1
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
3
|
Erlandsson A, Carlsson J, Andersson SO, Vyas C, Wikström P, Andrén O, Davidsson S, Rider JR. High inducible nitric oxide synthase in prostate tumor epithelium is associated with lethal prostate cancer. Scand J Urol 2018; 52:129-133. [PMID: 29307261 DOI: 10.1080/21681805.2017.1421261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the role of inducible nitric oxide synthase (iNOS) in lethal prostate cancer (PCa) by studying the iNOS immunoreactivity in tumor tissue from men diagnosed with localized PCa. MATERIALS AND METHODS This study is nested within a cohort of men diagnosed with incidental PCa undergoing transurethral resection of the prostate (the Swedish Watchful Waiting Cohort). To investigate molecular determinants of lethal PCa, men who died from PCa (n = 132) were selected as cases; controls (n = 168) comprised men with PCa who survived for at least 10 years without dying from PCa during follow-up. The immunoreactivity of iNOS in prostate tumor epithelial cells and in cells of the surrounding stroma was scored as low/negative, moderate or high. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for lethal PCa according to iNOS category. RESULTS There was no association between iNOS immunoreactivity in stroma and lethal disease. However, when comparing high versus low/negative iNOS immunoreactivity in epithelial cells, the OR for lethal PCa was 3.80 (95% CI 1.45-9.97). CONCLUSION Patients with localized PCa have variable outcomes, especially those with moderately differentiated tumors. Identifying factors associated with long-term PCa outcomes can elucidate PCa tumor biology and identify new candidate prognostic markers. These findings support the hypothesis that high iNOS in tumor epithelium of the prostate is associated with lethal disease.
Collapse
Affiliation(s)
- Ann Erlandsson
- a Department of Urology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden.,c Department of Environmental and Life Sciences/Biology , Karlstad University , Karlstad , Sweden
| | - Jessica Carlsson
- a Department of Urology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| | - Sven-Olof Andersson
- a Department of Urology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| | - Chraig Vyas
- b Department of Epidemiology , Boston University School of Public Health , Boston , MA , USA
| | - Pernilla Wikström
- d Department of Medical Biosciences , Umeå University , Umeå , Sweden
| | - Ove Andrén
- a Department of Urology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| | - Sabina Davidsson
- a Department of Urology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| | - Jennifer R Rider
- b Department of Epidemiology , Boston University School of Public Health , Boston , MA , USA
| |
Collapse
|
4
|
Barani R, Motalleb G, Maghsoudi H. Evaluation of iNOS Expression in Esophageal Cancer Patients. Gastrointest Tumors 2016; 3:44-58. [PMID: 27722156 DOI: 10.1159/000443976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal cancer is a public health concern around the world; this cancer is the sixth leading cause of death of cancer in the world with about 386,000 deaths per year. Its risk factors include environmental factors such as tobacco smoke, gastroesophageal reflux and genetic changes. iNOS is stated by the effect of various inflammatory factors and is thus called inducible NOS. Investigating iNOS expression is a powerful tool for understanding effective molecular parameters at tissue and cellular responses to external factors. In this research work, iNOS expression in patients with esophageal cancer was studied in Iran. MATERIALS AND METHODS 15 formalin-fixed and paraffin-embedded (FFPE) esophageal cancer tissue samples and 15 normal FFPE samples were collected from various medical centers (Zabol, Zahedan, Kashan) to measure iNOS expression by real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR). All PCR reactions were conducted by three replicates for iNOS and internal control (β-actin) by 2-ΔΔCT (Livak) method. Differences were measured in target gene expression in patients and control group using the t test. All statistical analyses were done using the SPSS software. RESULTS The results showed that there was no significant difference between iNOS expression in the case and control groups (p > 0.05); however, there was an increase in iNOS expression in the case group. On the other hand, there was a significant difference between iNOS expression in males and females in the two groups of healthy subjects and patients, and it was higher in women than in men. CONCLUSION Further studies need to be conducted with larger sample sizes and in other populations to validate these findings.
