1
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Huan YW, Torraca V, Brown R, Fa-arun J, Miles SL, Oyarzún DA, Mostowy S, Wang B. P1 Bacteriophage-Enabled Delivery of CRISPR-Cas9 Antimicrobial Activity Against Shigella flexneri. ACS Synth Biol 2023; 12:709-721. [PMID: 36802585 PMCID: PMC10028697 DOI: 10.1021/acssynbio.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 02/22/2023]
Abstract
The discovery of clustered, regularly interspaced, short palindromic repeats (CRISPR) and the Cas9 RNA-guided nuclease provides unprecedented opportunities to selectively kill specific populations or species of bacteria. However, the use of CRISPR-Cas9 to clear bacterial infections in vivo is hampered by the inefficient delivery of cas9 genetic constructs into bacterial cells. Here, we use a broad-host-range P1-derived phagemid to deliver the CRISPR-Cas9 chromosomal-targeting system into Escherichia coli and the dysentery-causing Shigella flexneri to achieve DNA sequence-specific killing of targeted bacterial cells. We show that genetic modification of the helper P1 phage DNA packaging site (pac) significantly enhances the purity of packaged phagemid and improves the Cas9-mediated killing of S. flexneri cells. We further demonstrate that P1 phage particles can deliver chromosomal-targeting cas9 phagemids into S. flexneri in vivo using a zebrafish larvae infection model, where they significantly reduce the bacterial load and promote host survival. Our study highlights the potential of combining P1 bacteriophage-based delivery with the CRISPR chromosomal-targeting system to achieve DNA sequence-specific cell lethality and efficient clearance of bacterial infection.
Collapse
Affiliation(s)
- Yang W. Huan
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Vincenzo Torraca
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
- School
of Life Sciences, University of Westminster, London W1B 2HW, U.K.
| | - Russell Brown
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Jidapha Fa-arun
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Sydney L. Miles
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
| | - Diego A. Oyarzún
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
- School
of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K.
| | - Serge Mostowy
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
| | - Baojun Wang
- College
of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific
and Technological Innovation Center, Zhejiang
University, Hangzhou 310058, China
- Research
Center for Biological Computation, Zhejiang
Laboratory, Hangzhou 311100, China
| |
Collapse
|
3
|
Fa-Arun J, Huan YW, Darmon E, Wang B. Tail-Engineered Phage P2 Enables Delivery of Antimicrobials into Multiple Gut Pathogens. ACS Synth Biol 2023; 12:596-607. [PMID: 36731126 PMCID: PMC9942202 DOI: 10.1021/acssynbio.2c00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacteriophages can be reprogrammed to deliver antimicrobials for therapeutic and biocontrol purposes and are a promising alternative treatment to antimicrobial-resistant bacteria. Here, we developed a bacteriophage P4 cosmid system for the delivery of a Cas9 antimicrobial into clinically relevant human gut pathogens Shigella flexneri and Escherichia coli O157:H7. Our P4 cosmid design produces a high titer of cosmid-transducing units without contamination by a helper phage. Further, we demonstrate that genetic engineering of the phage tail fiber improves the transduction efficiency of cosmid DNA in S. flexneri M90T as well as allows recognition of a nonnative host, E. coli O157:H7. We show that the transducing units with the chimeric tails enhanced the overall Cas9-mediated killing of both pathogens. This study demonstrates the potential of our P4 cas9 cosmid system as a DNA sequence-specific antimicrobial against clinically relevant gut pathogenic bacteria.
