genes were up-regulated. Genes encoding hypothetical proteins and genes encoding transport and binding proteins were the two most dominating groups of differentially expressed genes. The gene encoding ermB (EFA0007) was expressed, but not differentially, which indicated that other genes are important for the survival and growth maintenance of V583 treated with erythromycin. One of these genes is a putative MsrC-like protein, which was up-regulated at all time points studied. Other specific genes that were found to be up-regulated were genes encoding ABC transporters and two-component regulatory systems, and these may be genes that are important for the specific response of V583 to erythromycin.
Collapse
Affiliation(s)
- Agot Aakra
- Laboratory of Microbial Gene Technology, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schär J, Sickmann A, Beier D. Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol 2005; 187:3100-9. [PMID: 15838037 PMCID: PMC1082831 DOI: 10.1128/jb.187.9.3100-3109.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the gastric pathogen Helicobacter pylori harbors a remarkably low number of regulatory genes, including three and five open reading frames encoding two-component histidine kinases and response regulators, respectively, which are putatively involved in transcriptional regulation. Two of the response regulator genes, hp1043 and hp166, proved to be essential for cell growth, and inactivation of the response regulator gene hp1021 resulted in a severe growth defect, as indicated by a small-colony phenotype. The sequences of the receiver domains of response regulators HP1043 and HP1021 differ from the consensus sequence of the acidic pocket of the receiver domain which is involved in the phosphotransfer reaction from the histidine kinase to the response regulator. Using a genetic complementation system, we demonstrated that the function of response regulator HP166, which is essential for cell growth, can be provided by a mutated derivative carrying a D52N substitution at the site of phosphorylation. We found that the atypical receiver sequences of HP1043 and HP1021 are not crucial for the function of these response regulators. Phosphorylation of the receiver domains of HP1043 and HP1021 is not needed for response regulator function and may not occur at all. Thus, the phosphorylation-independent action of these regulators differs from the well-established two-component paradigm.
Collapse
Affiliation(s)
- Jennifer Schär
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
37
|
Williams T, Bauer S, Beier D, Kuhn M. Construction and characterization of Listeria monocytogenes mutants with in-frame deletions in the response regulator genes identified in the genome sequence. Infect Immun 2005; 73:3152-9. [PMID: 15845524 PMCID: PMC1087338 DOI: 10.1128/iai.73.5.3152-3159.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems are widely distributed in prokaryotes where they control gene expression in response to diverse stimuli. To study the role of the sixteen putative two-component systems of Listeria monocytogenes systematically, in frame deletions were introduced into 15 out of the 16 response regulator genes and the resulting mutants were characterized. With one exception the deletion of the individual response regulator genes has only minor effects on in vitro and in vivo growth of the bacteria. The mutant carrying a deletion in the ortholog of the Bacillus subtilis response regulator gene degU showed a clearly reduced virulence in mice, indicating that DegU is involved in the regulation of virulence-associated genes.
Collapse
Affiliation(s)
- Tatjana Williams
- Kompetenzzentrum PathoGenoMik, Theodor Boveri-Institut für Biowissenschaften der Universität Würzburg Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
38
|
Benachour A, Muller C, Dabrowski-Coton M, Le Breton Y, Giard JC, Rincé A, Auffray Y, Hartke A. The Enterococcus faecalis sigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J Bacteriol 2005; 187:1022-35. [PMID: 15659680 PMCID: PMC545719 DOI: 10.1128/jb.187.3.1022-1035.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 11/02/2004] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of Enterococcus faecalis allowed the identification of two genes whose protein products showed 33 and 34% identity with those of sigV and yrhM of Bacillus subtilis, respectively. These genes, named sigV and rsiV, are predicted to encode members of the extracytoplasmic function subfamily of eubacterial RNA polymerase sigma and anti-sigma factors, respectively. This group of sigma factors has been shown to regulate gene expression in response to stress conditions. sigV and rsiV were shown to be under the control of the same promoter. The transcriptional start site was determined, and the 1.5-kb mRNA transcript was shown to be overexpressed under glucose and complete starvation, as well as under physicochemical treatments. Three mutants, affected in sigV, rsiV, and both genes, were constructed by double-crossover recombination within the genome of E. faecalis strain JH2-2. Compared with the wild type and the rsiV mutant, the sigV mutants were more susceptible to heat shock, acid, and ethanol treatments and displayed decreased survival during long-term starvation. A nisin-inducible sigV gene construction used in complementation assays restored the wild phenotype of the sigV mutants, confirming the involvement of SigV in the heat shock, ethanol, and acid stress responses. Northern blot analysis carried out with the three mutant strains revealed the inhibition of sigV expression by the related anti-sigma factor gene rsiV. In addition, putative candidates of the sigV regulon determined by computer search for the sigV promoter sequence were analyzed.