Collapse
Affiliation(s)
- Romina Barani
- Department of Biotechnology, Faculty of Science, Payame Noor University, Tehran
| | | | - Hossein Maghsoudi
- Department of Biotechnology, Faculty of Science, Payame Noor University, Tehran
| |
Collapse
|
5
|
Fischer D, Wahlfors T, Mattila H, Oja H, Tammela TLJ, Schleutker J. MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families. PLoS One 2015; 10:e0127427. [PMID: 26020509 PMCID: PMC4447459 DOI: 10.1371/journal.pone.0127427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Heritable factors are evidently involved in prostate cancer (PrCa) carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS). The thus far identified Single Nucleotide Polymorphisms (SNPs) explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer. Results In this study microRNA (miRNA) profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL) analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found. Conclusion Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening, together with Prostate Specific Antigene (PSA) testing, to identify men with an elevated PrCa risk.
Collapse
Affiliation(s)
- Daniel Fischer
- School of Health Sciences, University of Tampere, 33014 Tampere, Finland
| | - Tiina Wahlfors
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Henna Mattila
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Hannu Oja
- Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| | - Teuvo L. J. Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Johanna Schleutker
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
6
|
Gomes FODS, Carvalho MDC, Saraiva KLA, Ribeiro EL, E Silva AKS, Donato MAM, Rocha SWS, Santos e Silva B, Peixoto CA. Effect of chronic Sildenafil treatment on the prostate of C57Bl/6 mice. Tissue Cell 2014; 46:439-49. [PMID: 25239757 DOI: 10.1016/j.tice.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Sildenafil is a potent and selective inhibitor of phosphodiesterase-5 (PDE5) and is considered first-line therapy for erectile dysfunction. Nowadays, Sildenafil is used extensively throughout the world on patients with pulmonary hypertension. However, few studies have evaluated the possible side effects of chronic Sildenafil treatment on the male reproductive system, specifically in the prostate. In the present study, it was demonstrated via morphological and ultrastructural analysis that chronic treatment with Sildenafil induced an enhancement of the glandular activity of the prostate. In addition, mice treated with Sildenafil showed a significant increase in testosterone serum levels. However, no statistically significant differences were observed in nitric oxide serum levels, or in sGC, eNOS, PSA and TGF-β prostatic expression. In conclusion, the present study suggests that chronic use of Sildenafil does not cause evident prostatic damage, and therefore, can be used pharmacologically to treat a variety of disorders.
Collapse
Affiliation(s)
| | - Maria da Conceição Carvalho
- Laboratório de Microscopia e Microanálise do Centro de Tecnologias Estratégicas do Nordeste (CETENE), Brazil
| | | | - Edlene Lima Ribeiro
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Amanda Karolina Soares E Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Mariana Aragão Matos Donato
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Sura Wanessa Santos Rocha
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | - Bruna Santos e Silva
- Laboratório de Ultraestrutura do Instituto Aggeu Magalhães (FIOCRUZ), Brazil; Universidade Federal de Pernambuco (UFPE), Brazil
| | | |
Collapse
|
7
|
Nenu I, Popescu T, Aldea MD, Craciun L, Olteanu D, Tatomir C, Bolfa P, Ion RM, Muresan A, Filip AG. Metformin associated with photodynamic therapy--a novel oncological direction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:80-91. [PMID: 24911275 DOI: 10.1016/j.jphotobiol.2014.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022]
Abstract
The aim of our study was to assess the effect of the combined treatment of Metformin (Metf) and 5, 10, 15, 20-tetra-sulfophenyl-porphyrin (TSPP)-mediated photodynamic therapy (PDT) on an in vivo tumour model. Wistar male rats were divided in 6 groups: group 1, treated with TSPP; groups 2 and 4 treated with TSPP and Metf, respectively, and irradiated 24h thereafter; group 3 was treated with Metf and the last two groups received the combined treatment, Metf administered prior (group 5) or after (group 6) irradiation. 72 h from the start of the treatment, tumour tissue was sampled for the investigation of oxidative and nitrosative stress. The apoptotic rate, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions and matrix metalloproteinases activities were also quantified. Malondialdehyde and glutathione levels were significantly elevated in the groups treated with combined therapy (p<0.05). Metf associated with TSPP-PDT reduced iNOS and COX-2 expressions and enhanced nitrotyrosine levels in both therapeutic regimens. Peroxynitrate formation and its cytotoxic effect on tumour cells were related to an elevated index of apoptosis and necrosis. Moreover, MMP-2 activity reached a minimum in the groups which received combined therapy. Our results confirmed that the association of Metf with PDT might prove a new and promising oncological approach.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Tiberiu Popescu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Mihaela D Aldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Lucian Craciun
