1
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
2
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
5
|
Ning P, Zheng Y, Luo Q, Liu X, Kang Y, Zhang Y, Zhang R, Xu Y, Yang D, Xi W, Wang K, Chen Y, An S, Gao Z. Metabolic profiles in community-acquired pneumonia: developing assessment tools for disease severity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:130. [PMID: 29759075 PMCID: PMC5952829 DOI: 10.1186/s13054-018-2049-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/23/2018] [Indexed: 01/11/2023]
Abstract
Background This study aimed to determine whether community-acquired pneumonia (CAP) had a metabolic profile and whether this profile can be used for disease severity assessment. Methods A total of 175 individuals including 119 CAP patients and 56 controls were enrolled and divided into two cohorts. Serum samples from a discovery cohort (n = 102, including 38 non-severe CAP, 30 severe CAP, and 34 age and sex-matched controls) were determined by untargeted ultra-high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics. Selected differential metabolites between CAP patients versus controls, and between the severe CAP group versus non-severe CAP group, were confirmed by targeted mass spectrometry assays in a validation cohort (n = 73, including 32 non-severe CAP, 19 severe CAP and 22 controls). Pearson’s correlation analysis was performed to assess relationships between the identified metabolites and clinical severity of CAP. The area under the curve (AUC), sensitivity and specificity of the metabolites for predicting the severity of CAP were also investigated. Results The metabolic signature was markedly different between CAP patients and controls. Fifteen metabolites were found to be significantly dysregulated in CAP patients, which were mainly mapped to the metabolic pathways of sphingolipid, arginine, pyruvate and inositol phosphate. The alternation trends of five metabolites among the three groups including sphinganine, p-Cresol sulfate, dehydroepiandrosterone sulfate (DHEA-S), lactate and l-arginine in the validation cohort were consistent with those in the discovery cohort. Significantly lower concentrations of sphinganine, p-Cresol sulfate and DHEA-S were observed in CAP patients than in controls (p < 0.05). Serum lactate and sphinganine levels were positively correlated with confusion, urea level, respiratory rate, blood pressure, and age > 65 years (CURB-65), pneumonia severity index (PSI) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, while DHEA-S inversely correlated with the three scoring systems. Combining lactate, sphinganine and DHEA-S as a metabolite panel for discriminating severe CAP from non-severe CAP exhibited a better AUC of 0.911 (95% confidence interval 0.825–0.998) than CURB-65, PSI and APACHE II scores. Conclusions This study demonstrates that serum metabolomics approaches based on the LC-MS/MS platform can be applied as a tool to reveal metabolic changes during CAP and establish a metabolite signature related to disease severity. Trial registration ClinicalTrials.gov, NCT03093220. Registered retrospectively on 28 March 2017. Electronic supplementary material The online version of this article (10.1186/s13054-018-2049-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pu Ning
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Qiongzhen Luo
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Rongbao Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yusheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Shuchang An
- Department of Respiratory Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
6
|
Feldkamp ML, Ward DM, Pysher TJ, Chambers CT. Chlamydia trachomatis Is Responsible for Lipid Vacuolation in the Amniotic Epithelium of Fetal Gastroschisis. Birth Defects Res 2017. [PMID: 28635162 DOI: 10.1002/bdr2.1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vacuolated amniotic epithelium with lipid droplets in gastroschisis placentas is an unusual finding. Mass spectrometry of lipid droplets identified triglycerides, ester-linked to an unusual pattern of fatty acids. We hypothesize that these findings result from a Chlamydia trachomatis infection during the periconceptional period. The rising incidence of chlamydia infections has paralleled the increasing prevalence of gastroschisis among women less than 25 years of age. Histologically, young women are at greatest risk for a chlamydia infection due to their immature columnar epithelium, the preferential site for attachment of Chlamydia trachomatis infectious particle (elementary body). METHODS Chlamydia trachomatis survive in an inclusion, relying on its host to acquire essential nutrients, amino acids, and nucleotides for survival and replication. If essential nutrients are not available, the bacteria cannot replicate and may be trafficked to the lysosome for degradation or remain quiescent, within the inclusion, subverting innate immunologic clearance. RESULTS Chlamydiae synthesize several lipids (phosphatidylethanolamine, phosphatidylserine, and phosphoatidylglycerol); however, their lipid content reveal eukaryotic lipids (sphingomyelin, cholesterol, phosphatidylcholine, and phosphatidylinositol), evidence that chlamydiae "hijack" host lipids for expansion and replication. CONCLUSION The abnormal amniotic epithelial findings are supported by experimental evidence of the trafficking of host lipids into the chlamydiae inclusion. If not lethal, what harm will elementary bodies inflict to the developing embryo? Do these women have a greater pro-inflammatory response to an environmental exposure, whether cigarette smoking, change in partner, or a pathogen? Testing the hypothesis that Chlamydia trachomatis is responsible for amniotic epithelium vacuoles will be a critical first step. Birth Defects Research 109:1003-1010, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Theodore J Pysher
- Division of Pediatric Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Christina T Chambers
- Division of Dysmorphology and Teratology, Department of Pediatrics, University of California San Diego, San Diego, California
| |
Collapse
|
7
|
Sharma L, Prakash H. Sphingolipids Are Dual Specific Drug Targets for the Management of Pulmonary Infections: Perspective. Front Immunol 2017; 8:378. [PMID: 28400772 PMCID: PMC5372786 DOI: 10.3389/fimmu.2017.00378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are the major constituent of the mucus secreted by the cells of epithelial linings of lungs where they maintain the barrier functions and prevent microbial invasion. Sphingolipids are interconvertible, and their primary and secondary metabolites have both structural and functional roles. Out of several sphingolipid metabolites, sphingosine-1 phosphate (S1P) and ceramide are central molecules and decisive for sphingolipid signaling. These are produced by enzymatic activity of sphingosine kinase-1 (SK-1) upon the challenge with either biological or physiological stresses. S1P and ceramide rheostat are important for the progression of various pathologies, which are manifested by inflammatory cascade. S1P is a well-established secondary messenger and associated with various neuronal, metabolic, and inflammatory diseases other than respiratory infections such as Chlamydia pneumoniae, Streptococcus pneumoniae, and Mycobacterium tuberculosis. These pathogens are known to exploit sphingolipid metabolism for their opportunistic survival. Decreased sphingosine kinase activity/S1P content in the lung and peripheral blood of tuberculosis patients clearly indicated a dysregulation of sphingolipid metabolism during infection and suggest that sphingolipid metabolism is important for management of infection by the host. Our previous study has demonstrated that gain of SK-1 activity is important for the maturation of phagolysosomal compartment, innate activation of macrophages, and subsequent control of mycobacterial replication/growth in macrophages. Furthermore, S1P-mediated amelioration of lung pathology and disease severity in TB patients is believed to be mediated by the selective activation or rearrangement of various S1P receptors (S1PR) particularly S1PR2, which has been effective in controlling respiratory fungal pathogens. Therefore, such specificity of S1P-S1PR would be paramount for triggering inflammatory events, subsequent activation, and fostering bactericidal potential in macrophages for the control of TB. In this review, we have discussed and emphasized that sphingolipids may represent effective novel, yet dual specific drug targets for controlling pulmonary infections.