Collapse
Affiliation(s)
- Jidapha Fa-Arun
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Yang Wei Huan
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Elise Darmon
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.,Research Center for Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
4
|
Liang J, Zhu Z, Lan R, Meng J, Vrancken B, Lu S, Jin D, Yang J, Wang J, Qin T, Pu J, Zhang L, Dong K, Xu M, Tian H, Jiang T, Xu J. Evolutionary and genomic insights into the long-term colonization of Shigella flexneri in animals. Emerg Microbes Infect 2022; 11:2069-2079. [PMID: 35930371 PMCID: PMC9448383 DOI: 10.1080/22221751.2022.2109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enteroinvasive bacterium Shigella flexneri is known as a highly host-adapted human pathogen. There had been no known other reservoirs reported until recently. Here 34 isolates obtained from animals (yaks, dairy cows and beef cattle) from 2016-2017 and 268 human S. flexneri isolates from China were sequenced to determine the relationships between animal and human isolates and infer the evolutionary history of animal-associated S. flexneri. The 18 animal isolates (15 yak and 3 beef cattle isolates) in PG1 were separated into 4 lineages, and the 16 animal isolates (1 yak, 5 beef cattle and 10 dairy cow isolates) in PG3 were clustered in 8 lineages. The most recent human isolates from China belonged to PG3 whereas Chinese isolates from the 1950s-1960s belonged to PG1. PG1 S. flexneri may has been transmitted to the yaks during PG1 circulation in the human population in China and has remained in the yak population since, while PG3 S. flexneri in animals were likely recent transmissions from the human population. Increased stability of the large virulence plasmid and acquisition of abundant antimicrobial resistance determinants may have enabled PG3 to expand globally and replaced PG1 in China. Our study confirms that animals may act as a reservoir for S. flexneri. Genomic analysis revealed the evolutionary history of multiple S. flexneri lineages in animals and humans in China. However, further studies are required to determine the public health threat of S. flexneri from animals.
Collapse
Affiliation(s)
- Junrong Liang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jing Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
| | - Shan Lu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianping Wang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian Qin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Pu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Kui Dong
- Shanxi Eye Hospital, Taiyuan, China
| | - Mingchao Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Guangzhou Laboratory, Guangzhou, China
| | - Jianguo Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Research Institute of Public Heath, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
6
|
Wyrsch ER, Chowdhury PR, Jarocki VM, Brandis KJ, Djordjevic SP. Duplication and diversification of a unique chromosomal virulence island hosting the subtilase cytotoxin in Escherichia coli ST58. Microb Genom 2020; 6:e000387. [PMID: 32519937 PMCID: PMC7371111 DOI: 10.1099/mgen.0.000387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The AB5 cytotoxins are important virulence factors in Escherichia coli. The most notable members of the AB5 toxin families include Shiga toxin families 1 (Stx1) and 2 (Stx2), which are associated with enterohaemorrhagic E. coli infections causing haemolytic uraemic syndrome and haemorrhagic colitis. The subAB toxins are the newest and least well understood members of the AB5 toxin gene family. The subtilase toxin genes are divided into a plasmid-based variant, subAB1, originally described in enterohaemorrhagic E. coli O113:H21, and distinct chromosomal variants, subAB2, that reside in pathogenicity islands encoding additional virulence effectors. Previously we identified a chromosomal subAB2 operon within an E. coli ST58 strain IBS28 (ONT:H25) taken from a wild ibis nest at an inland wetland in New South Wales, Australia. Here we show the subAB2 toxin operon comprised part of a 140 kb tRNA-Phe chromosomal island that co-hosted tia, encoding an outer-membrane protein that confers an adherence and invasion phenotype and additional virulence and accessory genetic content that potentially originated from known virulence island SE-PAI. This island shared a common evolutionary history with a secondary 90 kb tRNA-Phe pathogenicity island that was presumably generated via a duplication event. IBS28 is closely related [200 single-nucleotide polymorphisms (SNPs)] to four North American ST58 strains. The close relationship between North American isolates of ST58 and IBS28 was further supported by the identification of the only copy of a unique variant of IS26 within the O-antigen gene cluster. Strain ISB28 may be a historically important E. coli ST58 genome sequence hosting a progenitor pathogenicity island encoding subAB.