1
|
Mes-Masson AM. The journey from bench to bedside-it takes a science village. Biochem Cell Biol 2024; 102:299-304. [PMID: 38640502 DOI: 10.1139/bcb-2024-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
I was fortunate enough to start my career at what was the dawn of modern-day molecular biology and to apply it to an important health problem. While my early work focused on fundamental science, the desire to understand human disease better and to find practical applications for research discoveries resulted, over the following decades, in creating a stream of translational research directed specifically toward epithelial cancers. This could only have been possible through multiple collaborations. This type of team science would eventually become a hallmark of my career. With the development of higher throughput molecular techniques, the pace of research and discovery has quickened, and the concept of personalized medicine based on genomics is now coming to fruition. I hope my legacy will not just reflect my published works, but will also include the impact I have had on the development of the next generation of scientists and clinician scientists who inspired me with their dedication, knowledge, and enthusiasm.
Collapse
Affiliation(s)
- Anne-Marie Mes-Masson
- Institut du cancer de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Vecchiotti D, Verzella D, Di Vito Nolfi M, D’Andrea D, Flati I, Di Francesco B, Cornice J, Alesse E, Capece D, Zazzeroni F. Elevated NF-κB/SHh/GLI1 Signature Denotes a Worse Prognosis and Represent a Novel Potential Therapeutic Target in Advanced Prostate Cancer. Cells 2022; 11:2118. [PMID: 35805202 PMCID: PMC9266159 DOI: 10.3390/cells11132118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer in men worldwide. NF-κB seems to play a key role in cell survival, proliferation and invasion, sustaining the heterogeneous multifocal nature of PCa. In recent years, the Hedgehog (Hh) signaling pathway has attracted attention as a therapeutic target due to its implication in tumorigenesis and metastasis in several types of cancer, including PCa. Although it is well-known that Sonic Hedgehog (SHh) is a transcriptional target of NF-κB(p65), and that GLI1 is the effector of this crosstalk, the precise role played by this axis in PCa is still not completely clear. Here, we set out to explore the correlation between NF-κB activation and SHh pathways in PCa, investigating if the interplay between NF-κB(p65) and SHh-GLI1 in advanced PCa could be a prospective therapeutic target. Our findings demonstrate that a NF-κB-SHh-GLI1 gene signature is enriched in PCa patients featuring a higher Gleason score. Moreover, elevated levels of this signature are associated with worse prognosis, thus suggesting that this axis could provide a route to treat aggressive PCa.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daniel D’Andrea
- Interdisciplinary Biomedical Research Centre, College of Science and Technology, Nottingham Trent University, Clifton NG11 8NS, UK;
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| |
Collapse
|
3
|
Khoobchandani M, Khan A, Katti KK, Thipe VC, Al-Yasiri AY, MohanDoss DKD, Nicholl MB, Lugão AB, Hans CP, Katti KV. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep 2021; 11:16797. [PMID: 34408231 PMCID: PMC8373987 DOI: 10.1038/s41598-021-96224-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticulate agent (MGF-AuNPs) and its immunomodulatory characteristics in treating prostate cancer. We provide evidence of immunomodulatory intervention of MGF-AuNPs in prostate cancers through observations of enhanced levels of anti-tumor cytokines (IL-12 and TNF-α) with concomitant reductions in the levels of pro-tumor cytokines (IL-10 and IL-6). In the MGF-AuNPs treated groups, IL-12 was elevated to ten-fold while TNF-α was elevated to about 50-fold, while IL-10 and IL-6 were reduced by two-fold. Ability of MGF-AuNPs to target splenic macrophages is invoked via targeting of NF-kB signaling pathway. Finally, therapeutic efficacy of MGF-AuNPs, in treating prostate cancer in vivo in tumor bearing mice, is described taking into consideration various immunomodulatory interventions triggered by this green nanotechnology-based nanomedicine agent.
Collapse
Affiliation(s)
- Menka Khoobchandani
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Aslam Khan
- Department of Biochemistry, University of Missouri, Columbia, MO, 65212, USA
| | - Kavita K Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Amal Y Al-Yasiri
- Nuclear Science and Engineering Institute (NSEI), University of Missouri, Columbia, MO, 65211, USA
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Darsha K D MohanDoss
- Dhanvantari Nano Ayushadi Pvt Ltd, No. 8/34, Neelakanta Mehta Street, T. Nagar, Chennai, 600017, India
| | | | - Ademar B Lugão
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Chetan P Hans
- Department of Medicine-Cardiology, University of Missouri, Columbia, MO, 65212, USA
| | - Kattesh V Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA.
- Department of Physics, University of Missouri, Columbia, MO, 65212, USA.
- University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Rybicki BA, Sadasivan SM, Chen Y, Kravtsov O, Palangmonthip W, Arora K, Gupta NS, Williamson S, Bobbitt K, Chitale DA, Tang D, Rundle AG, Iczkowski KA. Growth and differentiation factor 15 and NF-κB expression in benign prostatic biopsies and risk of subsequent prostate cancer detection. Cancer Med 2021; 10:3013-3025. [PMID: 33784024 PMCID: PMC8085972 DOI: 10.1002/cam4.3850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Growth and differentiation factor 15 (GDF‐15), also known as macrophage inhibitory cytokine 1 (MIC‐1), may act as both a tumor suppressor and promotor and, by regulating NF‐κB and macrophage signaling, promote early prostate carcinogenesis. To determine whether expression of these two inflammation‐related proteins affect prostate cancer susceptibility, dual immunostaining of benign prostate biopsies for GDF‐15 and NF‐κB was done in a study of 503 case‐control pairs matched on date, age, and race, nested within a historical cohort of 10,478 men. GDF‐15 and NF‐κB expression levels were positively correlated (r = 0.39; p < 0.0001), and both were significantly lower in African American (AA) compared with White men. In adjusted models that included both markers, the odds ratio (OR) for NF‐κB expression was statistically significant, OR =0.87; p = 0.03; 95% confidence interval (CI) =0.77–0.99, while GDF‐15 expression was associated with a nominally increased risk, OR =1.06; p = 0.27; 95% CI =0.96–1.17. When modeling expression levels by quartiles, the highest quartile of NF‐κB expression was associated with almost a fifty percent reduction in prostate cancer risk (OR =0.51; p = 0.03; 95% CI =0.29–0.92). In stratified models, NF‐κB had the strongest negative association with prostate cancer in non‐aggressive cases (p = 0.03), older men (p = 0.03), and in case‐control pairs with longer follow‐up (p = 0.02). Risk associated with GDF‐15 expression was best fit using nonlinear regression modeling where both first (p = 0.02) and second (p = 0.03) order GDF‐15 risk terms were associated with significantly increased risk. This modeling approach also revealed significantly increased risk associated with GDF‐15 expression for subsamples defined by AA race, aggressive disease, younger age, and in case‐control pairs with longer follow‐up. Therefore, although positively correlated in benign prostatic biopsies, NF‐κB and GDF‐15 expression appear to exert opposite effects on risk of prostate tumor development.