Collapse
Affiliation(s)
- Abdellah Benachour
- Laboratoire de Microbiologie de l'Environnement, IRBA, Université de Caen, 14032 Caen Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
El-Sharoud WM. Two-component signal transduction systems as key players in stress responses of lactic acid bacteria. Sci Prog 2005; 88:203-28. [PMID: 16961092 PMCID: PMC10361167 DOI: 10.3184/003685005783238381] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactic acid bacteria (LAB) continue as an important group of gram-positive bacteria that have been extensively exploited in food industries and various biotechnological applications. Some LAB species are, however, opportunistic pathogens and were reported to be associated with overwhelming number of human infections. During the use of LAB in industry or over the course of human infection, these bacteria are exposed to environmental stress. While LAB display adaptive mechanisms to cope with adverse conditions, the regulation of these mechanisms remains to be elucidated. Recent completion of genome sequencing of various LAB strains combined with the development of advanced molecular techniques have enabled the identification of a number of putative two-component signal transduction systems, also known as two-component regulatory systems (2CRS), in LAB. Examining the effect of deleting genes specifying putative 2CRS proteins in these organisms has revealed the involvement of 2CRS in the responses of LAB to different stresses. There are lines of evidence indicating that certain 2CRS may mediate a general stress response in Enterococcus faecalis and Streptococcus pyogenes. This review highlights the influence of 2CRS on the physiology of LAB during optimal growth and survival/growth on exposure to environmental stress.
Collapse
Affiliation(s)
- Walid M El-Sharoud
- Dairy Science and Technology Department, Faculty of Agriculture, Mansoura University, Egypt.
| |
Collapse
|
40
|
Hancock LE, Perego M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 2004; 186:7951-8. [PMID: 15547267 PMCID: PMC529088 DOI: 10.1128/jb.186.23.7951-7958.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of enterococci to adapt and respond to different environmental stimuli, including the host environment, led us to investigate the role of two-component signal transduction in the regulation of Enterococcus faecalis physiology. Using a bioinformatic approach, we previously identified 17 two-component systems (TCS), consisting of a sensory histidine kinase and the cognate response regulator, as well as an additional orphan response regulator (L. E. Hancock and M. Perego, J. Bacteriol. 184:5819-5825, 2002). In an effort to identify the potential function of each TCS in the biology of E. faecalis clinical isolate strain V583, we constructed insertion mutations in each of the response regulators. We were able to inactivate 17 of 18 response regulators, the exception being an ortholog of YycF, previously shown to be essential for viability in a variety of gram-positive microorganisms. The biological effects of the remaining mutations were assessed by using a number of assays, including antibiotic resistance, biofilm formation, and environmental stress. We identified TCS related to antibiotic resistance and environmental stress and found one system which controls the initiation of biofilm development by E. faecalis.
Collapse
Affiliation(s)
- Lynn E Hancock
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
41
|
Abstract
Generations of chemists and biologists have conducted research on natural products and other metabolites produced by bacteria and other microorganisms. This has led to an explosion in knowledge concerning the mechanism by which such natural products are made, ultimately allowing custom redesign of many of these molecules for increased potency and selectivity as therapeutic drugs. Along the way, scientists have begun to appreciate that the bacterial world is teeming with life on a scale hardly conceivable, with constant communication within the bacterial world and with outside neighbors, such as plants and mammals. Only in recent years have some of the signaling molecules that comprise these elaborate forms of communication been characterized in any sort of chemical detail, which has in turn peaked interest in the intricate biology of this micro-world and its interactions with the macro-world.