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Veronica M. Jarocki
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate J. Brandis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington 2052 NSW, Australia
| | - Steven P. Djordjevic
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Cervantes-Rivera R, Tronnet S, Puhar A. Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serotype 5a M90T and genome-wide transcriptional start site determination. BMC Genomics 2020; 21:285. [PMID: 32252626 PMCID: PMC7132871 DOI: 10.1186/s12864-020-6565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
Background Shigella is a Gram-negative facultative intracellular bacterium that causes bacillary dysentery in humans. Shigella invades cells of the colonic mucosa owing to its virulence plasmid-encoded Type 3 Secretion System (T3SS), and multiplies in the target cell cytosol. Although the laboratory reference strain S. flexneri serotype 5a M90T has been extensively used to understand the molecular mechanisms of pathogenesis, its complete genome sequence is not available, thereby greatly limiting studies employing high-throughput sequencing and systems biology approaches. Results We have sequenced, assembled, annotated and manually curated the full genome of S. flexneri 5a M90T. This yielded two complete circular contigs, the chromosome and the virulence plasmid (pWR100). To obtain the genome sequence, we have employed long-read PacBio DNA sequencing followed by polishing with Illumina RNA-seq data. This provides a new hybrid strategy to prepare gapless, highly accurate genome sequences, which also cover AT-rich tracks or repetitive sequences that are transcribed. Furthermore, we have performed genome-wide analysis of transcriptional start sites (TSS) and determined the length of 5′ untranslated regions (5′-UTRs) at typical culture conditions for the inoculum of in vitro infection experiments. We identified 6723 primary TSS (pTSS) and 7328 secondary TSS (sTSS). The S. flexneri 5a M90T annotated genome sequence and the transcriptional start sites are integrated into RegulonDB (http://regulondb.ccg.unam.mx) and RSAT (http://embnet.ccg.unam.mx/rsat/) databases to use their analysis tools in the S. flexneri 5a M90T genome. Conclusions We provide the first complete genome for S. flexneri serotype 5a, specifically the laboratory reference strain M90T. Our work opens the possibility of employing S. flexneri M90T in high-quality systems biology studies such as transcriptomic and differential expression analyses or in genome evolution studies. Moreover, the catalogue of TSS that we report here can be used in molecular pathogenesis studies as a resource to know which genes are transcribed before infection of host cells. The genome sequence, together with the analysis of transcriptional start sites, is also a valuable tool for precise genetic manipulation of S. flexneri 5a M90T. Further, we present a new hybrid strategy to prepare gapless, highly accurate genome sequences. Unlike currently used hybrid strategies combining long- and short-read DNA sequencing technologies to maximize accuracy, our workflow using long-read DNA sequencing and short-read RNA sequencing provides the added value of using non-redundant technologies, which yield distinct, exploitable datasets.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Sophie Tronnet
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden. .,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
8
|
Belotserkovsky I, Sansonetti PJ. Shigella and Enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 2018; 416:1-26. [PMID: 30218158 DOI: 10.1007/82_2018_104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Cedex 15, Paris, France.