Collapse
Affiliation(s)
- Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Sudha M Sadasivan
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Watchareepohn Palangmonthip
- Medical College of Wisconsin, Pathology, Milwaukee, WI, USA.,Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanika Arora
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Nilesh S Gupta
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Sean Williamson
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Kevin Bobbitt
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | |
Collapse
|
5
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Hou CP, Yang PS, Chen CL, Feng TH, Juang HH. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-κB Activity in Human Prostate Carcinoma Cells. Biomedicines 2021; 9:biomedicines9030250. [PMID: 33802402 PMCID: PMC8000469 DOI: 10.3390/biomedicines9030250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common seen malignancies and the leading cause of cancer-related death among men. Given the importance of early diagnosis and treatment, it is worth to identify a potential novel therapeutic target for prostate cancer. Mucosa-associated lymphoid tissue 1 (MALT1) is a novel gene involved in nuclear factor κB (NF-κB) signal transduction by acting as an adaptor protein and paracaspase, with an essential role in inflammation and tumorigenesis in many cancers. This study investigated the functions and the potential regulatory mechanisms of MALT1 in the human prostate cancer cells. We found that MALT1 is abundant in prostate cancer tissues. MALT1 facilitated NF-κB subunits (p50 and p65) nuclear translocation to induce gene expression of interleukin 6 (IL-6) and C-X-C motif chemokine 5 (CXCL5) in prostate carcinoma cells. MALT1 promoted cell proliferation, invasion, and tumor growth in vitro and in vivo. MALT1 enhanced NF-κB activity in prostate carcinoma cells; moreover, NF-κB induced MALT1 expression determined by reporter and immunoblot assays, implying there is a positive feedback loop between MALT1 and NF-κB. In conclusion, MALT1 is a NF-κB-induced oncogene in the human prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
6
|
NF-κB signaling promotes castration-resistant prostate cancer initiation and progression. Pharmacol Ther 2020; 211:107538. [PMID: 32201312 DOI: 10.1016/j.pharmthera.2020.107538] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Prostate Cancer (PCa) is the second leading cause of cancer-related death in men. Adenocarcinoma of the prostate is primarily composed of Androgen Receptor-positive (AR+) luminal cells that require AR transcriptional activity for survival and proliferation. As a consequence, androgen deprivation and anti-androgens are used to treat PCa patients whose disease progresses following attempted surgical or radiation interventions. Unfortunately, patients with advanced PCa can develop incurable castration-resistant PCa (CRPCa) due to mutated, variant, or overexpressed AR. Conversely, low or no AR accumulation or activity can also underlie castration resistance. Whether CRPCa is due to aberrant AR activity or AR independence, NF-κB signaling is also implicated in the initiation and maintenance of CRPCa and, thus, the NF-κB pathway may be a promising alternative therapeutic target. In this review, we present evidence that NF-κB signaling promotes CRPCa initiation and progression, describe the dichotomic role of NF-κB in the regulation of AR expression and activity and outline studies that explore NF-κB inhibitors as PCa therapies.
Collapse
|
7
|
Marino S, Bishop RT, Carrasco G, Logan JG, Li B, Idris AI. Pharmacological Inhibition of NFκB Reduces Prostate Cancer Related Osteoclastogenesis In Vitro and Osteolysis Ex Vivo. Calcif Tissue Int 2019; 105:193-204. [PMID: 30929064 DOI: 10.1007/s00223-019-00538-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
NFκB is implicated in cancer and bone remodelling, and we have recently reported that the verified NFκB inhibitor Parthenolide (PTN) reduced osteolysis and skeletal tumour growth in models of metastatic breast cancer. Here, we took advantage of in vitro and ex vivo bone cell and organ cultures to study the effects of PTN on the ability of prostate cancer cells and their derived factors to regulate bone cell activity and osteolysis. PTN inhibited the in vitro growth of a panel of human, mouse and rat prostate cancer cells in a concentration-dependent manner with a varying degree of potency. In prostate cancer cell-osteoclast co-cultures, the rat Mat-Ly-Lu, but not human PC3 or mouse RM1-BT, enhanced RANKL stimulated osteoclast formation and PTN reduced these effects without affecting prostate cancer cell viability. In the absence of cancer cells, PTN reduced the support of Mat-Ly-Lu conditioned medium for the adhesion and spreading of osteoclast precursors, and survival of mature osteoclasts. Pre-exposure of osteoblasts to PTN prior to the addition of conditioned medium from Mat-Ly-Lu cells suppressed their ability to support the formation of osteoclasts by inhibition of RANKL/OPG ratio. PTN enhanced the ability of Mat-Ly-Lu derived factors to increase calvarial osteoblast differentiation and growth. Ex vivo, PTN enhanced bone volume in calvaria organ-Mat-Ly-Lu cell co-culture, without affecting Mat-Ly-Lu viability or apoptosis. Mechanistic studies in osteoclasts and osteoblasts confirmed that PTN inhibit NFκB activation related to derived factors from Mat-Ly-Lu cells. Collectively, these findings suggest that pharmacological inhibition of the skeletal NFκB signalling pathway reduces prostate cancer related osteolysis, but further studies in the therapeutic implications of NFκB inhibition in cells of the osteoblastic lineage are needed.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ryan T Bishop
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Giovana Carrasco
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - John G Logan
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Boya Li
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
8
|
Grosset AA, Ouellet V, Caron C, Fragoso G, Barrès V, Delvoye N, Latour M, Aprikian A, Bergeron A, Chevalier S, Fazli L, Fleshner N, Gleave M, Karakiewicz P, Lacombe L, Lattouf JB, van der Kwast T, Trudel D, Mes-Masson AM, Saad F. Validation of the prognostic value of NF-κB p65 in prostate cancer: A retrospective study using a large multi-institutional cohort of the Canadian Prostate Cancer Biomarker Network. PLoS Med 2019; 16:e1002847. [PMID: 31265453 PMCID: PMC6605640 DOI: 10.1371/journal.pmed.1002847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The identification of patients with high-risk prostate cancer (PC) is a major challenge for clinicians, and the improvement of current prognostic parameters is an unmet clinical need. We and others have identified an association between the nuclear localization of NF-κB p65 and biochemical recurrence (BCR) in PC in small and/or single-centre cohorts of patients. METHODS AND FINDINGS In this study, we accessed 2 different multi-centre tissue microarrays (TMAs) representing cohorts of patients (Test-TMA and Validation-TMA series) of the Canadian Prostate Cancer Biomarker Network (CPCBN) to validate the association between p65 nuclear frequency and PC outcomes. Immunohistochemical staining of p65 was performed on the Test-TMA and Validation-TMA series, which include PC tissues from patients treated by first-line radical prostatectomy (n = 250 and n = 1,262, respectively). Two independent observers evaluated the p65 nuclear frequency in digital images of cancer tissue and benign adjacent gland tissue. Kaplan-Meier curves coupled with a log-rank test and univariate and multivariate Cox regression models were used for statistical analyses of continuous values and dichotomized data (cutoff of 3%). Multivariate analysis of the Validation-TMA cohort showed that p65 nuclear frequency in cancer cells was an independent predictor of BCR using continuous (hazard ratio [HR] 1.02 [95% CI 1.00-1.03], p = 0.004) and dichotomized data (HR 1.33 [95% CI 1.09-1.62], p = 0.005). Using a cutoff of 3%, we found that this biomarker was also associated with the development of bone metastases (HR 1.82 [95% CI 1.05-3.16], p = 0.033) and PC-specific mortality (HR 2.63 [95% CI 1.30-5.31], p = 0.004), independent of clinical parameters. BCR-free survival, bone-metastasis-free survival, and PC-specific survival were shorter for patients with higher p65 nuclear frequency (p < 0.005). As the small cores on TMAs are a limitation of the study, a backward validation of whole PC tissue section will be necessary for the implementation of p65 nuclear frequency as a PC biomarker in the clinical workflow. CONCLUSIONS We report the first study using the pan-Canadian multi-centre cohorts of CPCBN and validate the association between increased frequency of nuclear p65 frequency and a risk of disease progression.