Collapse
Affiliation(s)
- Lalita Sharma
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad , Hyderabad, Telengana , India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad , Hyderabad, Telengana , India
| |
Collapse
|
8
|
Abstract
Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche.
Collapse
|
9
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
10
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Toledo A, Benach JL. Hijacking and Use of Host Lipids by Intracellular Pathogens. Microbiol Spectr 2015; 3:10.1128/microbiolspec.VMBF-0001-2014. [PMID: 27337282 PMCID: PMC5790186 DOI: 10.1128/microbiolspec.vmbf-0001-2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| |
Collapse
|
12
|
Vicetti Miguel RD, Henschel KJ, Dueñas Lopez FC, Quispe Calla NE, Cherpes TL. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units. J Microbiol Methods 2015; 119:79-82. [PMID: 26453947 DOI: 10.1016/j.mimet.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify Chlamydia-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and Chlamydia trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units.
Collapse
Affiliation(s)
- Rodolfo D Vicetti Miguel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Kevin J Henschel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Fiorela C Dueñas Lopez
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Nirk E Quispe Calla
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas L Cherpes
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Herweg JA, Pons V, Becher D, Hecker M, Krohne G, Barbier J, Berger H, Rudel T, Mehlitz A. Proteomic analysis of the Simkania-containing vacuole: the central role of retrograde transport. Mol Microbiol 2015; 99:151-71. [PMID: 26374382 DOI: 10.1111/mmi.13222] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2015] [Indexed: 01/25/2023]
Abstract
Simkania negevensis is an obligate intracellular bacterial pathogen that grows in amoeba or human cells within a membrane-bound vacuole forming endoplasmic reticulum (ER) contact sites. The membrane of this Simkania-containing vacuole (SnCV) is a critical host-pathogen interface whose origin and molecular interactions with cellular organelles remain poorly defined. We performed proteomic analysis of purified ER-SnCV-membranes using label free LC-MS(2) to define the pathogen-containing organelle composition. Of the 1,178 proteins of human and 302 proteins of Simkania origin identified by this strategy, 51 host cell proteins were enriched or depleted by infection and 57 proteins were associated with host endosomal transport pathways. Chemical inhibitors that selectively interfere with trafficking at the early endosome-to-trans-Golgi network (TGN) interface (retrograde transport) affected SnCV formation, morphology and lipid transport. Our data demonstrate that Simkania exploits early endosome-to-TGN transport for nutrient acquisition and growth.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Department of Microbiology, University of Würzburg, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Valérie Pons
- DSV, iBiTec-S, LabEx LERMIT, CEA, F-91191, Gif sur Yvette, France
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Institute of Microbiology, Friedrich-Ludwig-Jahn-Straße 15, D-17487, Greifswald, Germany
| | - Michael Hecker
- Microbial Physiology/Molecular Biology, University of Greifswald, Institute of Microbiology, Friedrich-Ludwig-Jahn-Straße 15, D-17487, Greifswald, Germany
| | - Georg Krohne
- Division of Electron Microscopy, University of Würzburg, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Julien Barbier
- DSV, iBiTec-S, LabEx LERMIT, CEA, F-91191, Gif sur Yvette, France
| | - Hilmar Berger
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg, Biocenter, Am Hubland, D-97074, Würzburg, Germany
| | - Adrian Mehlitz
- Department of Microbiology, University of Würzburg, Biocenter, Am Hubland, D-97074, Würzburg, Germany.,Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Charitéplatz 1, D-10117, Berlin, Germany
| |
Collapse
|
14
|
Kabeiseman EJ, Cichos KH, Moore ER. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Front Cell Infect Microbiol 2014; 4:129. [PMID: 25309881 PMCID: PMC4161167 DOI: 10.3389/fcimb.2014.00129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this "inherent property" was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Moore
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, USA
| |
Collapse
|
15
|
Mueller KE, Wolf K. C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells. Cell Microbiol 2014; 17:119-30. [PMID: 25131610 DOI: 10.1111/cmi.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein-protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to the Golgi apparatus (GA) and the plasma membrane where it binds to caveolin-1. Upon stimulation, the enzyme is translocated from the plasma membrane to the cytoplasm where it generates NO. When activation of eNOS ceases, the majority of the enzyme is recycled back to the membrane fraction. An inability of eNOS to cycle between the cytosol and the membrane leads to impaired NO production and vascular dysfunction. Chlamydia pneumoniae is a Gram-negative obligate intracellular bacterium that primarily infects epithelial cells of the human respiratory tract, but unlike any other chlamydial species, C. pneumoniae displays tropism toward atherosclerotic tissues. In this study, we demonstrate that C. pneumoniae inclusions colocalize with eNOS, and the microorganism interferes with trafficking of the enzyme from the GA to the plasma membrane in primary human aortic endothelial cells. This mislocation of eNOS results in significant inhibition of NO release by C. pneumoniae-infected cells. Furthermore, we show that the distribution of eNOS in C. pneumoniae-infected cells is altered due to an intimate association of the Golgi complex with chlamydial inclusions rather than by direct interaction of the enzyme with the chlamydial inclusion membrane.
Collapse
Affiliation(s)
- Konrad E Mueller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | | |
Collapse
|
16
|
Damiani MT, Gambarte Tudela J, Capmany A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol 2014; 16:1329-38. [PMID: 24948448 DOI: 10.1111/cmi.12325] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab-controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti-chlamydial therapy.