| | - Philippe J Sansonetti
- Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
9
|
Sváb D, Bálint B, Vásárhelyi B, Maróti G, Tóth I. Comparative Genomic and Phylogenetic Analysis of a Shiga Toxin Producing Shigella sonnei (STSS) Strain. Front Cell Infect Microbiol 2017; 7:229. [PMID: 28611956 PMCID: PMC5447701 DOI: 10.3389/fcimb.2017.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
Shigella strains are important agents of bacillary dysentery, and in recent years Shigella sonnei has emerged as the leading cause of shigellosis in industrialized and rapidly developing countries. More recently, several S. sonnei and Shigella flexneri strains producing Shiga toxin (Stx) have been reported from sporadic cases and from an outbreak in America. In the present study we aimed to shed light on the evolution of a recently identified Shiga toxin producing S. sonnei (STSS) isolated in Europe. Here we report the first completely assembled whole genome sequence of a multidrug resistant (MDR) Stx-producing S. sonnei (STSS) clinical strain and reveal its phylogenetic relations. STSS 75/02 proved to be resistant to ampicillin, streptomycin, tetracycline, chloramphenicol, thrimetoprim, and sulfomethoxazol. The genome of STSS 75/02 contains a 4,891,717 nt chromosome and seven plasmids including the 214 kb invasion plasmid (pInv) harboring type III secretion system genes and associated effectors. The chromosome harbors 23 prophage regions including the Stx1 converting prophage. The genome carries all virulence determinants necessary for an enteroinvasive lifestyle, as well as the Stx1 encoding gene cluster within an earlier described inducible converting prophage. In silico SNP genotyping of the assembled genome as well as 438 complete or draft S. sonnei genomes downloaded from NCBI GenBank revealed that S. sonnei 75/02 belongs to the more recently diverged global MDR lineage (IIIc). Targeted screening of 1131 next-generation sequencing projects taken from NCBI Short Read Archive of confirms that only a few S. sonnei isolates are Stx positive. Our results suggest that the acquisition of Stx phages could have occurred in different environments as independent events and that multiple horizontal transfers are responsible for the appearance of Stx phages in S. sonnei strains.
Collapse
Affiliation(s)
- Domonkos Sváb
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| | | | | | - Gergely Maróti
- Biological Research Centre, Institute of Biochemistry, Hungarian Academy of SciencesSzeged, Hungary
| | - István Tóth
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
10
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
11
|
Investigating the Relatedness of Enteroinvasive Escherichia coli to Other E. coli and Shigella Isolates by Using Comparative Genomics. Infect Immun 2016; 84:2362-2371. [PMID: 27271741 DOI: 10.1128/iai.00350-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Enteroinvasive Escherichia coli (EIEC) is a unique pathovar that has a pathogenic mechanism nearly indistinguishable from that of Shigella species. In contrast to isolates of the four Shigella species, which are widespread and can be frequent causes of human illness, EIEC causes far fewer reported illnesses each year. In this study, we analyzed the genome sequences of 20 EIEC isolates, including 14 first described in this study. Phylogenomic analysis of the EIEC genomes demonstrated that 17 of the isolates are present in three distinct lineages that contained only EIEC genomes, compared to reference genomes from each of the E. coli pathovars and Shigella species. Comparative genomic analysis identified genes that were unique to each of the three identified EIEC lineages. While many of the EIEC lineage-specific genes have unknown functions, those with predicted functions included a colicin and putative proteins involved in transcriptional regulation or carbohydrate metabolism. In silico detection of the Shigella virulence plasmid (pINV), which is essential for the invasion of host cells, demonstrated that a form of pINV was present in nearly all EIEC genomes, but the Mxi-Spa-Ipa region of the plasmid that encodes the invasion-associated proteins was absent from several of the EIEC isolates. The comparative genomic findings in this study support the hypothesis that multiple EIEC lineages have evolved independently from multiple distinct lineages of E. coli via the acquisition of the Shigella virulence plasmid and, in some cases, the Shigella pathogenicity islands.
Collapse
|
12
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
14
|
Tran ENH, Attridge SR, Teh MY, Morona R. Shigella flexneri cell-to-cell spread, and growth and inflammation in mice, is limited by the outer membrane protease IcsP. FEMS Microbiol Lett 2015; 362:fnv088. [PMID: 26025071 DOI: 10.1093/femsle/fnv088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
The Shigella flexneri autotransporter protein IcsA is essential for intra- and intercellular spread, and icsA mutants are attenuated in several models. However, the pathogenic significance of the outer membrane protease IcsP, which orchestrates the polar distribution of IcsA on the bacterial surface, remains unclear. To further examine this point, we constructed icsP mutants in the two most commonly studied S. flexneri strains and evaluated their in vitro and in vivo performance relative to wild type. Both icsP mutants showed aberrant surface distribution of IcsA, but the in vitro consequences depended upon the cell line being used to assess bacterial motility and plaque formation. Evaluating the behaviour of the mutants in two mouse models suggested functional expression of icsP might limit bacterial persistence and the associated inflammation in host tissues, consistent with the findings in one of the three cell lines used.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen R Attridge
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Min Yan Teh
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Renato Morona
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Shi R, Yang X, Chen L, Chang HT, Liu HY, Zhao J, Wang XW, Wang CQ. Pathogenicity of Shigella in chickens. PLoS One 2014; 9:e100264. [PMID: 24949637 PMCID: PMC4064985 DOI: 10.1371/journal.pone.0100264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 05/25/2014] [Indexed: 12/29/2022] Open
Abstract
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.