Collapse
Affiliation(s)
- Andrée-Anne Grosset
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Véronique Ouellet
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Christine Caron
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Gabriela Fragoso
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Véronique Barrès
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Nathalie Delvoye
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Mathieu Latour
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Armen Aprikian
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alain Bergeron
- Axe Oncologie, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Centre hospitalier universitaire de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, Canada
- Département de chirurgie, Université Laval, Quebec, Quebec, Canada
| | - Simone Chevalier
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Pierre Karakiewicz
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Louis Lacombe
- Axe Oncologie, Centre de recherche du Centre hospitalier universitaire de Québec–Université Laval, Centre hospitalier universitaire de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, Canada
- Département de chirurgie, Université Laval, Quebec, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | | | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | | |
Collapse
|
9
|
Prajoko YW, Aryandono T. The Effect of P-Glycoprotein (P-gp), Nuclear Factor-Kappa B (Nf-κb), and Aldehyde Dehydrogenase-1 (ALDH-1) Expression on Metastases, Recurrence and Survival in Advanced Breast Cancer Patients. Asian Pac J Cancer Prev 2019; 20:1511-1518. [PMID: 31128056 PMCID: PMC6857879 DOI: 10.31557/apjcp.2019.20.5.1511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective: To investigate the level of three drug resistance proteins; P-glycoprotein 1 (P-gp), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and aldehyde dehydrogenase isoform 1 (ALDH1) expression
and their relationship to metastasis, recurrence and survival in advanced breast cancer patients that received neoadjuvant
chemotherapy. Methods: This study is a combination of prospective and retrospective cohort study involving one
hundred and thirty one cases of advanced stage invasive breast cancer that have received neoadjuvant chemotherapy.
Initial biopsy specimens (incisional biopsy or core biopsy) were taken from paraffin blocks. Immunohistochemistry
(IHC) was used to detect P-gp, NF-κB, and ALDH1 expression. Prospectively analysed patients were followed for five
years and evaluated for recurrence and death. Results: The expression of P-gp has no significant statistical correlation
to metastases (p = 0.659), recurrence (p = 0.862) and survival (p = 0.835) in advanced stage breast cancer patients
who received neoadjuvant chemotherapy. Similarly, ALDH1 was not correlated to metastases (p=0.120), recurrence
(p = 0.186) and survival (p = 0.254) statistically. We found that NF-κB expression showed a significant correlation to
metastases (p=0.004), recurrence (p = 0.016) and overall survival (p = 0.041) in advanced stage breast cancer patients
after neoadjuvant chemotherapy. Conclusion: NF-κB expression is a potential marker that can be used to assess or
to predict increasing risk of metastases, recurrence and survival in advanced stage breast cancer patients who receive
neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yan Wisnu Prajoko
- Department of Oncologic Surgery, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia.
| | - Teguh Aryandono
- Department of Oncologic Surgery, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia.
| |
Collapse
|
10
|
Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer. Cells 2019; 8:cells8030201. [PMID: 30813597 PMCID: PMC6468646 DOI: 10.3390/cells8030201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylinositol 3′-OH kinase (PI3K)-Akt and transcription factor NF-κB are important molecules involved in the regulation of cell proliferation, apoptosis, and oncogenesis. Both PI3K-Akt and Nuclear Factor-kappaB (NF-κB) are involved in the development and progression of prostate cancer, however, the crosstalk and molecules connecting these pathway remains unclear. A multilevel system representation of the PI3K-Akt and NF-κB pathways was constructed to determine which signaling components contribute to adaptive behavior and coordination. In silico experiments conducted using PI3K-Akt and NF-κB, mathematical models were modularized using biological functionality and were validated using a cell culture system. Our analysis demonstrates that a component representing the IκB kinase (IKK) complex can coordinate these two pathways. It is expected that interruption of this molecule could represent a potential therapeutic target for prostate cancer.
Collapse
|
11
|
Inoue S, Ide H, Mizushima T, Jiang G, Netto GJ, Gotoh M, Miyamoto H. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling. Mol Cancer Ther 2018; 17:1303-1314. [PMID: 29592878 DOI: 10.1158/1535-7163.mct-17-0786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 (P = 0.015)/phospho-NF-κB/p65 (P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade (P = 0.015)/muscle-invasive (P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression (P < 0.001) and cancer-specific mortality (P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N-butyl-N-(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Taichi Mizushima
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
12
|
RNA binding protein, tristetraprolin in a murine model of recurrent pregnancy loss. Oncotarget 2018; 7:72486-72502. [PMID: 27732963 PMCID: PMC5341924 DOI: 10.18632/oncotarget.12539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/23/2023] Open
Abstract
Recurrent pregnancy loss is a major reproductive pathology affecting 1-5% of pregnant women worldwide. A distinct feature of this reproductive pathology is involvement of key inflammatory cytokines and transcription factors such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and nuclear factor kappa beta (NF-κB). Special classes of RNA-binding proteins regulate the transcripts of many of these important cytokines and regulatory factors via binding to the 3' untranslated regions (UTRs) and/or poly(A) tail and destabilizing/stabilizing the transcript. The tristetraprolin (TTP/ZFP36) family have been found to be potent destabilizers of the aforementioned inflammatory and cellular response cytokines. The aim of this study was to evaluate whether tristetraprolin is expressed in the placenta and involved in modulating inflammation in mouse model of lipopolysaccharide (LPS)-induced fetal loss. In this study, Swiss-albino mice were injected with LPS at gestational day 15.5 and placental tissues were harvested 6 hours post-LPS injection. Histopathology and immunohistochemistry analyses clearly revealed cellular stress and death in LPS treated placentas compared to controls. TTP protein was downregulated, while targets TNF-α and IL-6 were upregulated in LPS group compared to controls. We observed increased TTP nuclear immunolocalization corresponding with higher NF-κB nuclear localization in trophoblasts from LPS treated placentas. Our results suggest that RNA-binding proteins such as TTP are expressed and perhaps involved in the modulation of inflammation-induced pregnancy pathologies.
Collapse
|
13
|
Mitrakas L, Gravas S, Papandreou C, Koukoulis G, Karasavvidou F, Dimakopoulos G, Weingärtner K, Karatzas A, Zachos I, Tzortzis V. Primary High-Grade Non-Muscle-Invasive Bladder Cancer: High NFκB Expression in Tumor Specimens Distinguishes Patients Who are at Risk for Disease Progression. Pathol Oncol Res 2017; 25:225-231. [DOI: 10.1007/s12253-017-0340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/20/2017] [Indexed: 11/24/2022]
|
14
|
Kim Y, Park SE, Moon JW, Kim BM, Kim HG, Jeong IG, Yoo S, Ahn JB, You D, Pak JH, Kim S, Hwang JJ, Kim CS. Downregulation of androgen receptors by NaAsO 2 via inhibition of AKT-NF-κB and HSP90 in castration resistant prostate cancer. Prostate 2017; 77:1128-1136. [PMID: 28556958 DOI: 10.1002/pros.23370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/28/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO2 on AR signaling in LNCaP and 22Rv1 CRPC cells. METHODS We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. RESULTS NaAsO2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO2 on AR stabilization. NaAsO2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. CONCLUSIONS Here, we show that NaAsO2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO2 could be a novel therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Yunlim Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - Sang Eun Park
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - Jeong-Weon Moon
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Bong-Min Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ha-Gyeong Kim
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| | - In Gab Jeong
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sangjun Yoo
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Beom Ahn
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dalsan You
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jhang Ho Pak
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Sujong Kim
- Pharmaceutical Division, Komipharm International Co., Ltd., Shiheung, Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea
| |
Collapse
|
15
|
Gao W, Tong D, Li Q, Huang P, Zhang F. Dexamethasone promotes regeneration of crushed inferior alveolar nerve by inhibiting NF-κB activation in adult rats. Arch Oral Biol 2017; 80:101-109. [PMID: 28412609 DOI: 10.1016/j.archoralbio.2017.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE Nuclear factor kappa B (NF-κB), which is closely related to inflammation, has become a topic of interest for research. The aim of this study is to investigate the effects of dexamethasone (Dex), an inhibitor of NF-κB, on inferior alveolar nerve injury in adult rats. MATERIALS AND METHODS The crushed inferior alveolar model is established in Wistar rats and they are randomly divided into three groups according to treatment: pyrrolidine dithiocarbamate (PDTC), dexamethasone (Dex), and saline (physiological saline). After treatment, the rats are respectively sacrificed at 3, 7, and 14d, and inferior alveolar nerves are extracted for histochemical and western blot analysis. RESULT Compared with the PDTC and saline groups, nerve fibers in the Dex group are regularly arranged with few vacuoles, which is similar to normal inferior alveolar nerves. Immunofluorescent results show significantly decreased NF-κB expression in the Dex group. Western bolt shows higher expression of GAP-43 and lower expression of NF-κB. CONCLUSION Taken together, all results show that dexamethasone significantly improved the regeneration of crushed inferior alveolar nerves by inhibiting NF-κB activation in adult rats.