Collapse
Affiliation(s)
- María Teresa Damiani
- Laboratory of Phagocytosis and Intracellular Trafficking, IHEM-CONICET, School of Medicine, University of Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
17
|
The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells. Antimicrob Agents Chemother 2014; 58:3860-6. [PMID: 24777097 DOI: 10.1128/aac.02064-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells. The antichlamydial and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization. Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized to host cell lipid droplets but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular growth in a host-cell-dependent manner and interrupts proper development of chlamydial inclusions, possibly through a lipid droplet-dependent process.
Collapse
|
18
|
Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells. Interdiscip Perspect Infect Dis 2014; 2014:412827. [PMID: 24757444 PMCID: PMC3976853 DOI: 10.1155/2014/412827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/19/2014] [Indexed: 11/18/2022] Open
Abstract
We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB) and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.
Collapse
|
19
|
Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 2014; 38:779-801. [PMID: 24484402 DOI: 10.1111/1574-6976.12059] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydiae are a group of obligate intracellular bacteria comprising important human and animal pathogens as well as symbionts of ubiquitous protists. They are characterized by a developmental cycle including two main morphologically and physiologically distinct stages, the replicating reticulate body and the infectious nondividing elementary body. In this review, we reconstruct the history of studies that have led to our current perception of chlamydial physiology, focusing on their energy and central carbon metabolism. We then compare the metabolic capabilities of pathogenic and environmental chlamydiae highlighting interspecies variability among the metabolically more flexible environmental strains. We discuss recent findings suggesting that chlamydiae may not live as energy parasites throughout the developmental cycle and that elementary bodies are not metabolically inert but exhibit metabolic activity under appropriate axenic conditions. The observed host-free metabolic activity of elementary bodies may reflect adequate recapitulation of the intracellular environment, but there is evidence that this activity is biologically relevant and required for extracellular survival and maintenance of infectivity. The recent discoveries call for a reconsideration of chlamydial metabolism and future in-depth analyses to better understand how species- and stage-specific differences in chlamydial physiology may affect virulence, tissue tropism, and host adaptation.
Collapse
Affiliation(s)
- Anders Omsland
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Hamilton, MT, USA
| | | | | | | |
Collapse
|
20
|
Mehlitz A, Rudel T. Modulation of host signaling and cellular responses by Chlamydia. Cell Commun Signal 2013; 11:90. [PMID: 24267514 PMCID: PMC4222901 DOI: 10.1186/1478-811x-11-90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 01/24/2023] Open
Abstract
Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.
Collapse
Affiliation(s)
- Adrian Mehlitz
- University of Wuerzburg, Biocenter, Department of Microbiology, Am Hubland, D-97074, Wuerzburg, Germany.
| | | |
Collapse
|
21
|
Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion. Infect Immun 2013; 81:3326-37. [PMID: 23798538 DOI: 10.1128/iai.00584-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The predominant players in membrane fusion events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins. We hypothesize that SNARE proteins mediate fusion events at the chlamydial inclusion and are important for chlamydial lipid acquisition. We have previously demonstrated that trans-Golgi SNARE syntaxin 6 localizes to the chlamydial inclusion. To investigate the role of syntaxin 6 at the chlamydial inclusion, we examined the localization and function of another trans-Golgi SNARE and syntaxin 6-binding partner, vesicle-associated membrane protein 4 (VAMP4), at the chlamydial inclusion. In this study, we demonstrate that syntaxin 6 and VAMP4 colocalize to the chlamydial inclusion and interact at the chlamydial inclusion. Furthermore, in the absence of VAMP4, syntaxin 6 is not retained at the chlamydial inclusion. Small interfering RNA (siRNA) knockdown of VAMP4 inhibited chlamydial sphingomyelin acquisition, correlating with a log decrease in infectious progeny. VAMP4 retention at the inclusion was shown to be dependent on de novo chlamydial protein synthesis, but unlike syntaxin 6, VAMP4 recruitment is observed in a species-dependent manner. Notably, VAMP4 knockdown inhibits sphingomyelin trafficking only to inclusions in which it localizes. These data support the hypothesis that VAMP proteins play a central role in mediating eukaryotic vesicular interactions at the chlamydial inclusion and, thus, support chlamydial lipid acquisition and chlamydial development.
Collapse
|
22
|
Abstract
Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.
Collapse
|
23
|
Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis. PLoS One 2013; 8:e63426. [PMID: 23696825 PMCID: PMC3656976 DOI: 10.1371/journal.pone.0063426] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022] Open
Abstract
The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs) are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.
Collapse
|
24
|
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen, which lacks a system that allows genetic manipulation. Therefore, chlamydial researchers must manipulate the host cell to better understand chlamydial biology. Host-derived lipid acquisition is critical for chlamydial survival within the host. Hence, the ability to track and purify sphingolipids in/from chlamydial infected cells has become an integral part of pivotal studies in chlamydial biology. This unit outlines protocols that provide details about labeling eukaryotic cells with exogenous lipids to examine Golgi-derived lipid trafficking to the chlamydial inclusion and then performing imaging studies or lipid extractions for quantification. Details are provided to allow these protocols to be applied to subconfluent, polarized, or siRNA knockdown cells. In addition, one will find important experimental design considerations and techniques. These methods are powerful tools to aid in the understanding of mechanisms, which allow C. trachomatis to manipulate and usurp host cell trafficking pathways.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
25
|
Wolf K, Fields KA. Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. THE JOURNAL OF IMMUNOLOGY 2013; 190:1695-701. [PMID: 23303668 DOI: 10.4049/jimmunol.1202443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type I IFNs are induced during microbial infections and have well-characterized antiviral activities. TRAF3 is a signaling molecule crucial for type I IFN production and, therefore, represents a potential target for disarming immune responses. Chlamydia pneumoniae is a human pathogen that primarily infects respiratory epithelial cells; the onset of symptoms takes several weeks, and the course of infection is protracted. C. pneumoniae has also been associated with a variety of chronic inflammatory conditions. Thus, typical C. pneumoniae infections of humans are consistent with an impairment in inflammatory responses to the microorganism. We demonstrate that infection of epithelial cells with C. pneumoniae does not lead to IFN-β production. Instead, infected cells are prevented from activating IFN regulatory factor 3. This effect is mediated by C. pneumoniae-dependent degradation of TRAF3, which is independent of a functional proteasome. Hence, it is likely that C. pneumoniae expresses a unique protease targeting TRAF3-dependent immune effector mechanisms.
