1
|
Luo X, Zhang J, Tolö J, Kügler S, Michel U, Bähr M, Koch JC. Axonal autophagic vesicle transport in the rat optic nerve in vivo under normal conditions and during acute axonal degeneration. Acta Neuropathol Commun 2024; 12:82. [PMID: 38812004 PMCID: PMC11134632 DOI: 10.1186/s40478-024-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.
Collapse
Affiliation(s)
- Xiaoyue Luo
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jiong Zhang
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Johan Tolö
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Visual Disfunction due to the Selective Effect of Glutamate Agonists on Retinal Cells. Int J Mol Sci 2021; 22:ijms22126245. [PMID: 34200611 PMCID: PMC8230349 DOI: 10.3390/ijms22126245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death. However, not all types of retinal neurons experience the same degree of injury in response to the excitotoxic stimulus. The goal of the present work is to address the effect of intraocular injection of different doses of NMDA/KA on the structure and function of several types of retinal cells and their functionality. To globally analyze the effect of glutamate receptor activation in the retina after the intraocular injection of excitotoxic agents, a combination of histological, electrophysiological, and functional tools has been employed to assess the changes in the retinal structure and function. Retinal excitotoxicity caused by the intraocular injection of a mixture of NMDA/KA causes a harmful effect characterized by a great loss of bipolar, amacrine, and retinal ganglion cells, as well as the degeneration of the inner retina. This process leads to a loss of retinal cell functionality characterized by an impairment of light sensitivity and visual acuity, with a strong effect on the retinal OFF pathway. The structural and functional injury suffered by the retina suggests the importance of the glutamate receptors expressed by different types of retinal cells. The effect of glutamate agonists on the OFF pathway represents one of the main findings of the study, as the evaluation of the retinal lesions caused by excitotoxicity could be specifically explored using tests that evaluate the OFF pathway.
Collapse
|
3
|
Calvo E, Milla-Navarro S, Ortuño-Lizarán I, Gómez-Vicente V, Cuenca N, De la Villa P, Germain F. Deleterious Effect of NMDA Plus Kainate on the Inner Retinal Cells and Ganglion Cell Projection of the Mouse. Int J Mol Sci 2020; 21:ijms21051570. [PMID: 32106602 PMCID: PMC7084685 DOI: 10.3390/ijms21051570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Combined administration of N-Methyl-D-Aspartate (NMDA) and kainic acid (KA) on the inner retina was studied as a model of excitotoxicity. The right eye of C57BL6J mice was injected with 1 µL of PBS containing NMDA 30 mM and KA 10 mM. Only PBS was injected in the left eye. One week after intraocular injection, electroretinogram recordings and immunohistochemistry were performed on both eyes. Retinal ganglion cell (RGC) projections were studied by fluorescent-cholerotoxin anterograde labeling. A clear decrease of the retinal "b" wave amplitude, both in scotopic and photopic conditions, was observed in the eyes injected with NMDA/KA. No significant effect on the "a" wave amplitude was observed, indicating the preservation of photoreceptors. Immunocytochemical labeling showed no effects on the outer nuclear layer, but a significant thinning on the inner retinal layers, thus indicating that NMDA and KA induce a deleterious effect on bipolar, amacrine and ganglion cells. Anterograde tracing of the visual pathway after NMDA and KA injection showed the absence of RGC projections to the contralateral superior colliculus and lateral geniculate nucleus. We conclude that glutamate receptor agonists, NMDA and KA, induce a deleterious effect of the inner retina when injected together into the vitreous chamber.
Collapse
Affiliation(s)
- Estrella Calvo
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain (P.D.l.V.)
| | | | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain (P.D.l.V.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Francisco Germain
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain (P.D.l.V.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Negative impact of AQP-4 channel inhibition on survival of retinal ganglion cells and glutamate metabolism after crushing optic nerve. Exp Eye Res 2016; 146:118-127. [DOI: 10.1016/j.exer.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023]
|
5
|
The effect of memantine on functional recovery of the facial nerve after crush injury. Eur Arch Otorhinolaryngol 2014; 272:473-8. [DOI: 10.1007/s00405-014-2986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
|
6
|
Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma. J Neurosci 2013; 32:15859-76. [PMID: 23136425 DOI: 10.1523/jneurosci.0038-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.