Collapse
Affiliation(s)
- Wei Gao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Wenhua-West Road 44-1, Jinan, Shandong, China.
| | - Dongdong Tong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Wenhua-West Road 44-1, Jinan, Shandong, China.
| | - Qing Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Wenhua-West Road 44-1, Jinan, Shandong, China.
| | - Ping Huang
- QILU Hospital of Shandong University, Wenhua-West Road 44-2, Jinan, Shandong, China.
| | - Fenghe Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Wenhua-West Road 44-1, Jinan, Shandong, China.
| |
Collapse
|
16
|
Brittain GC, Gulnik S. A rapid method for quantifying cytoplasmic versus nuclear localization in endogenous peripheral blood leukocytes by conventional flow cytometry. Cytometry A 2017; 91:351-363. [PMID: 28371169 PMCID: PMC5516235 DOI: 10.1002/cyto.a.23103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
A biochemical system and method have been developed to enable the quantitative measurement of cytoplasmic versus nuclear localization within cells in whole blood. Compared with the analyses of nuclear localization by western blot or fluorescence microscopy, this system saves a lot of time and resources by eliminating the necessity of purification and culturing steps, and generates data that are free from the errors and artifacts associated with using tumor cell lines or calculating nuclear signals from 2D images. This user‐friendly system enables the analysis of cell signaling within peripheral blood cells in their endogenous environment, including measuring the kinetics of nuclear translocation for transcription factors without requiring protein modifications. We first demonstrated the efficiency and specificity of this system for targeting nuclear epitopes, and verified the results by fluorescence microscopy. Next, the power of the technique to analyze LPS‐induced signaling in peripheral blood monocytes was demonstrated. Finally, both FoxP3 localization and IL‐2‐induced STAT5 signaling in regulatory T cells were analyzed. We conclude that this system can be a useful tool for enabling multidimensional molecular‐biological analyses of cell signaling within endogenous peripheral blood cells by conventional flow cytometry. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
| | - Sergei Gulnik
- Beckman Coulter, Inc, Life Science Research, Miami, Florida
| |
Collapse
|
17
|
Kong X, Qian X, Duan L, Liu H, Zhu Y, Qi J. microRNA-372 Suppresses Migration and Invasion by Targeting p65 in Human Prostate Cancer Cells. DNA Cell Biol 2016; 35:828-835. [PMID: 27673408 DOI: 10.1089/dna.2015.3186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignant tumors. microRNAs (miRNAs) play an important role in cancer initiation, progression, and metastasis, and their roles in PCa are becoming more apparent. In this study, we found that microRNA-372 (miR-372) is downregulated in human PCa and inhibits the proliferation activity, migration, and invasion of DU145 cells. Subsequently, p65 is confirmed as a target of miR-372, and knockdown of p65 expression similarly resulted in decreased proliferation activity, migration, and invasion. CDK8, MMP-9, and prostate-specific antigen were involved in both these processes. Taken together, our results show evidence that miR-372 may function as a tumor suppressor gene by regulating p65 in PCa and may provide a strategy for blocking PCa metastasis.
Collapse
Affiliation(s)
- Xiangjie Kong
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Xiaoqiang Qian
- 2 Department of Urology, Ruijin Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Liujian Duan
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Hailong Liu
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Yingjian Zhu
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Jun Qi
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| |
Collapse
|
18
|
Qaiser F, Trembley JH, Sadiq S, Muhammad I, Younis R, Hashmi SN, Murtaza B, Rector TS, Naveed AK, Ahmed K. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol Cell Biochem 2016; 420:43-51. [PMID: 27435858 PMCID: PMC6668611 DOI: 10.1007/s11010-016-2765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 02/08/2023]
Abstract
Protein kinase CK2 plays a critical role in cell growth, proliferation, and suppression of cell death. CK2 is overexpressed, especially in the nuclear compartment, in the majority of cancers, including prostate cancer (PCa). CK2-mediated activation of transcription factor nuclear factor kappa B (NF-κB) p65 is a key step in cellular proliferation, resulting in translocation of NF-κB p65 from the cytoplasm to the nucleus. As CK2 expression and activity are also elevated in benign prostatic hyperplasia (BPH), we sought to increase the knowledge of CK2 function in benign and malignant prostate by examination of the relationships between nuclear CK2 and nuclear NF-κB p65 protein expression. The expression level and localization of CK2α and NF-κB p65 proteins in PCa and BPH tissue specimens was determined. Nuclear CK2α and NF-κB p65 protein levels are significantly higher in PCa compared with BPH, and these proteins are positively correlated with each other in both diseases. Nuclear NF-κB p65 levels correlated with Ki-67 or with cytoplasmic NF-κB p65 expression in BPH, but not in PCa. The findings provide information that combined analysis of CK2α and NF-κB p65 expression in prostate specimens relates to the disease status. Increased nuclear NF-κB p65 expression levels in PCa specifically related to nuclear CK2α levels, indicating a possible CK2-dependent relationship in malignancy. In contrast, nuclear NF-κB p65 protein levels related to both Ki-67 and cytoplasmic NF-κB p65 levels exclusively in BPH, suggesting a potential separate impact for NF-κB p65 function in proliferation for benign disease as opposed to malignant disease.
Collapse
Affiliation(s)
- Fatima Qaiser
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Sadiq
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqbal Muhammad
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Rubina Younis
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Shoaib Naiyar Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Badar Murtaza
- Armed Forces Institute of Urology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Thomas S Rector
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| | - Abdul Khaliq Naveed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
- Al-Mizan Campus, Riphah International University, 274 Peshawar Road, Rawalpindi, Pakistan
| | - Khalil Ahmed
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Kolberg M, Pedersen S, Mitake M, Holm KL, Bøhn SK, Blomhoff HK, Carlsen H, Blomhoff R, Paur I. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts. J Nutr Biochem 2016; 27:153-63. [DOI: 10.1016/j.jnutbio.2015.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022]
|
20
|
Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells. PLoS One 2015; 10:e0144293. [PMID: 26630272 PMCID: PMC4668011 DOI: 10.1371/journal.pone.0144293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.