Collapse
Affiliation(s)
- Katerina Wolf
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
26
|
Markkula E, Hulkkonen J, Penttilä T, Puolakkainen M. Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae. Microb Pathog 2013; 54:46-53. [DOI: 10.1016/j.micpath.2012.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023]
|
27
|
Resistance to a novel antichlamydial compound is mediated through mutations in Chlamydia trachomatis secY. Antimicrob Agents Chemother 2012; 56:4296-302. [PMID: 22644029 DOI: 10.1128/aac.00356-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel and quantitative high-throughput screening approach was explored as a tool for the identification of novel compounds that inhibit chlamydial growth in mammalian cells. The assay is based on accumulation of a fluorescent marker by intracellular chlamydiae. Its utility was demonstrated by screening 42,000 chemically defined compounds against Chlamydia caviae GPIC. This analysis led to the identification of 40 primary-hit compounds. Five of these compounds were nontoxic to host cells and had similar activities against both C. caviae GPIC and Chlamydia trachomatis. The inhibitory activity of one of the compounds, (3-methoxyphenyl)-(4,4,7-trimethyl-4,5-dihydro-1H-[1,2]dithiolo[3,4-C]quinolin-1-ylidene)amine (MDQA), was chlamydia specific and was selected for further study. Selection for resistance to MDQA led to the generation of three independent resistant clones of C. trachomatis. Amino acid changes in SecY, a protein involved in Sec-dependent secretion in Gram-negative bacteria, were associated with the resistance phenotype. The amino acids changed in each of the resistant mutants are located in the predicted central channel of a SecY crystal structure, based on the known structure of Thermus thermophilus SecY. These experiments model a process that can be used for the discovery of antichlamydial, anti-intracellular, or antibacterial compounds and has led to the identification of compounds that may have utility in both antibiotic discovery and furthering our understanding of chlamydial biology.
Collapse
|
28
|
Abstract
Chlamydia species are obligate intracellular pathogens that are important causes of human genital tract, ocular and respiratory infections. The bacteria replicate within a specialized membrane-bound compartment termed the inclusion and require host-derived lipids for intracellular growth and development. Emerging evidence indicates that Chlamydia has evolved clever strategies to fulfil its lipid needs by interacting with multiple host cell compartments and redirecting trafficking pathways to its intracellular niche. In this review, we highlight recent findings that have significantly expanded our understanding of how Chlamydia exploit lipid trafficking pathways to ensure the survival of this important human pathogen.
Collapse
Affiliation(s)
- Cherilyn A Elwell
- Departments of Medicine, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
29
|
Pokrovskaya ID, Szwedo JW, Goodwin A, Lupashina TV, Nagarajan UM, Lupashin VV. Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway. Cell Microbiol 2012; 14:656-68. [PMID: 22233276 DOI: 10.1111/j.1462-5822.2012.01747.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chlamydia spp. are obligate intracellular bacteria that replicate inside the host cell in a bacterial modified unique compartment called the inclusion. As other intracellular pathogens, chlamydiae exploit host membrane trafficking pathways to prevent lysosomal fusion and to acquire energy and nutrients essential for their survival and replication. The Conserved Oligomeric Golgi (COG) complex is a ubiquitously expressed membrane-associated protein complex that functions in a retrograde intra-Golgi trafficking through associations with coiled-coil tethers, SNAREs, Rabs and COPI proteins. Several COG complex-interacting proteins, including Rab1, Rab6, Rab14 and Syntaxin 6 are implicated in chlamydial development. In this study, we analysed the recruitment of the COG complex and GS15-positive COG complex-dependent vesicles to Chlamydia trachomatis inclusion and their participation in chlamydial growth. Immunofluorescent analysis revealed that both GFP-tagged and endogenous COG complex subunits associated with inclusions in a serovar-independent manner by 8 h post infection and were maintained throughout the entire developmental cycle. Golgi v-SNARE GS15 was associated with inclusions 24 h post infection, but was absent on the mid-cycle (8 h) inclusions, indicating that this Golgi SNARE is directed to inclusions after COG complex recruitment. Silencing of COG8 and GS15 by siRNA significantly decreased infectious yield of chlamydiae. Further, membranous structures likely derived from lysed bacteria were observed inside inclusions by electron microscopy in cells depleted of COG8 or GS15. Our results showed that C. trachomatis hijacks the COG complex to redirect the population of Golgi-derived retrograde vesicles to inclusions. These vesicles likely deliver nutrients that are required for bacterial development and replication.
Collapse
Affiliation(s)
- I D Pokrovskaya
- Department of Physiology and Biophysics, UAMS, Arkansas Childrens Hospital Research Institute, Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
30
|
Carter C. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis 2011; 2011:501862. [PMID: 22254144 PMCID: PMC3255168 DOI: 10.4061/2011/501862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.
Collapse
Affiliation(s)
- Chris Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
31
|
Role for the SRC family kinase Fyn in sphingolipid acquisition by chlamydiae. Infect Immun 2011; 79:4559-68. [PMID: 21896774 DOI: 10.1128/iai.05692-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound vacuole termed the inclusion. From within this protective environment, chlamydiae usurp numerous functions of the host cell to promote chlamydial survival and replication. Here we utilized a small interfering RNA (siRNA)-based screening protocol designed to identify host proteins involved in the trafficking of sphingomyelin to the chlamydial inclusion. Twenty-six host proteins whose deficiency significantly decreased sphingomyelin trafficking to the inclusion and 16 proteins whose deficiency significantly increased sphingomyelin trafficking to the inclusion were identified. The reduced sphingomyelin trafficking caused by downregulation of the Src family tyrosine kinase Fyn was confirmed in more-detailed analyses. Fyn silencing did not alter sphingomyelin synthesis or trafficking in the absence of chlamydial infection but reduced the amount of sphingomyelin trafficked to the inclusion in infected cells, as determined by two independent quantitative assays. Additionally, inhibition of Src family kinases resulted in increased cellular retention of sphingomyelin and significantly decreased incorporation into elementary bodies of both C. trachomatis and Chlamydophila caviae.