Collapse
Affiliation(s)
- Run Shi
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xia Yang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Lu Chen
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hong-tao Chang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hong-ying Liu
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xin-wei Wang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chuan-qing Wang
- Collage of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
16
|
Vergara-Irigaray M, Fookes MC, Thomson NR, Tang CM. RNA-seq analysis of the influence of anaerobiosis and FNR on Shigella flexneri. BMC Genomics 2014; 15:438. [PMID: 24907032 PMCID: PMC4229854 DOI: 10.1186/1471-2164-15-438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. Results We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. Conclusions Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-438) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Christoph M Tang
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
17
|
Boisen N, Scheutz F, Rasko DA, Redman JC, Persson S, Simon J, Kotloff KL, Levine MM, Sow S, Tamboura B, Toure A, Malle D, Panchalingam S, Krogfelt KA, Nataro JP. Genomic characterization of enteroaggregative Escherichia coli from children in Mali. J Infect Dis 2011; 205:431-44. [PMID: 22184729 PMCID: PMC3256949 DOI: 10.1093/infdis/jir757] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background. Enteroaggregative Escherichia coli (EAEC) is a cause of epidemic and sporadic diarrhea, yet its role as an enteric pathogen is not fully understood. Methods. We characterized 121 EAEC strains isolated in 2008 as part of a case-control study of moderate to severe acute diarrhea among children 0–59 months of age in Bamako, Mali. We applied multiplex polymerase chain reaction and comparative genome hybridization to identify potential virulence factors among the EAEC strains, coupled with classification and regression tree modeling to reveal combinations of factors most strongly associated with illness. Results. The gene encoding the autotransporter protease SepA, originally described in Shigella species, was most strongly associated with diarrhea among the EAEC strains tested (odds ratio, 5.6 [95% confidence interval, 1.92–16.17]; P = .0006). In addition, we identified 3 gene combinations correlated with diarrhea: (1) a clonal group positive for sepA and a putative hemolysin; (2) a group harboring the EAST-1 enterotoxin and the flagellar type H33 but no other previously identified EAEC virulence factor; and (3) a group carrying several of the typical EAEC virulence genes. Conclusion. Our data suggest that only a subset of EAEC strains are pathogenic in Mali and suggest that sepA may serve as a valuable marker for the most virulent isolates.
Collapse
Affiliation(s)
- Nadia Boisen
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Identification of Escherichia coli genes associated with urinary tract infections. J Clin Microbiol 2011; 50:449-56. [PMID: 22075599 DOI: 10.1128/jcm.00640-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most common cause of urinary tract infections (UTIs). E. coli genes epidemiologically associated with UTIs are potentially valuable in developing strategies for treating and/or preventing such infections as well as differentiating uropathogenic E. coli from nonuropathogenic E. coli. To identify E. coli genes associated with UTIs in humans, we combined microarray-based and PCR-based analyses to investigate different E. coli source groups derived from feces of healthy humans and from patients with cystitis, pyelonephritis, or urosepsis. The cjrABC-senB gene cluster, sivH, sisA, sisB, eco274, and fbpB, were identified to be associated with UTIs. Of these, cjrABC-senB, sisA, sisB, and fbpB are known to be involved in urovirulence in the mouse model of ascending UTI. Our results provide evidence to support their roles as urovirulence factors in human UTIs. In addition, the newly identified UTI-associated genes were mainly found in members of phylogenetic groups B2 and/or D.