Collapse
|
21
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
22
|
Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice. PLoS One 2015; 10:e0138710. [PMID: 26379052 PMCID: PMC4574560 DOI: 10.1371/journal.pone.0138710] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/02/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it's phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Gregory T. MacLennan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wang HQ, Li DL, Lu YJ, Cui XX, Zhou XF, Lin WP, Conney AH, Zhang K, Du ZY, Zheng X. Anticancer activity of Acanthopanax trifoliatus (L) Merr extracts is associated with inhibition of NF-kB activity and decreased Erk1/2 and Akt phosphorylation. Asian Pac J Cancer Prev 2015; 15:9341-6. [PMID: 25422222 DOI: 10.7314/apjcp.2014.15.21.9341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Acanthopanax trifoliatus (L) Merr (AT) is commonly used as an herbal medicine and edible plant in some areas of China and other Asian countries. AT is thought to have anticancer effects, but potential mechanisms remain unknown. To assess the anticancer properties of AT, we exposed prostate cancer cells to AT extracts and assessed cell proliferation and signaling pathways. An ethanol extract of AT was suspended in water followed by sequential extraction with petroleum ether, ethyl acetate and n-butanol. PC-3 cells were treated with different concentrations of each extract and cell viability was determined by the MTT and trypan blue exclusion assays. The ethyl acetate extract of the ethanol extract had a stronger inhibitory effect on growth and a stronger stimulatory effect on apoptosis than any of the other extracts. Mechanistic studies demonstrated that the ethyl acetate extract suppressed the transcriptional activity of NF-kB, increased the level of caspase-3, and decreased the levels of phospho-Erk1/2 and phospho-Akt. This is the first report on the anticancer activity of AT in cultured human prostate cancer cells. The results suggest that AT can provide a plant-based medicine for the treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Hua-Qian Wang
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China E-mail : ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Labouba I, Le Page C, Communal L, Kristessen T, You X, Péant B, Barrès V, Gannon PO, Mes-Masson AM, Saad F. Potential Cross-Talk between Alternative and Classical NF-κB Pathways in Prostate Cancer Tissues as Measured by a Multi-Staining Immunofluorescence Co-Localization Assay. PLoS One 2015; 10:e0131024. [PMID: 26186215 PMCID: PMC4505937 DOI: 10.1371/journal.pone.0131024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/26/2015] [Indexed: 02/01/2023] Open
Abstract
Background While the classical NF-κB/p65 pathway is known to be involved in prostate cancer progression and is associated with poor patient outcome, the role of the NF-κB /RelB alternative protein is not well defined. Here we analyzed the activation of both NF-κB pathways in prostate cancer tissues and correlate this activation with clinical features of the disease. Methods A multiple immunofluorescence technique was employed to concomitantly and quantitatively visualize the nuclear localization of p65 and RelB in 200 paraffin embedded samples. Epithelia were defined using appropriate fluorochrome markers and the resulting immunofluorescent signals were quantified with an automated scoring system. Results The nuclear frequency of p65 was found to be significantly increased in tumor tissues as compared with normal adjacent tissue, whereas the frequency for RelB was decreased (p < 0.001, Wilcoxon test). As previously reported, p65 nuclear frequency was associated with a risk of biochemical recurrence. Although, RelB nuclear frequency alone did not predict recurrence, the presence of activated RelB reduced the risk of recurrence associated with the activation of p65. Conclusion For the first time p65/RelB co-distribution was assessed in prostate cancer tissues and suggested a negative crosstalk between the two NF-κB pathways in prostate cancer progression.
Collapse
Affiliation(s)
- Ingrid Labouba
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Cécile Le Page
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Laudine Communal
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | | | - Xiaotian You
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Benjamin Péant
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Véronique Barrès
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Philippe O. Gannon
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Fred Saad
- Institut du cancer de Montréal / Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), 900 rue St-Denis, Montreal, Canada
- Division of Urology, CHUM and Department of Surgery, Université de Montréal, Montreal, Canada
- * E-mail:
| |
Collapse
|
25
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|
26
|
Henning SM, Wang P, Said JW, Huang M, Grogan T, Elashoff D, Carpenter CL, Heber D, Aronson WJ. Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate 2015; 75:550-9. [PMID: 25545744 PMCID: PMC4334734 DOI: 10.1002/pros.22943] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical and epidemiologic studies suggest chemopreventive effects of green tea (GT) and black tea (BT) in prostate cancer. In the current study we determined the effect of GT and BT consumption on biomarkers related to prostate cancer development and progression. METHODS In this exploratory, open label, phase II trial 113 men diagnosed with prostate cancer were randomized to consume six cups daily of brewed GT, BT or water (control) prior to radical prostatectomy (RP). The primary endpoint was prostate tumor markers of cancer development and progression determined by tissue immunostaining of proliferation (Ki67), apoptosis (Bcl-2, Bax, Tunel), inflammation (nuclear and cytoplasmic nuclear factor kappa B [NFκB]) and oxidation (8-hydroxydeoxy-guanosine [8OHdG]). Secondary endpoints of urinary oxidation, tea polyphenol uptake in prostate tissue, and serum prostate specific antigen (PSA) were evaluated by high performance liquid chromatography and ELISA analysis. RESULTS Ninety three patients completed the intervention. There was no significant difference in markers of proliferation, apoptosis and oxidation in RP tissue comparing GT and BT to water control. Nuclear staining of NFκB was significantly decreased in RP tissue of men consuming GT (P = 0.013) but not BT (P = 0.931) compared to water control. Tea polyphenols were detected in prostate tissue from 32 of 34 men consuming GT but not in the other groups. Evidence of a systemic antioxidant effect was observed (reduced urinary 8OHdG) only with GT consumption (P = 0.03). GT, but not BT or water, also led to a small but statistically significant decrease in serum prostate-specific antigen (PSA) levels (P = 0.04). CONCLUSION Given the GT-induced changes in NFκB and systemic oxidation, and uptake of GT polyphenols in prostate tissue, future longer-term studies are warranted to further examine the role of GT for prostate cancer prevention and treatment, and possibly for other prostate conditions such as prostatitis.
Collapse
Affiliation(s)
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | | | - Min Huang
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, University of California Los Angeles
| | - David Elashoff
- Department of Medicine Statistics Core, University of California Los Angeles
| | | | - David Heber
- Center for Human Nutrition, University of California Los Angeles
| | - William J. Aronson
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
27
|
Andrographolide suppresses proliferation of nasopharyngeal carcinoma cells via attenuating NF-κB pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:735056. [PMID: 25861643 PMCID: PMC4377360 DOI: 10.1155/2015/735056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022]
Abstract
Andrographolide (Andro) has been reported to have anticancer activity in multiple types of cancer due to its capacity to inactivate NF-κB pathway. Previous studies showed the therapeutic potential of targeting NF-κB pathway in nasopharyngeal carcinoma (NPC). However, the anticancer activity of Andro in NPC has not been reported. In this study, we defined the anticancer effects of Andro in NPC and elucidated its potential mechanisms of action. Our results showed that Andro significantly inhibited the proliferation and invasion of NPC cells (P < 0.05, resp.). These anticancer activities were associated with cell apoptosis, cell death and induction of cell cycle arrest, and the downregulation of NF-κB target genes. This work provides evidence that NF-κB pathway is a potential therapeutic target and may also be indispensable in the Andro-mediated anticancer activities in nasopharyngeal carcinoma.