Collapse
|
32
|
Schoborg RV. Chlamydia persistence -- a tool to dissect chlamydia--host interactions. Microbes Infect 2011; 13:649-62. [PMID: 21458583 PMCID: PMC3636554 DOI: 10.1016/j.micinf.2011.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/11/2011] [Accepted: 03/12/2011] [Indexed: 12/30/2022]
Abstract
Under stress, chlamydiae can enter a non-infectious but viable state termed persistence. In the absence of a tractable genetic system, persistence induction provides an important experimental tool with which to study these fascinating organisms. This review will discuss examples of: i) persistence studies that have illuminated critical chlamydiae/host interactions; and ii) novel persistence models that will do so in the future.
Collapse
Affiliation(s)
- R V Schoborg
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614-1708, USA.
| |
Collapse
|
33
|
Moore ER, Mead DJ, Dooley CA, Sager J, Hackstadt T. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. MICROBIOLOGY-SGM 2010; 157:830-838. [PMID: 21109560 PMCID: PMC3081085 DOI: 10.1099/mic.0.045856-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial development and viability. The mechanisms by which chlamydiae obtain eukaryotic lipids are poorly understood but require chlamydial protein synthesis and presumably modification of the inclusion membrane to initiate this interaction. A polarized cell model of chlamydial infection has demonstrated that chlamydiae preferentially intercept basolaterally directed, sphingomyelin-containing exocytic vesicles. Here we examine the localization and potential function of trans-Golgi and/or basolaterally associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in chlamydia-infected cells. The trans-Golgi SNARE protein syntaxin 6 is recruited to the chlamydial inclusion in a manner that requires chlamydial protein synthesis and is conserved among all chlamydial species examined. The localization of syntaxin 6 to the chlamydial inclusion requires a tyrosine motif or plasma membrane retrieval signal (YGRL). Thus in addition to expression of at least two inclusion membrane proteins that contain SNARE-like motifs, chlamydiae also actively recruit eukaryotic SNARE-family proteins.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - David J Mead
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Cheryl A Dooley
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Janet Sager
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
34
|
Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr Opin Microbiol 2009; 13:4-10. [PMID: 20006538 DOI: 10.1016/j.mib.2009.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/14/2009] [Indexed: 12/22/2022]
Abstract
The Chlamydiae are obligate intracellular pathogens that replicate within a membrane-bound vacuole, termed the 'inclusion'. From this compartment, bacteria acquire essential nutrients by selectively redirecting transport vesicles and hijacking intracellular organelles. Rerouting is achieved by several mechanisms including proteolysis-mediated fragmentation of the Golgi apparatus, recruitment of Rab GTPases and SNAREs, and translocation of cytoplasmic organelles into the inclusion lumen. Given Chlamydiae's extended coevolution with eukaryotic cells, it is likely that co-option of multiple cellular pathways is a strategy to provide redundancy in the acquisition of essential nutrients from the host and has contributed to the success of these highly adapted pathogens.
Collapse
|
35
|
Gupta R, Srivastava P, Vardhan H, Salhan S, Mittal A. Host immune responses to chlamydial inclusion membrane proteins B and C in Chlamydia trachomatis infected women with or without fertility disorders. Reprod Biol Endocrinol 2009; 7:38. [PMID: 19397832 PMCID: PMC2695819 DOI: 10.1186/1477-7827-7-38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/28/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND With an increase in the number of putative inclusion membrane proteins (incs) in chlamydial genomes, there is a need for understanding their contribution in host-pathogen interactions. Thus in this study we determined the host mucosal and peripheral immune responses to incs (IncB and IncC) of Chlamydia trachomatis (CT). METHODS Female patients (n = 296) attending the gynaecology out patient department of Safdarjung hospital, New Delhi were enrolled for the study and were clinically characterized into two groups; CT-positive fertile women (n = 38) and CT-positive women with fertility disorders (n = 29). Uninfected healthy fertile women were enrolled as controls (n = 31). Gene specific PCRs were used for detection of incB and incC genes in endocervical samples of CT-positive patients. ELISA and Western blot assay were used for detection of IgA and IgG antibodies to IncB and IncC in cervical washes and sera. Effect of IncB and IncC stimulation of cervical cells and PBMCs on cellular proliferation and cytotoxity was determined using MTT assay and Lactate dehydrogenase (LDH)-cytotoxicity assay respectively. Modulation of cytokines (Interleukin (IL)-1 Beta, IL-4, IL-5, IL-6, IL-10, Interferon-gamma, IL-12, Tumor Necrosis Factor-alpha and Granulocyte macrophage colony-stimulating factor (GM-CSF)) in cervical cells and PBMCs upon stimulation with IncB and IncC was determined by real-time reverse-transcriptase (RT)-PCR and ELISA. Further, CD4 positive T cells were purified from cervical cells and peripheral blood mononuclear cells (PBMCs) and secreted cytokines (Interferon-gamma and IL-4) were evaluated by ELISPOT and real-time RT-PCR. RESULTS Using MTT assay, significantly high proliferative responses (P < 0.05) were observed in inc-stimulated cervical cells and PBMCs from CT-positive fertile women compared to CT-positive women with fertility disorders and controls. Interferon-gamma, IL-12 and GM-CSF were found to be elevated in inc-stimulated cervical cells and PBMCs of CT-positive fertile women compared to CT-positive women with fertility disorders and controls (P < 0.05). In contrast, IL-1 Beta, IL-4, IL-5, IL-6 and IL-10 levels were found to be higher in CT-positive women with fertility disorders compared to CT-positive fertile women and controls (P < 0.05). Interferon-gamma secreting cells and mRNA expression in inc-stimulated cervical and peripheral CD4 positive T cells were significantly higher (P < 0.05) in CT positive fertile women compared to CT-positive women with fertility disorders. CONCLUSION Our data overall suggests that CT incs, IncB and IncC modulate host immune responses and may have a role in protection/pathogenesis of genital chlamydial infection in women.