Collapse
|
19
|
Kaminski RW, Oaks EV. Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 2010; 8:1693-704. [PMID: 19943764 DOI: 10.1586/erv.09.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Shigellosis remains a formidable disease globally, with children of the developing world bearing the greatest number of infections. The need for an affordable, safe and efficacious vaccine has persisted for decades. Vaccines to prevent shigellosis can be divided into living and nonliving approaches. Several nonliving Shigella vaccines are currently at different stages of development and show substantial promise. Outlined here is an overview of multiple nonliving vaccine technologies, highlighting their current status and recent advances in testing. In addition, gaps in the knowledge base regarding immune mechanisms of protection are explored.
Collapse
Affiliation(s)
- Robert W Kaminski
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | |
Collapse
|
20
|
Uropathogenic Escherichia coli Suppresses the host inflammatory response via pathogenicity island genes sisA and sisB. Infect Immun 2009; 77:5322-33. [PMID: 19797063 DOI: 10.1128/iai.00779-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli can successfully colonize the urinary tract of the immunocompetent host. In part, this is accomplished by dampening the host immune response. Indeed, the sisA and sisB genes (shiA-like inflammation suppressor genes A and B) of uropathogenic E. coli strain CFT073, homologs of the Shigella flexneri SHI-2 pathogenicity island gene shiA, suppress the host inflammatory response. A double deletion mutant (DeltasisA DeltasisB) resulted in a hyperinflammatory phenotype in an experimental model of ascending urinary tract infection. The DeltasisA DeltasisB mutant not only caused significantly more inflammatory foci in the kidneys of CBA/J mice (P = 0.0399), but these lesions were also histologically more severe (P = 0.0477) than lesions observed in mice infected with wild-type CFT073. This hyperinflammatory phenotype could be suppressed to wild-type levels by in vivo complementation of the DeltasisA DeltasisB mutant with either the sisA or sisB gene in trans. The DeltasisA DeltasisB mutant was outcompeted by wild-type CFT073 during cochallenge infection in the bladder (P = 0.0295) at 48 h postinoculation (hpi). However, during cochallenge infections, we reasoned that wild-type CFT073 could partially complement the DeltasisA DeltasisB mutant. Consistent with this, the most significant colonization defect of the DeltasisA DeltasisB mutant in vivo was observed during independent challenge relative to wild-type CFT073, with attenuation of the mutant observed in the bladder (P < 0.0001) and kidneys (P = 0.0003) at 6 hpi. By 24 and 48 hpi, the DeltasisA DeltasisB mutant was no longer significantly attenuated in the bladder or kidneys, suggesting that the sisA and sisB genes may be important for suppressing the host immune response during the initial stages of infection.
Collapse
|
21
|
Pulimood AB, Ramakrishna BS, Rita AB, Srinivasan P, Mohan V, Gupta S, Perakath B, Kang G, Chandy G, Balasubramanian KA. Early activation of mucosal dendritic cells and macrophages in acute Campylobacter colitis and cholera: An in vivo study. J Gastroenterol Hepatol 2008; 23:752-8. [PMID: 18410609 DOI: 10.1111/j.1440-1746.2008.05325.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Macrophages and dendritic cells are closely related mononuclear phagocytic cells. Little is known about their in vivo role in acute intestinal bacterial infections in humans. We undertook to evaluate these cells in rectal mucosal biopsies of patients with acute colitis. METHODS All mucosal mononuclear phagocytic cells in rectal biopsies of patients with acute Campylobacter colitis (n = 5), shigellosis (n = 5), and cholera (n = 10) were evaluated ultrastructurally and compared with those in controls (n = 5). RESULTS Mononuclear phagocytic cells in the superficial rectal mucosa showed a higher prevalence of ultrastructural features of activation in Campylobacter colitis and cholera than in controls. A lower prevalence of features of activation with increased monocytes was seen in shigellosis. Cells with the ultrastructural morphology of activated dendritic cells constituted 41% and 45% of all mononuclear phagocytic cells in two of five patients with Campylobacter colitis and 4-22% of cells in four of 10 patients with cholera. Their presence in patients with Campylobacter colitis was associated with significant surface epithelial damage and prominent acute inflammatory changes in the mucosa. CONCLUSIONS This is the first ultrastructural study to show activated macrophages and dendritic cells in vivo in acute Campylobacter colitis and cholera. Dendritic cell activation occurred early in the clinical course of these infections. Surface epithelial damage may play a role in the activation of dendritic cells.