Collapse
|
28
|
Kolberg M, Pedersen S, Bastani NE, Carlsen H, Blomhoff R, Paur I. Tomato Paste Alters NF-κB and Cancer-Related mRNA Expression in Prostate Cancer Cells, Xenografts, and Xenograft Microenvironment. Nutr Cancer 2015; 67:305-15. [DOI: 10.1080/01635581.2015.990575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Fernández-Martínez AB, Carmena MJ, Bajo AM, Vacas E, Sánchez-Chapado M, Prieto JC. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cell Signal 2014; 27:236-44. [PMID: 25446255 DOI: 10.1016/j.cellsig.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023]
Abstract
The nuclear factor κB (NF-κB) is a powerful activator of angiogenesis, invasion and metastasis. Transactivation and nuclear localisation of NF-κB is an index of recurrence in prostate cancer. Vasoactive intestinal peptide (VIP) exerts similar effects in prostate cancer models involving increased expression of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) which are related to NF-κB transactivation. Here we studied differential mechanisms of VIP-induced NF-κB transactivation in non-tumour RWPE-1 and tumour LNCaP and PC3 human prostate epithelial cells. Immunofluorescence studies showed that VIP increases translocation of the p50 subunit of NF-κB1 to the nucleus, an effect that was inhibited by curcumin. The signalling transduction pathways involved are different depending on cell transformation degree. In control cells (RWPE1), the effect is mediated by protein kinase A (PKA) activation and does not implicate extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3-K) pathways whereas the opposite is true in tumour LNCaP and PC3 cells. Exchange protein directly activated by cAMP (EPAC) pathway is involved in transformed cells but not in control cells. Curcumin blocks the activating effect of VIP on COX-2 promoter/prostaglandin E2 (PGE2) production and VEGF expression and secretion. The study incorporates direct observation on COX-2 promoter and suggests that VIP effect on VEGF may be indirectly mediated by PGE2 after being synthesised by COX-2, thus amplifying the initial signal. We show that the signalling involved in VIP effects on VEGF is cAMP/PKA in non-tumour cells and cAMP/EPAC/ERK/PI3K in tumour cells which coincides with pathways mediating p50 nuclear translocation. Thus, VIP appears to use different pathways for NF-κB1 (p50) transactivation in prostate epithelial cells depending on whether they are transformed or not. Transformed cells depend on pro-survival and pro-proliferative signalling pathways involving ERK, PI3-K and cAMP/EPAC which supports the potential therapeutic value of these targets in prostate cancer.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Eva Vacas
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Manuel Sánchez-Chapado
- Department of Surgery and Medical and Social Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain; Department of Urology, Príncipe de Asturias Hospital, 28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain.
| |
Collapse
|
30
|
Labouba I, Poisson A, Lafontaine J, Delvoye N, Gannon PO, Le Page C, Saad F, Mes-Masson AM. The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo. Cancer Cell Int 2014; 14:67. [PMID: 25788857 PMCID: PMC4364035 DOI: 10.1186/1475-2867-14-67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background The involvement of NF-κB signaling in prostate cancer (PCa) has largely been established through the study of the classical p65 subunit. Nuclear localization of p65 in PCa patient tissues has been shown to correlate with biochemical recurrence, while in vitro studies have demonstrated that the classical NF-κB signaling pathway promotes PCa progression and metastatic potential. More recently, the nuclear location of RelB, a member of the alternative NF-κB signaling, has also been shown to correlate with the Gleason score. The current study aims to clarify the role of alternative NF-κB in PCa cells by exploring, in vitro and in vivo, the effects of RelB overexpression on PCa biology. Methods Using a lentivirus-expression system, we constitutively overexpressed RelB or control GFP into 22Rv1 cells and monitored alternative transcriptional NF-κB activity. In vivo, tumor growth was assessed after the injection of 22Rv1-derived cells into SCID mice. In vitro, the impact of RelB on 22Rv1 cell proliferation was evaluated in monolayer culture. The anchorage-independent cell growth of derived-22Rv1 cells was assessed by soft agar assay. Apoptosis and autophagy were evaluated by Western blot analysis in 22Rv1-derived cells cultured in suspension using poly-HEMA pre-coated dishes. Results The overexpression of RelB in 22Rv1 cells induced the constitutive activation of the alternative NF-κB pathway. In vivo, RelB expression caused a lag in the initiation of 22Rv1-induced tumors in SCID mice. In vitro, RelB stimulated the proliferation of 22Rv1 cells and reduced their ability to grow in soft agar. These observations may be reconciled by our findings that, when cultured in suspension on poly-HEMA pre-coated dishes, 22Rv1 cells expressing RelB were more susceptible to cell death, and more specifically to autophagy controlled death. Conclusions This study highlights a role of the alternative NF-κB pathway in proliferation and the controlled autophagy. Thus, the interplay of these properties may contribute to tumor survival in stress conditions while promoting PCa cells growth contributing to the overall tumorigenicity of these cells.
Collapse
Affiliation(s)
- Ingrid Labouba
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Alexis Poisson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Julie Lafontaine
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Nathalie Delvoye
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Philippe O Gannon
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Cécile Le Page
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada ; Division of Urology, CHUM, Université de Montréal, CHUM Notre-Dame, 1560 Sherbrooke east, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)/Institut du cancer de Montréal, Montreal, Canada ; Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
31
|
Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, Fang L, Lake R, Corey E, Morrissey C, Vessella R, Kelly K. AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res 2014; 74:4306-17. [PMID: 24970477 DOI: 10.1158/0008-5472.can-13-3233] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recurrence of prostate cancer metastases to bone after androgen deprivation therapy is a major clinical challenge. We identified FN14 (TNFRSF12A), a TNF receptor family member, as a factor that promotes prostate cancer bone metastasis. In experimental models, depletion of FN14 inhibited bone metastasis, and FN14 could be functionally reconstituted with IKKβ-dependent, NFκB signaling activation. In human prostate cancer, upregulated FN14 expression was observed in more than half of metastatic samples. In addition, FN14 expression was correlated inversely with androgen receptor (AR) signaling output in clinical samples. Consistent with this, AR binding to the FN14 enhancer decreased expression. We show here that FN14 may be a survival factor in low AR output prostate cancer cells. Our results define one upstream mechanism, via FN14 signaling, through which the NFκB pathway contributes to prostate cancer metastasis and suggest FN14 as a candidate therapeutic and imaging target for castrate-resistant prostate cancers.
Collapse
Affiliation(s)
- JuanJuan Yin
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heather Tillman
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ben Barrett
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lei Fang
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ross Lake
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Robert Vessella
- Department of Urology, University of Washington, Seattle, Washington
| | - Kathleen Kelly
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
32
|
McCarty MF, Hejazi J, Rastmanesh R. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer. Integr Cancer Ther 2014; 13:386-95. [PMID: 24867960 DOI: 10.1177/1534735414534728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.
Collapse
Affiliation(s)
| | - Jalal Hejazi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rastmanesh
- National Nutrition and Food Sciences Technology Research Institute, Tehran, Iran
| |
Collapse
|
33
|
Fitzgerald KA, Evans JC, McCarthy J, Guo J, Prencipe M, Kearney M, Watson WR, O'Driscoll CM. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin Ther Targets 2014; 18:633-49. [DOI: 10.1517/14728222.2014.896904] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Brown RE. Morphoproteomics: exposing protein circuitries in tumors to identify potential therapeutic targets in cancer patients. Expert Rev Proteomics 2014; 2:337-48. [PMID: 16000081 DOI: 10.1586/14789450.2.3.337] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering molecular targets amenable to specific intervention, thereby customizing therapy for individual patients. This review considers the clinical application of morphoproteomics in malignant cells in the context of currently available pharmaceutical agents and discusses opportunities for combinatorial approaches that involve one or more small molecule inhibitors and single-agent chemotherapy with relatively low toxicity profiles. Future directions that involve focusing on points of convergence in signal transduction pathways and which integrate morphoproteomic with genomic and pharmacoproteomic and protein-function microarray data are offered.