Collapse
Affiliation(s)
- Rishein Gupta
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Pragya Srivastava
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Harsh Vardhan
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| | - Sudha Salhan
- Department of Gynaecology & Obstetrics, Safdarjung Hospital, New Delhi-110 029, India
| | - Aruna Mittal
- Institute of Pathology-ICMR, Safdarjang Hospital Campus, Post Box no. 4909, New Delhi-110 029, India
| |
Collapse
|
36
|
Wolf K, Plano GV, Fields KA. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cell Microbiol 2009; 11:769-79. [PMID: 19159390 DOI: 10.1111/j.1462-5822.2009.01290.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis. Chlamydiae are obligate intracellular parasites that primarily infect epithelial cells where they develop within a membrane-bound vacuole, termed an inclusion. Interactions between the microorganism and eukaryotic cell can be mediated by chlamydial proteins inserted into the inclusion membrane. We describe here a novel C. pneumoniae-specific inclusion membrane protein (Inc) CP0236, which contains domains exposed to the host cytoplasm. We demonstrate that, in a yeast two-hybrid screen, CP0236 interacts with the NFκB activator 1 (Act1) and this interaction was confirmed in HeLa 229 cells where ectopically expressed CP0236 was co-immunoprecipitated with endogenous Act1. Furthermore, we demonstrate that Act1 displays an altered distribution in the cytoplasm of HeLa cells infected with C. pneumoniae where it associates with the chlamydial inclusion membrane. This sequestration of Act1 by chlamydiae inhibited recruitment of the protein to the interleukin-17 (IL-17) receptor upon stimulation of C. pneumoniae-infected cells with IL-17A. Such inhibition of the IL-17 signalling pathway led to protection of Chlamydia-infected cells from NFκB activation in IL-17-stimulated cells. We describe here a unique strategy employed by C. pneumoniae to achieve inhibition of NFκB activation via interaction of CP0236 with mammalian Act1.
Collapse
Affiliation(s)
- Katerina Wolf
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
37
|
Moore ER, Fischer ER, Mead DJ, Hackstadt T. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 2008; 9:2130-40. [PMID: 18778406 DOI: 10.1111/j.1600-0854.2008.00828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi-derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monolayers of polarized cells and support chlamydial development. Of these cell lines, polarized colonic mucosal C2BBe1 cells were readily infected with Chlamydia trachomatis and remained polarized throughout infection. Trafficking of (6-((N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)hexanoyl)sphingosine) (NBD-C(6)-ceramide) and its metabolic derivatives, NBD-glucosylceramide (GlcCer) and NBD-SM, was analyzed. SM was retained within L2-infected cells relative to mock-infected cells, correlating with a disruption of basolateral SM trafficking. There was no net retention of GlcCer within L2-infected cells and purification of C. trachomatis elementary bodies from polarized C2BBe1 cells confirmed that bacteria retained only SM. The chlamydial inclusion thus appears to preferentially intercept basolaterally-directed SM-containing exocytic vesicles, suggesting a divergence in SM and GlcCer trafficking. The observed changes in lipid trafficking were a chlamydia-specific effect because Coxiella burnetii-infected cells revealed no changes in GlcCer or SM polarized trafficking.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
38
|
Jiang SJ, Campbell LA, Berry MW, Rosenfeld ME, Kuo CC. Retinoic acid prevents Chlamydia pneumoniae-induced foam cell development in a mouse model of atherosclerosis. Microbes Infect 2008; 10:1393-7. [PMID: 18678272 PMCID: PMC2600450 DOI: 10.1016/j.micinf.2008.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 11/27/2022]
Abstract
Chlamydia pneumoniae, a common respiratory pathogen, has been associated with cardiovascular disease. C. pneumoniae infection accelerates atherosclerotic lesion development in hyperlipidemic animals. Retinoic acid, an anti-oxidant, inhibits infection of endothelial cells by C. pneumoniae. The present study demonstrated that retinoic acid suppresses the acceleration of foam cell lesion development induced by C. pneumoniae in hyperlipidemic C57BL/6J mice. Retinoic acid treatment had no effect on foam cell lesion development in uninfected animals. Lung infection and duration was decreased in treated mice, suggesting one mechanism by which retinoic acid reduces C. pneumoniae-accelerated foam cell lesion formation in hyperlipidemic mice.
Collapse
Affiliation(s)
- Shinn-Jong Jiang
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 98195, USA
| | - Lee Ann Campbell
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195, USA
| | - Mark W. Berry
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195, USA
| | - Michael E. Rosenfeld
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Cho-Chou Kuo
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Identification and characterization of Inc766, an inclusion membrane protein in Chlamydophila abortus-infected cells. Microb Pathog 2008; 45:265-72. [PMID: 18675895 DOI: 10.1016/j.micpath.2008.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022]
Abstract
We have identified the gene product of locus 766 in the transmembrane head region (TMH/Inc-region) in the Chlamydophila abortus genome by using mass spectrometry and a monoclonal antibody that reacted with the inclusion membrane. The identified protein at 32 kDa, termed Inc766, formed highly stable oligomers when solubilized in the absence of beta-mercaptoethanol. These oligomers were resistant to SDS, to heat denaturation and to 8M urea, but very sensitive to beta-mercaptoethanol, consistent with conformations resulting from protein-protein interactions stabilized through disulphide bonds. Mass spectrometry analysis of immunoprecipitated infected cell lysates indicated that a dimer at 56 kDa was the most prominent form in solution. Cross-linking with DSP provided supporting evidence for the formation of oligomers in situ. Inc766 was expressed at 20-24h post infection and its localization pattern in the extra-inclusion space was common in all C. abortus strains tested. Taken together, Inc766 displays unique biochemical and cellular features not encountered in other Incs from other Chlamydiaceae species. Future studies of the particular characteristics especially the interactive properties of Inc766 should contribute to our understanding of the relationship of the different chlamydial species with their respective hosts.
Collapse
|
40
|
Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 2008; 76:2872-81. [PMID: 18426873 DOI: 10.1128/iai.00129-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that replicate solely within a membrane-bound vacuole termed an inclusion. Within the confines of the inclusion, the replicating bacteria acquire amino acids, nucleotides, and other precursors from the host cell. Trafficking from CD63-positive multivesicular bodies to the inclusion was previously identified as a novel interaction that provided essential precursors for the maintenance of a productive intracellular infection. The present study analyzes the direct delivery of resident protein and lipid constituents of multivesicular bodies to the intracellular chlamydiae. The manipulation of this trafficking pathway with an inhibitor of multivesicular body transport and the delivery of exogenous antibodies altered protein and cholesterol acquisition and delayed the maturation of the chlamydial inclusion. Although inhibitor studies and ultrastructural analyses confirmed a novel interaction between CD63-positive multivesicular bodies and the intracellular chlamydiae, neutralization with small interfering RNAs and anti-CD63 Fab fragments revealed that CD63 itself was not required for this association. These studies confirm CD63 as a constituent in multivesicular body-to-inclusion transport; however, other requisite components of these host cell compartments must control the delivery of key nutrients that are essential to intracellular bacterial development.