Collapse
Affiliation(s)
- Anna B Pulimood
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
23
|
Phalipon A, Sansonetti PJ. Shigella’
s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 2007; 85:119-29. [PMID: 17213832 DOI: 10.1038/sj.icb7100025] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent pro-inflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH(2)-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, INSERM U786, Institut Pasteur 25, Rue du Dr Roux, Paris, France.
| | | |
Collapse
|
24
|
Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 2006; 188:977-87. [PMID: 16428402 PMCID: PMC1347334 DOI: 10.1128/jb.188.3.977-987.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence and genetic organization of a new genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is reported. This 49,600-bp island is inserted at the selC locus and contains putative mobile genetic elements such as a phage-related integrase gene, transposase genes, and direct repeats. AGI-3 shows a mosaic structure of five modules. Some of these modules are present in other E. coli strains and in other pathogenic bacterial species. The gene cluster aec-35 to aec-37 of module 1 encodes proteins associated with carbohydrates assimilation such as a major facilitator superfamily transporter (Aec-36), a glycosidase (Aec-37), and a putative transcriptional regulator of the LacI family (Aec-35). The aec-35 to aec-37 cluster was found in 11.6% of the tested pathogenic and nonpathogenic E. coli strains. When present, the aec-35 to aec-37 cluster is strongly associated with the selC locus (97%). Deletion of the aec-35-aec-37 region affects the assimilation of seven carbohydrates, decreases the growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 for chickens.
Collapse
Affiliation(s)
- Iman Chouikha
- Equipe de Pathologie Bactérienne, UR86, INRA, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
25
|
Ingersoll MA, Zychlinsky A. ShiA abrogates the innate T-cell response to Shigella flexneri infection. Infect Immun 2006; 74:2317-27. [PMID: 16552062 PMCID: PMC1418937 DOI: 10.1128/iai.74.4.2317-2327.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/05/2005] [Accepted: 01/18/2006] [Indexed: 01/22/2023] Open
Abstract
Shigella spp. are the causative agent of bacillary dysentery. Infection results in acute colonic injury due to the host inflammatory response. The mediators of the damage, infiltrating polymorphonuclear leukocytes (PMN), also resolve the infection. Shigella flexneri's virulence effectors are encoded on its large virulence plasmid and on pathogenicity islands in the chromosome. The SHI-2 pathogenicity island encodes the virulence factor ShiA, which down-regulates Shigella-induced inflammation. In the rabbit ileal loop model, infection with a shiA null strain (DeltashiA) induces a more severe inflammation than wild-type infection. Conversely, a Shigella strain that overexpresses ShiA (ShiA+) is less inflammatory than the wild-type strain. To determine the host responses modulated by ShiA, we performed infection studies using the mouse lung model, which recapitulates the phenotypes observed in the rabbit ileal loop model. Significantly, ShiA+ strain-infected mice cleared the bacteria and survived infection, while wild-type- and DeltashiA strain-infected mice could not clear the bacteria and ultimately died. Surprisingly, microarray analysis of infected lungs revealed the regulation of genes involved in innate T-cell responses to infection. Immunohistochemistry showed that wild-type- and DeltashiA strain-infected animals have greater numbers of PMN and T cells in their lungs over the course of infection than ShiA+ strain-infected animals. These results suggest that the T-cell innate response is suppressed by ShiA in Shigella infections.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/pathology
- Gene Expression Profiling
- Immunity, Innate
- Inflammation Mediators/metabolism
- Inflammation Mediators/toxicity
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Neutrophil Activation/immunology