Collapse
|
7
|
Thaler S, Fiedorowicz M, Choragiewicz TJ, Bolz S, Tura A, Henke-Fahle S, Yoeruek E, Zrenner E, Bartz-Schmidt KU, Ziemssen F, Schuettauf F. Toxicity testing of the VEGF inhibitors bevacizumab, ranibizumab and pegaptanib in rats both with and without prior retinal ganglion cell damage. Acta Ophthalmol 2010; 88:e170-6. [PMID: 20491691 DOI: 10.1111/j.1755-3768.2010.01927.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the effects of intravitreally introduced vascular endothelial growth factor (VEGF) inhibitors in rat eyes with healthy retinal ganglion cells (RGC) and into others with N-methyl-D-aspartate (NMDA)-induced RGC damage. METHODS Bevacizumab, ranibizumab and pegaptanib were intravitreally injected each at two different concentrations. Respective vehicles of the three substances served as controls. In a different group, additionally a rat anti-VEGF antibody was injected after NMDA treatment. Retrogradely labelled RGC were counted on retinal wholemounts 1 week or 2 months after intravitreal introduction of the VEGF inhibitors. Electron microscopy (EM) was performed on normal rat eyes 2 months after introduction of the VEGF inhibitors. RESULTS RGC counts in healthy rat eyes were essentially unchanged from those of the control animals after the administration of both low and high concentrations of bevacizumab, ranibizumab or pegaptanib. Compared to the other two substances, however, high doses of pegaptanib and its respective vehicle significantly decreased RGC after 1 week and led to a marked increase of mitochondrial swelling in EM. In eyes with NMDA-induced RGC damage, no changes of RGC numbers were detected after rat anti-VEGF antibody or bevacizumab, ranibizumab and pegaptanib at both tested concentrations. CONCLUSIONS Even at higher doses, bevacizumab and ranibizumab showed no toxic effects on RGC in vivo in either untreated rats or in the NMDA-induced RGC damage model. Also a rat anti-VEGF antibody showed no adverse effects after NMDA. Anti-VEGF therapy therefore appears safe even for eyes with additional excitotoxic RGC damage. Potential harm from the pegaptanib carrier solution at very high local concentrations cannot be excluded.
Collapse
Affiliation(s)
- Sebastian Thaler
- Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schuettauf F, Rejdak R, Thaler S, Bolz S, Lehaci C, Mankowska A, Zarnowski T, Junemann A, Zagorski Z, Zrenner E, Grieb P. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res 2006; 83:1128-34. [PMID: 16876158 DOI: 10.1016/j.exer.2006.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 05/26/2006] [Accepted: 05/31/2006] [Indexed: 01/23/2023]
Abstract
Citicoline and lithium (Li(-)) have been shown to support retinal ganglion cell (RGC) survival and axon regeneration in vitro. Optic nerve crush (ONC) is a model of both brain axonal injury and certain aspects of the glaucomatous degeneration of RGC. We have used this model to quantify protection offered to RGC by these drugs and to determine whether their effects are mediated by enhanced expression of the antiapoptotic protein Bcl-2. Adult rats (6-12 per group) were subjected to ONC accompanied by a contralateral sham operation. Animals were treated intraperitoneally with either vehicle, citicoline sodium (1g/kg daily for up to 7 days and 300 mg/kg daily afterwards), lithium chloride (30 mg/kg daily), or both drugs combined. Fluorogold was injected bilaterally into superior colliculi 1, 5 or 19 days after ONC. Labeled cells were counted under a fluorescence microscope 2 days after tracer injection. In a separate set of experiments the effects of treatments on expression of Bcl-2 in retinas were evaluated by immunohistochemistry. In vehicle-treated animals there was a progressive decrease of RGC density after crush. This decrease was attenuated in citicoline-treated animals 1 week and 3 weeks after the crush. In the lithium-treated group protection was even more pronounced. In animals treated with both drugs RGC protection was similar to that achieved by lithium alone. Bcl-2 immunoreactivity was seen predominantly in retinal ganglion cells. Its increase was recorded in the lithium and citicoline group as well as in animals treated with the combination of both drugs. Both citicoline and lithium protect RGC and their axons in vivo against delayed degeneration triggered by the ONC. Retinoprotective action of both drugs may involve an increase in Bcl-2 expression.