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Corina Tatomir
- Departments of Radiobiology and Tumor Biology, Oncology Institute "Prof. I. Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Pompei Bolfa
- Department of Pathology, Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; Department of Biomedical Sciences, Ross University School of Veterinary Medicine Basseterre, PO Box 334, Saint Kitts and Nevis
| | - Rodica M Ion
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Adriana Muresan
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Adriana G Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Singh SP, Konwar BK. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. SPRINGERPLUS 2012; 1:69. [PMID: 23556141 PMCID: PMC3612180 DOI: 10.1186/2193-1801-1-69] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022]
Abstract
Nitric oxide synthases (NOS) catalyze to produce nitric oxide (NO) from L-arginine. The isoform of NOS i.e. inducible nitric oxide synthases (iNOS) expression is observed in various human malignant tumors such as breast, lung, prostate and bladder, colorectal cancer, and malignant melanoma. Also an increased level of iNOS expression and activity has been found in the tumor cells of gynecological malignancies, stroma of breast cancer and tumor cells of head and neck cancer. Because of its importance in causing tumors and cancer, iNOS enzyme has become a new target in finding novel inhibitors as anti cancer agents. The present work focuses on the molecular docking analysis of quercetin and its analogues against iNOS enzyme. Earlier there are reports of quercetin inhibiting iNOS enzyme in certain experiments as anti cancer agent. But the clinical use of quercetin is limited by its low oral bioavailability and therefore needed its molecular modification to improve its pharmacological properties. In the present study ten analogues of quercetin were found to be docked at the active site cavity with favorable ligand-protein molecular interaction and interestingly from the ADME-Toxicity analysis these analogues have enhanced pharmacological properties than quercetin.
Collapse
Affiliation(s)
- Salam Pradeep Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam India
| | | |
Collapse
|
9
|
Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem 2012; 4:2193-204. [PMID: 23190107 PMCID: PMC3588580 DOI: 10.4155/fmc.12.168] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is involved in various physiological functions and its role in tumorigenesis has been well studied. A large majority of human and experimental tumors appear to progress owing to NO resulting from iNOS, further stimulated by proinflammatory cytokines. Conversely, in some cases, NO is associated with induction of apoptosis and tumor regression. This dichotomy of NO is largely explained by the complexity of signaling pathways in tumor cells, which respond to NO very differently depending on its concentration. In addition, NO alters many signaling pathways through chemical modifications, such as the addition of S-nitrosothiols and nitrosotyrosine to target proteins altering various biological pathways. Hence, iNOS inhibitors are designed and developed to inhibit various organ site cancers including the colon. Here, we review iNOS expression, generation of NO, involvement of NO in altering signaling pathways, and iNOS select inhibitors and their possible use for the prevention and treatment of various cancers.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention & Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention & Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Yu S, Jia L, Zhang Y, Wu D, Xu Z, Ng CF, To KKW, Huang Y, Chan FL. Increased expression of activated endothelial nitric oxide synthase contributes to antiandrogen resistance in prostate cancer cells by suppressing androgen receptor transactivation. Cancer Lett 2012; 328:83-94. [PMID: 22995070 DOI: 10.1016/j.canlet.2012.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 01/13/2023]
Abstract
Development of antiandrogen-resistance in advanced prostate cancer involves multiple androgen receptor (AR)-dependent and -independent pathways. Here, we demonstrated that endothelial nitric oxide synthase (eNOS) exhibited an overexpression pattern in hormone-refractory prostate cancer and several models of advanced hormone-resistant prostate cancer. We further established a novel in vitro model of antiandrogen-resistant prostate cancer (LNCaP-BC) by long-term bicalutamide treatment. Besides antiandrogen-resistant and other enhanced malignant growth phenotypes, LNCaP-BC cells exhibited an increased activated eNOS expression and NO production, and suppressed AR transactivation status. Treatment with a NOS inhibitor L-NAME could re-sensitize the growth response to bicalutamide and enhance the AR transactivation in LNCaP-BC cells. Together, our present findings indicate that increased NO production by acquired increased expression of activated eNOS could contribute to the antiandrogen-resistant growth of prostate cancer cells, via a mechanism of NO-mediated suppression of AR activity, and also targeting eNOS could be a potential therapeutic strategy for antiandrogen-resistant prostate cancer.