Collapse
Affiliation(s)
- Gholson J Lyon
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
42
|
Lyon GJ, Novick RP. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 2004; 25:1389-403. [PMID: 15374643 DOI: 10.1016/j.peptides.2003.11.026] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
There are two basic types of bacterial communication systems--those in which the signal is directed solely at other organisms and those in which the signal is sensed by the producing organism as well. The former are involved primarily in conjugation; the latter in adaptation to the environment. Gram-positive bacteria use small peptides for both types of signaling, whereas Gram-negative bacteria use homoserine lactones. Since adaptation signals are autoinducers the response is population-density-dependent and has been referred to as "quorum-sensing". Gram-negative bacteria internalize the signals which act upon an intracellular receptor, whereas Gram-positive bacteria use them as ligands for the extracellular receptor of a two-component signaling module. In both cases, the signal activates a complex adaptation response involving many genes.
Collapse
Affiliation(s)
- Gholson J Lyon
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
43
|
Verneuil N, Sanguinetti M, Le Breton Y, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard JC. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72:4424-31. [PMID: 15271899 PMCID: PMC470598 DOI: 10.1128/iai.72.8.4424-4431.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify regulators of the oxidative stress response in Enterococcus faecalis, an important human pathogen, several genes annotated as coding for transcriptional regulators were inactivated by insertional mutagenesis. One mutant, affected in the ef2958 locus (designated hypR [hydrogen peroxide regulator]), appeared to be highly sensitive to oxidative challenge caused by hydrogen peroxide. Moreover, testing of the hypR mutant by using an in vivo-in vitro macrophage infection model resulted in a highly significant reduction in survival compared to the survival of parent strain JH2-2. Northern blot analyses were carried out with probes specific for genes encoding known antioxidant enzymes, and they showed that the ahpCF (alkyl hydroperoxide reductase) transcript was expressed less in mutant cells. Mobility shift protein-DNA binding assays revealed that HypR regulated directly the expression of hypR itself and the ahpCF operon. Our combined results showed that HypR appeared to be directly involved in the expression of ahpCF genes under oxidative stress conditions and suggested that this regulator could contribute to the virulence of E. faecalis.
Collapse
Affiliation(s)
- Nicolas Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA 956, USC INRA, IRBA, Université de Caen, 14032 Cannes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Comenge Y, Quintiliani R, Li L, Dubost L, Brouard JP, Hugonnet JE, Arthur M. The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 2004; 185:7184-92. [PMID: 14645279 PMCID: PMC296236 DOI: 10.1128/jb.185.24.7184-7192.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis produces a specific penicillin-binding protein (PBP5) that mediates high-level resistance to the cephalosporin class of beta-lactam antibiotics. Deletion of a locus encoding a previously uncharacterized two-component regulatory system of E. faecalis (croRS) led to a 4,000-fold reduction in the MIC of the expanded-spectrum cephalosporin ceftriaxone. The cytoplasmic domain of the sensor kinase (CroS) was purified and shown to catalyze ATP-dependent autophosphorylation followed by transfer of the phosphate to the mated response regulator (CroR). The croR and croS genes were cotranscribed from a promoter (croRp) located in the rrnC-croR intergenic region. A putative seryl-tRNA synthetase gene (serS) located immediately downstream from croS did not appear to be a target of CroRS regulation or to play a role in ceftriaxone resistance. A plasmid-borne croRp-lacZ fusion was trans-activated by the CroRS system in response to the presence of ceftriaxone in the culture medium. The fusion was also induced by representatives of other classes of beta-lactam antibiotics and by inhibitors of early and late steps of peptidoglycan synthesis. The croRS null mutant produced PBP5, and expression of an additional copy of pbp5 under the control of a heterologous promoter did not restore ceftriaxone resistance. Deletion of croRS was not associated with any defect in the synthesis of the nucleotide precursor UDP-MurNAc-pentapeptide or of the D-Ala(4)-->L-Ala-L-Ala-Lys(3) peptidoglycan cross-bridge. Thus, the croRS mutant was susceptible to ceftriaxone despite the production of PBP5 and the synthesis of wild-type peptidoglycan precursors. These observations constitute the first description of regulatory genes essential for PBP5-mediated beta-lactam resistance in enterococci.
Collapse
Affiliation(s)
- Yannick Comenge
- INSERM E0004-LRMA, UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France
| | | | | | | | | | | | | |
Collapse
|