Collapse
|
41
|
Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P. Microarray Analysis of aChlamydia pneumoniae–Infected Human Epithelial Cell Line by Use of Gene Ontology Hierarchy. J Infect Dis 2008; 197:156-62. [DOI: 10.1086/524142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
Puolakkainen M, Lee A, Nosaka T, Fukushi H, Kuo CC, Campbell LA. Retinoic acid inhibits the infectivity and growth of Chlamydia pneumoniae in epithelial and endothelial cells through different receptors. Microb Pathog 2007; 44:410-6. [PMID: 18162363 DOI: 10.1016/j.micpath.2007.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
Chlamydia pneumoniae is a human respiratory pathogen that has also been associated with cardiovascular disease. C. pneumoniae infection accelerates atherosclerotic plaque development in hyperlipidemic animals and promotes oxidation of low density lipoprotein in vitro. All-trans-retinoic acid (ATRA), an antioxidant, has been shown to inhibit C. pneumoniae infectivity for endothelial cells by preventing binding of the organism to the M6P/IGF2 receptor on the cell surface. This current study investigates whether ATRA similarly affects C. pneumoniae infectivity of epithelial cells, which are the primary site of infection in the respiratory tract, and the effects on intracellular growth in both endothelial and epithelial cells. Because ATRA binds to both the nuclear retinoid acid receptor (RAR) and the M6P/IGF2 receptor, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid (TTNPB), an ATRA analog, which binds to the RAR but not the M6P/IGF2 receptor was used to differentiate the receptor mediating the effects of ATRA. The results of this study showed two separate effects of ATRA. The first effect is through interaction with the M6P/IGF2 receptor on the cell surface preventing attachment of the organism (inhibition by ATRA but not TTNPB) in endothelial cells and the second is through the nuclear receptor (inhibition by both ATRA and TTNPB) which inhibits growth in both epithelial and endothelial cells.
Collapse
Affiliation(s)
- Mirja Puolakkainen
- Department of Pathobiology, University of Washington, Box 357238, Seattle, WA 91895, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Phagosomes are fascinating subcellular structures. After all, there are only a few compartments that are born before our very eyes and whose development we can follow in a light microscope until their contents disintegrate and are completely absorbed. Yet, some phagosomes are taken advantage of by pathogenic microorganisms, which change their fate. Research into phagosome biogenesis has flourished in recent years - the purpose of this review is to give a glimpse of where this research stands, with emphasis on the cell biology of macrophage phagosomes, on new model organisms for the study of phagosome biogenesis and on intracellular pathogens and their interference with normal phagosome function.
Collapse
Affiliation(s)
- Albert Haas
- Cell Biology Institute, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
44
|
Alzhanov DT, Suchland RJ, Bakke AC, Stamm WE, Rockey DD. Clonal isolation of chlamydia-infected cells using flow cytometry. J Microbiol Methods 2007; 68:201-8. [PMID: 16997404 DOI: 10.1016/j.mimet.2006.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 11/20/2022]
Abstract
This manuscript describes a new technique for the microbiological cloning of chlamydia-infected cells using a fluorescence activated cell sorter (FACS). The approach exploits chlamydial acquisition of the fluorescent, Golgi-specific, stain 6-((N-7-(-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-hexanoyl)sphingosine (C6-NBD-cer). This fluorescent lipid is delivered from the Golgi apparatus to the chlamydial inclusion membrane and then to the developmental forms within the inclusion in living, infected cells. Labeling with C6-NBD-cer results in easily identifiable chlamydial inclusions that can then be analyzed and sorted by FACS. This technique was used successfully to sort individual chlamydia-infected cells into individual wells of a culture dish and, in this experimental system, resulted in the isolation of cloned chlamydial isolates. FACS-based sorting was used to isolate clonal populations of prototype strains from Chlamydia trachomatis, C. caviae and C. suis. Recent clinical isolates were also successfully cloned using FACS. The procedure is simple and rapid, with single cloning cycles being completed 24 h post-culture of a sample. It is anticipated that FACS-based sorting of live chlamydia-infected cells will be a significant technical tool for the isolation of clonal populations of any chlamydial strain.
Collapse
Affiliation(s)
- Damir T Alzhanov
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
45
|
Beatty WL. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 2006; 119:350-9. [PMID: 16410552 DOI: 10.1242/jcs.02733] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that replicate solely within the confines of a membrane-bound vacuole termed an inclusion. Within this protected organelle, chlamydiae acquire host-cell-derived biosynthetic precursors necessary for intracellular subsistence, yet the mechanisms and pathways responsible for this acquisition remain elusive. The present study identifies an interaction between the chlamydial inclusion and multivesicular bodies, complex organelles pivotal in protein and lipid transport that are positioned along the endosome-lysosome pathway, and intersect the exocytic pathway in various cell types. Resident protein and lipid constituents of multivesicular bodies colocalized with intracellular chlamydiae, with direct delivery of the resident protein CD63 to the chlamydial inclusion. Interruption of trafficking from multivesicular bodies by pharmacological inhibitors and exogenous antibodies subsequently disrupted sphingolipid delivery to the maturing chlamydial inclusion and intracellular bacterial growth. This study identifies a trafficking pathway from CD63-positive multivesicular bodies to the bacterial inclusion, a novel interaction that provides essential lipids necessary for maintenance of a productive intracellular infection.
Collapse
Affiliation(s)
- Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
46
|
Kuhle V, Abrahams GL, Hensel M. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 2006; 7:716-30. [PMID: 16637890 DOI: 10.1111/j.1600-0854.2006.00422.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During intracellular life, Salmonella enterica proliferate within a specialized membrane compartment, the Salmonella-containing vacuole (SCV), and interfere with the microtubule cytoskeleton and cellular transport. To characterize the interaction of intracellular Salmonella with host cell transport processes, we utilized various model systems to follow microtubule-dependent transport. The vesicular stomatitis virus glycoprotein (VSVG) is a commonly used marker to follow protein transport from the Golgi to the plasma membrane. Using a VSVG-GFP fusion protein, we observed that virulent intracellular Salmonella alter exocytotic transport and recruit exocytotic transport vesicles to the SCV. This virulence function was dependent on the function of the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) and more specifically on a subset of SPI2 effector proteins. Furthermore, the Golgi to plasma membrane traffic of the shingolipid C(5)-ceramide was redirected to the SCV by virulent Salmonella. We propose that Salmonella modulates the biogenesis of the SCV by deviating this compartment from the default endocytic pathway to an organelle that interacts with the exocytic pathway. This observation might reveal a novel element of the intracellular survival and replication strategy of Salmonella.