Collapse
Affiliation(s)
- Frank Schuettauf
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, University Eye Hospital, Röntgenweg 11, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Okuno T, Oku H, Sugiyama T, Ikeda T. Glutamate level in optic nerve head is increased by artificial elevation of intraocular pressure in rabbits. Exp Eye Res 2006; 82:465-70. [PMID: 16168413 DOI: 10.1016/j.exer.2005.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 11/17/2022]
Abstract
Neurons can be damaged by the activation of glutamate receptors, but whether glutamate is related to the development of glaucomatous optic neuropathy is still controversial. The purpose of this study was to measure the acute changes in the glutamate levels in the optic nerve head (ONH) of rabbits induced by an artificial elevation of the intraocular pressure (IOP). A concentric microdialysis probe was inserted into the ONH of rabbits via the pars plana. The probe was perfused with Ringer's solution, and the levels of glutamate in 10-min dialysate samples were measured repeatedly using high-performance liquid chromatography. After the glutamate level was stabilized for at least 60 min, the IOP was adjusted to three levels; 120 mm Hg (n=11), 60 mm Hg (n=12), and 15 mm Hg (control group; n=11). The IOP was altered by changing the height of a bottle of Ringer's solution, which was connected to the anterior chamber by a 23-gauge needle. The IOP levels were maintained for 60 min, and the glutamate levels were determined every 10 min during the 60 min. The mean basal levels of glutamate in the 10-min dialysate were not significantly different among the three groups. The glutamate levels remained unchanged and stable in the controls, but elevation of the IOP significantly increased the level of the glutamate in the dialysate (IOP60, P=0.012; and IOP120, P=0.005: repeated measures ANOVA). Elevation of the IOP causes an increase in the glutamate levels in the ONH of rabbits. This suggests a possible interaction between glutamate metabolism and the IOP in the ONH.
Collapse
Affiliation(s)
- Takashi Okuno
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-cho Takatsuki Osaka 569-8686 Japan
| | | | | | | |
Collapse
|
10
|
Abstract
Excitotoxicity describes the process of neuronal injury by excess stimulation of amino acid receptors. This form of insult was first described in the retina, and subsequently has been shown to be an important component of the pathogenesis of ischaemic and traumatic injury in the central nervous system. Furthermore, there is increasing evidence that excitotoxicity is involved in several chronic neurological conditions, and anti-excitotoxic treatment has already been approved for some of these conditions. A large-scale trial is currently underway that will determine the efficacy of an anti-excitotoxic drug (memantine) in the management of glaucoma. This review provides an overview of neurotransmission and the mechanisms of excitotoxicity. The evidence for excitotoxicity as a component of certain neurological diseases, including glaucoma, is discussed.
Collapse
Affiliation(s)
- Robert J Casson
- Department of Ophthalmology and Visual Science, Royal Adelaide Hospital, North Tce., Adelaide, SA 5000, Australia.
| |
Collapse
|
11
|
Schuettauf F, Zurakowski D, Quinto K, Varde MA, Besch D, Laties A, Anderson R, Wen R. Neuroprotective effects of cardiotrophin-like cytokine on retinal ganglion cells. Graefes Arch Clin Exp Ophthalmol 2005; 243:1036-42. [PMID: 15838664 DOI: 10.1007/s00417-005-1152-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 01/04/2005] [Accepted: 01/19/2005] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Premature neuronal cell death is a feature of numerous central nervous system and eye diseases, including glaucoma. Neurons (including retinal ganglion cells, RGCs) are protected by several neurotrophic factors, among those the IL-6 family of cytokines. Lately, a novel member of the IL-6 family of cytokines has been identified and cloned. This cytokine is known as novel neurotrophin-1/B-cell-stimulating factor-3 (NNT-1/BSF-3) or cardiotrophin-like cytokine (CLC). It shows neurotrophic as well as B-cell stimulatory effects. METHODS In this study, the neuroprotective properties of CLC on RGC loss in vivo were investigated. RESULTS CLC significantly protected RGCs from degeneration in both chosen models of retinal neuronal damage: optic nerve crush (P<0.01) and N-methyl-D-aspartate (NMDA) injection (P<0.001). CONCLUSIONS CLC shows neuroprotective effects on RGCs in vivo and might be a treatment option for chronic neurodegenerative eye diseases such as glaucoma. Clinical feasibility for the substance requires further investigation since the immunomodulatory and possible adverse effects have not yet been thoroughly characterized.
Collapse
Affiliation(s)
- Frank Schuettauf
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|