Collapse
Affiliation(s)
- Shan Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bourouba M, Boukercha A, Zergoun AA, Zebboudj A, Elhadjan M, Djenaoui D, Asselah F, Touil-Boukoffa C. Increased production of nitric oxide correlates with tumor growth in Algerian patients with nasopharyngeal carcinoma. Biomarkers 2012; 17:618-24. [PMID: 22817561 DOI: 10.3109/1354750x.2012.706643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is thought to arise because of chronic inflammation. The correlation between nitric oxide (NO) production, a biomarker of inflammation and NPC development remains unexplored. To investigate this question, we performed a profile analysis on plasma collected from untreated, treated, remissive, cured and relapsing patients. Nitrites were measured to assess NO activity. We observed that increased nitrites concentrations in untreated and relapsing patients associated with tumor development. Moreover, nitrites levels were similar in remissive, cured and healthy individuals. Altogether, our results suggest that NO might be an interesting blood biomarker to monitor tumor growth in NPC patients.
Collapse
Affiliation(s)
- Mehdi Bourouba
- USTHB, Laboratory of Cellular and Molecular Biology (LBCM), Team Cytokines and Nitric oxide synthases, Immunity and pathogeny, Bab-Ezzouar, Algiers, Algeria.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dillioglugil MO, Mekık H, Muezzinoglu B, Ozkan TA, Demir CG, Dillioglugil O. Blood and tissue nitric oxide and malondialdehyde are prognostic indicators of localized prostate cancer. Int Urol Nephrol 2012; 44:1691-6. [DOI: 10.1007/s11255-012-0221-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
|
13
|
Abstract
Nitric oxide (NO) is a short-lived pleiotropic regulator and is required for numerous pathophysiological functions, including macrophage-mediated immunity and cancer. It is a highly reactive free radical produced from l-arginine by different isoforms of NO synthases (NOSs). Sustained induction of inducible NOS (iNOS) during chronic inflammatory conditions leads to the formation of reactive intermediates of NO, which are mutagenic and cause DNA damage or impairment of DNA repair, alter cell signaling, and promote proinflammatory and angiogenic properties of the cell, thus contributing to carcinogenesis. Besides its well-established role in inflammation, increased expression of iNOS has been observed in colorectal tumors and other cancers. NO-related signaling pathways involved in colon tumorigenesis seem to progress through stimulation of proinflammatory cytokines and via posttranslational protein modifications of important antiapoptotic molecules in the tumors. NO can stimulate and enhance tumor cell proliferation by promoting invasive, angiogenic, and migratory activities. In contrast, studies also suggest that high levels of NO may be protective against tumor growth by inducing tumor cell death. However, a number of in vitro studies and particularly experimental animal data support the notion that NO and its reactive metabolite peroxynitrite stimulate cyclooxygenase-2 activity, leading to generation of prostaglandins that enhance tumor growth. These prostaglandins further augment tumor promotion and invasive properties of tumor cells. Hence, selective inhibitors of iNOS and combination strategies to inhibit both iNOS and cyclooxygenase-2 may have a preventive role in colon cancer.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | | |
Collapse
|
14
|
Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line. Med Oncol 2010; 28:1577-83. [DOI: 10.1007/s12032-010-9586-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
15
|
Floyd RA, Kotake Y, Towner RA, Guo WX, Nakae D, Konishi Y. Nitric Oxide and Cancer Development. J Toxicol Pathol 2007. [DOI: 10.1293/tox.20.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Robert A. Floyd
- Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center
| | | | | | | | - Dai Nakae
- Tokyo Metropolitan Institute of Public Health
- Tokyo University of Agriculture
| | - Yoichi Konishi
- International Federation of Societies of Toxicologic Pathologists
| |
Collapse
|
16
|
Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 2005; 15:277-89. [PMID: 15914026 DOI: 10.1016/j.semcancer.2005.04.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological (inflammation, infection, neoplastic diseases, liver cirrhosis, diabetes) conditions. iNOS is the synthase isoform most commonly associated with malignant disease. Nevertheless, the role of iNOS during tumor development is highly complex, and incompletely understood. Both promoting and deterring actions have been described, presumably depending upon the local concentration of iNOS within the tumor microenvironment. In particular, pivotal effects such as malingnant transformation, angiogenesis, and metastasis are modulated by iNOS. On the other hand, NO derived from macrophages has a potentially cytotoxic/cytostatic effect upon tumor cells. Hence, therapeutical interference with iNOS activity is of considerable interest, especially in tumors where metastatic activity, host defence mechanisms and the level of differentiation seem to be correlated to iNOS expression. This review will aim to summarize the dual actions of iNOS as simultaneous tumor promoter and suppressor.
Collapse
Affiliation(s)
- Matthias Lechner
- Clinical Division of General and Surgical Intensive Care Medicine, Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
17
|
Bulut AS, Erden E, Sak SD, Doruk H, Kursun N, Dincol D. Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch 2005; 447:24-30. [PMID: 15947943 DOI: 10.1007/s00428-005-1250-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 03/04/2005] [Indexed: 01/16/2023]
Abstract
The role of calcium independent inducible nitric oxide synthase (iNOS) in breast carcinoma is controversial, and the implications of iNOS expression on prognosis are not known. In this study, we aimed to investigate the significance of immunohistochemical iNOS expression in 100 invasive ductal carcinomas. In addition, 11 normal breast tissues, 20 cases of usual ductal hyperplasias (UDHs) and 20 fibroadenomas were included. We found that 78% of malignant and 75% of benign cases showed iNOS immunoreactivity. However, the intensity and the quantity of iNOS expression were significantly higher in the cancer group when compared with benign breasts (P<0.001), suggesting a role of iNOS in breast carcinogenesis. We were unable to show a correlation between iNOS expression and tumor grade, axillary lymph node status, and estrogen receptor expression. In 50 axilla negative cases having 5--12 years follow-up, disease free survival (DFS) rate was significantly lower in cases showing strong iNOS expression (P=0.05). As strong iNOS expression was correlated with short DFS, we concluded that further studies would be necessary to elucidate if iNOS expression might be a useful prognostic marker in breast carcinoma, especially in the axilla negative group.
Collapse
Affiliation(s)
- Asiye Safak Bulut
- Department of Pathology, Medical School of Ankara University, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
18
|
Juang HH. Nitroprusside stimulates mitochondrial aconitase gene expression through the cyclic adenosine 3',5'-monosphosphate signal transduction pathway in human prostate carcinoma cells. Prostate 2004; 61:92-102. [PMID: 15287097 DOI: 10.1002/pros.20084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mitochondrial aconitase (mACON), an iron-requiring enzyme, is a major target of nitric oxide (NO) in cells, which causes the oxidant-mediated disruption of the [4Fe-4S] prosthetic group of the enzyme. In this study, the effect of NO on mACON enzymatic activity and gene expression were investigated. METHODS Three NO generators, sodium nitroprusside (SNP), S-nitoso-N-acetylpenicillamine (SNAP), and 3-morpholinosydnonimine (SIN) were used to determine the regulation of mACON enzymatic activity by NO. The effect of SNP on mACON, which modulates citrate secretion and cellular bioenergetics in PC-3 cells, was investigated by determining the effect of SNP on mACON gene expression using Western blot and transient gene expression assays. RESULTS SNP upregulated mACON enzymatic activity and gene expression in PC-3 cells. However, treating cells with other NO generators, SNAP and SIN, resulted in decreased mACON enzymatic activity. The addition of ascorbic acid to the SNP treatment resulted in a decrease in mACON enzymatic activity and gene expression. Our results showed that both SNP and dibutyryl-cAMP increased the mACON promoter activity 2-fold while the effect was blocked by adding H-89. Mutation of the cAMP response element (CRE) to the AGAGCT abolished the activating effects of SNP and dibutyryl-cAMP on mACON promoter activity. CONCLUSIONS These results establish the function of nitroprusside as a signaling molecule for mACON gene expression through the cAMP signal transduction pathway in human prostatic carcinoma cells.