Collapse
|
35
|
Bera A, Zhao S, Cao L, Chiao PJ, Freeman JW. Oncogenic K-Ras and loss of Smad4 mediate invasion by activating an EGFR/NF-κB Axis that induces expression of MMP9 and uPA in human pancreas progenitor cells. PLoS One 2013; 8:e82282. [PMID: 24340014 PMCID: PMC3855364 DOI: 10.1371/journal.pone.0082282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023] Open
Abstract
Activating K-Ras mutations and inactivating mutations of Smad4 are two common genetic alterations that occur in the development and progression of pancreatic ductal adenocarcinomas (PDAC). To further study the individual and combinatorial roles of these two mutations in the pathogenesis of PDAC, immortalized human pancreas nestin postive cells (HPNE) were genetically modified by either expressing oncogenic K-Ras (HPNE/K-Ras), by shRNA knock down of Smad4 (HPNE/ShSmad4) or by creating both alterations in the same cell line (HPNE/K-Ras/ShSmad4). We previously found that expression of oncogenic K-Ras caused an increase in expression of EGFR and loss of Smad4 further enhanced the up regulation in expression of EGFR and that this increase in EGFR was sufficient to induce invasion. Here we further investigated the mechanism that links mutational alterations and EGFR expression with invasion. The increase in EGFR signaling was associated with up regulation of MMP9 and uPA protein and activity. Moreover, the increase in EGFR signaling promoted a nuclear translocation and binding of RelA (p65), a subunit of NF-κB, to the promoters of both MMP-9 and uPA. Treatment of HPNE/K-Ras/ShSmad4 cells with an inhibitor of EGFR reduced EGF-mediated NF-κB nuclear translocation and inhibitors of either EGFR or NF-κB reduced the increase in MMP-9 or uPA expression. In conclusion, this study provides the mechanism of how a combination of oncogenic K-Ras and loss of Smad4 causes invasion and provides the basis for new strategies to inhibit metastases.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lin Cao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James W. Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, Texas, United States of America
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas, United States of America
| |
Collapse
|
36
|
Gannon PO, Lessard L, Stevens LM, Forest V, Bégin LR, Minner S, Tennstedt P, Schlomm T, Mes-Masson AM, Saad F. Large-scale independent validation of the nuclear factor-kappa B p65 prognostic biomarker in prostate cancer. Eur J Cancer 2013; 49:2441-8. [DOI: 10.1016/j.ejca.2013.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/09/2013] [Accepted: 02/25/2013] [Indexed: 01/29/2023]
|
37
|
Loriaux PM, Hoffmann A. A protein turnover signaling motif controls the stimulus-sensitivity of stress response pathways. PLoS Comput Biol 2013; 9:e1002932. [PMID: 23468615 PMCID: PMC3585401 DOI: 10.1371/journal.pcbi.1002932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/08/2013] [Indexed: 12/03/2022] Open
Abstract
Stimulus-induced perturbations from the steady state are a hallmark of signal transduction. In some signaling modules, the steady state is characterized by rapid synthesis and degradation of signaling proteins. Conspicuous among these are the p53 tumor suppressor, its negative regulator Mdm2, and the negative feedback regulator of NFκB, IκBα. We investigated the physiological importance of this turnover, or flux, using a computational method that allows flux to be systematically altered independently of the steady state protein abundances. Applying our method to a prototypical signaling module, we show that flux can precisely control the dynamic response to perturbation. Next, we applied our method to experimentally validated models of p53 and NFκB signaling. We find that high p53 flux is required for oscillations in response to a saturating dose of ionizing radiation (IR). In contrast, high flux of Mdm2 is not required for oscillations but preserves p53 sensitivity to sub-saturating doses of IR. In the NFκB system, degradation of NFκB-bound IκB by the IκB kinase (IKK) is required for activation in response to TNF, while high IKK-independent degradation prevents spurious activation in response to metabolic stress or low doses of TNF. Our work identifies flux pairs with opposing functional effects as a signaling motif that controls the stimulus-sensitivity of the p53 and NFκB stress-response pathways, and may constitute a general design principle in signaling pathways. Eukaryotic cells constantly synthesize new proteins and degrade old ones. While most proteins are degraded within 24 hours of being synthesized, some proteins are short-lived and exist for only minutes. Using mathematical models, we asked how rapid turnover, or flux, of signaling proteins might regulate the activation of two well-known transcription factors, p53 and NFκB. p53 is a cell cycle regulator that is activated in response to DNA damage, for example, due to ionizing radiation. NFκB is a regulator of immunity and responds to inflammatory signals like the macrophage-secreted cytokine, TNF. Both p53 and NFκB are controlled by at least one flux whose effect on activation is positive and one whose effect is negative. For p53 these are the turnover of p53 and Mdm2, respectively. For NFκB they are the TNF-dependent and -independent turnover of the NFκB inhibitor, IκB. We find that juxtaposition of a positive and negative flux allows for precise tuning of the sensitivity of these transcription factors to different environmental signals. Our results therefore suggest that rapid synthesis and degradation of signaling proteins, though energetically wasteful, may be a common mechanism by which eukaryotic cells regulate their sensitivity to environmental stimuli.
Collapse
Affiliation(s)
- Paul Michael Loriaux
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America
- The San Diego Center for Systems Biology, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- The San Diego Center for Systems Biology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Nadiminty N, Tummala R, Zhu Y, Gao AC. NF-kappaB2/p52 in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
39
|
Retigeric acid B exhibits antitumor activity through suppression of nuclear factor-κB signaling in prostate cancer cells in vitro and in vivo. PLoS One 2012; 7:e38000. [PMID: 22666431 PMCID: PMC3362538 DOI: 10.1371/journal.pone.0038000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/28/2012] [Indexed: 11/27/2022] Open
Abstract
Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-xL, cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well.
Collapse
|
40
|
McCourt C, Maxwell P, Mazzucchelli R, Montironi R, Scarpelli M, Salto-Tellez M, O'Sullivan JM, Longley DB, Waugh DJJ. Elevation of c-FLIP in castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted therapy. Clin Cancer Res 2012; 18:3822-33. [PMID: 22623731 DOI: 10.1158/1078-0432.ccr-11-3277] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)-targeted therapy. EXPERIMENTAL DESIGN c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions. RESULTS c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7-mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. CONCLUSION c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC.
Collapse
Affiliation(s)
- Clare McCourt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Expression of neutral endopeptidase, endothelin-1, and nuclear factor kappa B in prostate cancer: interrelations and associations with prostate-specific antigen recurrence after radical prostatectomy. Prostate Cancer 2012; 2012:452795. [PMID: 22666602 PMCID: PMC3362215 DOI: 10.1155/2012/452795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Objective. To study the impact of the neutral endopeptidase (NEP)/neuropeptides (NPs) axis and nuclear factor kappa B (NFκB) as predictors of prostate-specific antigen (PSA) recurrence after radical prostatectomy (RP). Patients and Methods. 70 patients with early-stage PC were treated with RP and their tumor samples were evaluated for expression of NEP, endothelin-1 (ET-1) and NFκB (p65). Time to PSA recurrence was correlated with the examined parameters and combined with preoperative PSA level, Gleason score, pathological TNM (pT) stage, and surgical margin (SM) assessment. Results and Limitations. Membranous expression of NEP (P < 0.001), cytoplasmic ET-1 (P = 0.002), and cytoplasmic NFκB (P < 0.001) were correlated with time to PSA relapse. NEP was associated with ET-1 (P < 0.001) and NFκB (P < 0.001). ET-1 was also correlated with NFκB (P < 0.001). NEP expression (P = 0.017), pT stage (P = 0.013), and SMs (P = 0.036) were independent predictors of time to PSA recurrence.
Conclusions. There seems to be a clinical model of NEP/NPs and NFκB pathways interconnection, with their constituents following inverse patterns of expression in accordance with their biological roles and molecular interrelations.