- Neutrophil Infiltration/immunology
- Oligonucleotide Array Sequence Analysis
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Pneumonia, Bacterial/prevention & control
- Shigella flexneri/genetics
- Shigella flexneri/immunology
- Shigella flexneri/pathogenicity
- Survival Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
- T-Lymphocytes/pathology
- Virulence Factors/biosynthesis
- Virulence Factors/genetics
- Virulence Factors/toxicity
Collapse
Affiliation(s)
- Molly A Ingersoll
- Max Planck Institute for Infection Biology, 21/22 Schumannstrasse, 10117 Berlin, Germany
| | | |
Collapse
|
26
|
Parsot C. Shigellaspp. and enteroinvasiveEscherichia colipathogenicity factors. FEMS Microbiol Lett 2005; 252:11-8. [PMID: 16182469 DOI: 10.1016/j.femsle.2005.08.046] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
Bacteria of Shigella spp. (S. boydii, S. dysenteriae, S. flexneri and S. sonnei) and enteroinvasive Escherichia coli (EIEC) are responsible for shigellosis in humans, a disease characterized by the destruction of the colonic mucosa that is induced upon bacterial invasion. Shigella spp. and EIEC strains contain a virulence plasmid of approximately 220 kb that encodes determinants for entry into epithelial cells and dissemination from cell to cell. This review presents the current model on mechanisms of invasion of the colonic epithelium by these bacteria and focuses on their pathogenicity factors, particularly the virulence plasmid-encoded type III secretion system.
Collapse
Affiliation(s)
- Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
27
|
Okuda J, Toyotome T, Kataoka N, Ohno M, Abe H, Shimura Y, Seyedarabi A, Pickersgill R, Sasakawa C. Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses. Biochem Biophys Res Commun 2005; 333:531-9. [PMID: 15950937 DOI: 10.1016/j.bbrc.2005.05.145] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 01/01/2023]
Abstract
Shigella effectors injected into the host cell via the type III secretion system are involved in various aspects of infection. Here, we show that one of the effectors, IpaH9.8, plays a role in modulating inflammatory responses to Shigella infection. In murine lung infection model, DeltaipaH9.8 mutant caused more severe inflammatory responses with increased pro-inflammatory cytokine production levels than did wild-type Shigella, which resulted in a 30-fold decrease in bacterial colonization. Binding assays revealed that IpaH9.8 has a specific affinity to U2AF(35), a mammalian splicing factor, which interferes with U2AF(35)-dependent splicing as assayed for IgM pre-mRNA. Reducing the U2AF(35) level in HeLa cells and infecting HeLa cells with wild-type caused a decrease in the expression of the il-8, RANTES, GM-CSF, and il-1beta genes as examined by RT-PCR. The results indicate that IpaH9.8 plays a role in Shigella infection to optimize the host inflammatory responses, thus facilitating bacterial colonization within the host epithelial cells.
Collapse
Affiliation(s)
- Jun Okuda
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8039, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
That we live with numerous bacteria in our gut without any adverse effects is a remarkable feat by the body's immune system, particularly considering the wealth of sensing and effector systems that are available to trigger inflammatory or innate immune responses to microbial intrusion. So, a fine line seems to exist between the homeostatic balance maintained in the presence of commensal gut flora and the necessarily destructive response to bacterial pathogens that invade the gut mucosa. This review discusses the mechanisms for establishing and controlling the 'dialogue' between unresponsiveness and initiation of active immune defences in the gut. Si vis pacem, para bellum. (If you wish for peace, prepare for war.).
Collapse
Affiliation(s)
- Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, U389 INSERM and Howard Hughes Medical Institute, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|