Collapse
Affiliation(s)
- Volker Kuhle
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, Wasserturmstr. 3-5, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
47
|
Elwell C, Engel JN. Drosophila melanogaster S2 cells: a model system to study Chlamydia interaction with host cells. Cell Microbiol 2006; 7:725-39. [PMID: 15839901 PMCID: PMC1236988 DOI: 10.1111/j.1462-5822.2005.00508.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydia spp. are major causes of important human diseases, but dissecting the host-pathogen interactions has been hampered by the lack of bacterial genetics and the difficulty in carrying out forward genetic screens in mammalian hosts. RNA interference (RNAi)-based methodologies for gene inactivation can now be easily carried out in genetically tractable model hosts, such as Drosophila melanogaster, and offer a new approach to identifying host genes required for pathogenesis. We tested whether Chlamydia trachomatis infection of D. melanogaster S2 cells recapitulated critical aspects of mammalian cell infections. As in mammalian cells, C. trachomatis entry was greatly reduced by heparin and cytochalasin D. Inclusions were formed in S2 cells, acquired Golgi-derived sphingolipids, and avoided phagolysosomal fusion. Elementary body (EB) to reticulate body (RB) differentiation was observed, however, no RB to EB development or host cell killing was observed. RNAi-mediated inactivation of Rac, a Rho GTPase recently shown to be required for C. trachomatis entry in mammalian cells, inhibits C. trachomatis infection in S2 cells. We conclude that Drosophila S2 cells faithfully mimic early events in Chlamydia host cell interactions and provides a bona fide system to systematically dissect host functions important in the pathogenesis of obligate intracellular pathogens.
Collapse
Affiliation(s)
| | - J. N. Engel
- Departments of Medicine
- Microbiology and Immunology University of California, San Francisco, CA 94143, USA
- *For correspondence. E-mail
; Tel. (+415) 476 7355; Fax (+415) 476 9364
| |
Collapse
|
48
|
Greub G, Mege JL, Gorvel JP, Raoult D, Méresse S. Intracellular trafficking of Parachlamydia acanthamoebae. Cell Microbiol 2005; 7:581-9. [PMID: 15760458 DOI: 10.1111/j.1462-5822.2004.00488.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parachlamydia acanthamoebae is an obligate intracellular bacterium that naturally infects free-living amoebae. It is a potential agent of pneumonia that resists destruction by human macrophages. However, the strategy used by this Chlamydia-like organism in order to resist to macrophage destruction is unknown. We analysed the intracellular trafficking of P. acanthamoebae within monocyte-derived macrophages. Infected cells were immunolabelled for the bacteria and for various intracellular compartments by using specific antibodies. We analysed the bacteria colocalization with the different subcellular compartments by using epifluorescence and confocal microscopy. Bacterial replication took place 4-6 h post infection within acidic vacuoles. At that time, P. acanthamoebae colocalized with Lamp-1, a membrane marker of late endosomal and lysosomal compartments. A transient accumulation of EEA1 15 min post infection, and of rab7 and the mannose 6-phosphate receptor 30 min post infection confirmed that P. acanthamoebae traffic through the endocytic pathway. The acquisition of Lamp-1 was not different after infection with living and heat-inactivated bacteria. However, 24.5% and 79.5% of living and heat-inactivated P. acanthamoebae, respectively, colocalized with the vacuolar proton ATPase. Moreover, P. acanthamoebae did not colocalized with cathepsin D, a lysosomal hydrolase, suggesting that P. acanthamoebae interferes with maturation of its vacuole. Thus, P. acanthamoebae survives to destruction by human macrophages probably by controlling the vacuole biogenesis.
Collapse
Affiliation(s)
- Gilbert Greub
- Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Wolf K, Fischer E, Hackstadt T. Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect Immun 2005; 73:4560-70. [PMID: 16040967 PMCID: PMC1201216 DOI: 10.1128/iai.73.8.4560-4570.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 03/30/2005] [Accepted: 04/04/2005] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pneumoniae is a common human respiratory pathogen that has been associated with a variety of chronic diseases, including atherosclerosis. The role of this organism in the pathogenesis of atherosclerosis remains unknown. A key question is how C. pneumoniae is transferred from the site of primary infection to a developing atherosclerotic plaque. It has been suggested that circulating monocytes could be vehicles for dissemination of C. pneumoniae since the organism has been detected in peripheral blood monocytic cells (PBMCs). In this study we focused on survival of C. pneumoniae within PBMCs isolated from the blood of healthy human donors. We found that C. pneumoniae does not grow and multiply in cultured primary monocytes. In C. pneumoniae-infected monocyte-derived macrophages, growth of the organism was very limited, and the majority of the bacteria were eradicated. We also found that the destruction of C. pneumoniae within infected macrophages resulted in a gradual diminution of chlamydial antigens, although some of these antigens could be detected for days after the initial infection. The detected antigens present in infected monocytes and monocyte-derived macrophages represented neither chlamydial inclusions nor intact organisms. The use of {N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)]}-6-aminocaproyl-d-erythro-sphingosine as a vital stain for chlamydiae proved to be a sensitive method for identifying rare C. pneumoniae inclusions and was useful in the detection of even aberrant developmental forms.
Collapse
Affiliation(s)
- Katerina Wolf
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
50
|
Abstract
Pathogenic bacteria exploit a wide variety of host cellular processes to adhere to, invade, replicate within and damage host cells. One such process is the eukaryotic secretory pathway, in which proteins and lipids are modified and transported from the endoplasmic reticulum through the Golgi network to the plasma membrane and other cellular destinations. Certain bacteria secrete toxins that utilise this transport pathway to reach their cellular targets. Some intracellular pathogens, including Legionella, Brucella and Chlamydia, engage other steps of the pathway to establish intracellular replicative organelles. Recent work has implicated specific virulence proteins of enterohaemorrhagic Escherichia coli and Salmonella enterica in secretory pathway interactions.
Collapse
Affiliation(s)
- Suzana P Salcedo
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Univ, Parc Scientifique de Luminy, Case 906, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|