Collapse
Affiliation(s)
- Horng-Heng Juang
- Department of Anatomy, Chang Gung University, 259 Wen-Hua 1st road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| |
Collapse
|
19
|
Matsumoto M, Furihata M, Kurabayashi A, Araki K, Sasaguri S, Ohtsuki Y. Association between inducible nitric oxide synthase expression and p53 status in human esophageal squamous cell carcinoma. Oncology 2003; 64:90-6. [PMID: 12457036 DOI: 10.1159/000066519] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) produced by the NO synthase (NOS), a family of enzymes such as inducible NOS (iNOS), has been suggested to play an important role in tumor bioloty. We immunohistochemically examined iNOS and p53 protein expression in 105 patients with esophageal squamous cell carcinoma (ESCC). Direct sequence analysis for the p53 gene was performed in 51 of 105 tumors. In total, 56 of 105 (53.3%) tumors exhibited intracytoplasmic staining for anti-iNOS antibody, including 17 (16.2%) cases of homogeneous and intense immunostaining (++) and 39 (37.1%) of heterogeneous staining (+). Of 62 p53 protein-positive tumors, 40 (63.5%) were positive for iNOS, and of 43 p53 protein-negative tumors, 27 (62.8%) were negative for iNOS. Of 34 iNOS-positive tumors, 23 (67.6%) carried a p53 gene mutation, and of 17 iNOS-negative tumors, 12 (70.6%) had wild-type p53 gene. There was a significant relationship between iNOS immunoreactivity and p53 protein overexpression (p = 0.0058) as well as p53 mutation frequency (p = 0.0163). No association was found between iNOS immunoreactivity and p53 mutation type, any clinicopathological factor and patient prognosis. Our in vivo findings suggest that iNOS activity might be associated with p53 alteration and contribute to tumorigenesis in ESCC.
Collapse
|
20
|
Baltaci S, Orhan D, Gögüs C, Türkölmez K, Tulunay O, Gögüs O. Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int 2001; 88:100-3. [PMID: 11446856 DOI: 10.1046/j.1464-410x.2001.02231.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To elucidate the incidence of inducible nitric oxide synthase (iNOS) expression in benign prostatic hyperplasia (BPH), low- and high-grade prostatic intraepithelial neoplasia (PIN) and prostatic carcinoma lesions, and to explore the role of iNOS in prostate tumorigenesis. MATERIALS AND METHODS Immunoreactivity for iNOS was examined in 20 samples each of BPH, high-grade PIN, low-grade PIN and prostatic carcinoma. RESULTS Positive iNOS immunostaining was detected in all samples from all patients; iNOS was detected in both basal epithelial cells and secretory cells of the glandular epithelium. High-grade PIN and prostatic carcinoma samples had more intense iNOS immunostaining than low-grade PIN and BPH samples. In all samples, smooth muscle cells showed weak or moderate iNOS immunoreactivity and endothelial cells showed moderate immunostaining. CONCLUSIONS Nitric oxide generated by iNOS may be involved in prostate tumorigenesis and further studies with immunohistochemical and molecular biology are needed to determine the exact role of iNOS in the pathogenesis of prostatic carcinoma.
Collapse
Affiliation(s)
- S Baltaci
- Department of Urology, University of Ankara School of Medicine, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|