Collapse
|
42
|
Voutsadakis IA, Vlachostergios PJ, Daliani DD, Karasavvidou F, Kakkas G, Moutzouris G, Melekos MD, Papandreou CN. CD10 is inversely associated with nuclear factor-kappa B and predicts biochemical recurrence after radical prostatectomy. Urol Int 2012; 88:158-64. [PMID: 22286396 DOI: 10.1159/000335299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The cell surface endopeptidase CD10 (neutral endopeptidase) and nuclear factor-κB (NF-κB) have been independently associated with prostate cancer (PC) progression. We investigated the correlations between these two factors and their prognostic relevance in terms of biochemical (prostate-specific antigen, PSA) relapse after radical prostatectomy (RP) for localized PC. PATIENTS AND METHODS The immunohistochemical expression of CD10 and NF-κB in samples from 70 patients who underwent RP for localized PC was correlated with the preoperative PSA level, Gleason score, pathological stage and time to PSA failure. RESULTS CD10 expression was inversely associated with NF-κB expression (p < 0.001), stage (p = 0.03) and grade (p = 0.003), whereas NF-κB was directly related with stage (p = 0.006) and grade (p = 0.002). The median time to PSA failure was 56 months. CD10 and NF-κB were directly (p < 0.001) and inversely (p < 0.001) correlated with biochemical recurrence-free survival, respectively. CD10 expression (p = 0.022) and stage (p = 0.018) were independently associated with time to biochemical recurrence. CONCLUSION Low CD10 expression is an adverse prognostic factor for biochemical relapse after RP in localized PC, which is also associated with high NF-κB expression. Decreased CD10 expression which would lead to increased neuropeptide signaling and NF-κB activity may be present in a subset of early PCs.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of Medicine, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schulze J, Weber K, Baranowsky A, Streichert T, Lange T, Spiro AS, Albers J, Seitz S, Zustin J, Amling M, Fehse B, Schinke T. p65-Dependent production of interleukin-1β by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts. Cancer Lett 2011; 317:106-13. [PMID: 22108531 DOI: 10.1016/j.canlet.2011.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 01/08/2023]
Abstract
Skeletal metastases are a frequent complication of prostate, breast and lung cancer, and the interactions of tumor cells with bone-forming osteoblasts and bone-resorbing osteoclasts have been suggested to play critical roles in disease progression. We have previously shown that treatment of primary murine osteoblasts with conditioned medium of the human osteolytic prostate cancer cell line PC-3 results in a rapid induction of chemokine expression, thereby providing further evidence for a molecular crosstalk between bone and tumor cells. The aim of our current study was to identify PC-3-derived molecules mediating this effect. Using Affymetrix Gene Chip hybridization followed by qRT-PCR we were able to confirm that the expression of chemokine-encoding genes is markedly induced in human primary osteoblasts following incubation with PC-3-conditioned medium. Since this induction was significantly affected upon alteration of p65-levels in PC-3 cells, we performed a second genome-wide expression analysis to identify p65-regulated cytokines, which were then tested for their ability to induce chemokine expression. Here we observed that interleukin-1β (IL-1B) did not only increase the expression of chemokines in osteoblasts, but also the phosphorylation of p65 and thereby its own expression. Since immunohistochemistry on bone biopsy sections from prostate cancer metastases demonstrated IL-1B expression in both, tumor cells and osteoblasts, our data suggest that IL-1B is one of the relevant cytokines involved in the skeletal complications of cancer metastases.
Collapse
Affiliation(s)
- Jochen Schulze
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 2011; 51:1068-84. [PMID: 21683786 DOI: 10.1016/j.freeradbiomed.2011.05.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to summarize the most important human clinical trials of antioxidants as cancer prevention agents conducted to date, provide an overview of currently ongoing studies, and discuss future steps needed to advance research in this field. To date there have been several large (at least 7000 participants) trials testing the efficacy of antioxidant supplements in preventing cancer. The specific agents (diet-derived direct antioxidants and essential components of antioxidant enzymes) tested in those trials included β-carotene, vitamin E, vitamin C, selenium, retinol, zinc, riboflavin, and molybdenum. None of the completed trials produced convincing evidence to justify the use of traditional antioxidant-related vitamins or minerals for cancer prevention. Our search of ongoing trials identified six projects at various stages of completion. Five of those six trials use selenium as the intervention of interest delivered either alone or in combination with other agents. The lack of success to date can be explained by a variety of factors that need to be considered in the next generation research. These factors include lack of good biological rationale for selecting specific agents of interest; limited number of agents tested to date; use of pharmacological, rather than dietary, doses; and insufficient duration of intervention and follow-up. The latter consideration underscores the need for alternative endpoints that are associated with increased risk of neoplasia (i.e., biomarkers of risk), but are detectable prior to tumor occurrence. Although dietary antioxidants are a large and diverse group of compounds, only a small proportion of candidate agents have been tested. In summary, the strategy of focusing on large high-budget studies using cancer incidence as the endpoint and testing a relatively limited number of antioxidant agents has been largely unsuccessful. This lack of success in previous trials should not preclude us from seeking novel ways of preventing cancer by modulating oxidative balance. On the contrary, the well demonstrated mechanistic link between excessive oxidative stress and carcinogenesis underscores the need for new studies. It appears that future large-scale projects should be preceded by smaller, shorter, less expensive biomarker-based studies that can serve as a link from mechanistic and observational research to human cancer prevention trials. These relatively inexpensive studies would provide human experimental evidence for the likely efficacy, optimum dose, and long-term safety of the intervention of interest that would then guide the design of safe, more definitive large-scale trials.
Collapse
Affiliation(s)
- Michael Goodman
- Emory University Rollins School of Public Health, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
45
|
Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47:R25-41. [PMID: 21504942 DOI: 10.1530/jme-11-0018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis. Although AR overexpression could be attributed to gene amplification, only 10-20% of CRPCs exhibit AR gene amplification, and aberrant AR expression in the remaining instances of CRPC is thought to be attributed to transcriptional, translational, and post-translational mechanisms. Overexpression of AR at the protein level, as well as the mRNA level, has been found in CRPC, suggesting a key role for transcriptional regulation of AR expression. Since the analysis of the AR promoter region in the 1990s, several transcription factors have been reported to regulate AR transcription. In this review, we discuss the molecules involved in the control of AR gene expression, with emphasis on its transcriptional control by transcription factors in prostate cancer. We also consider the therapeutic potential of targeting AR expression.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
46
|
Péant B, Forest V, Trudeau V, Latour M, Mes-Masson AM, Saad F. IκB-Kinase-ε (IKKε/IKKi/IκBKε) expression and localization in prostate cancer tissues. Prostate 2011; 71:1131-8. [PMID: 21271611 DOI: 10.1002/pros.21329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/01/2010] [Indexed: 11/05/2022]
Abstract
BACKGROUND Advanced prostate cancer (PCa) remains a one of the leading causes of cancer related death and is often due to the progression from a hormone sensitive (HS) to a castrate resistant (CR) state for which therapeutic alternatives remain palliative. Molecular events involved in the progression to CR-PCa remain largely unknown. A previous study reported significantly higher levels of Iκ-B kinase-epsilon (IKKε) expression in CR compared to androgen-responsive cell lines. In the present study, we evaluate IKKε expression in human prostate tissue. METHODS In order to evaluate the modulation of IKKε expression in PCa tissue IKKε immunostaining was performed on paraffin-embedded prostate tissue microarrays containing cores from normal tissues (n = 47), non-malignant tissues adjacent to the tumor (n = 53), prostatic intraepithelial neoplasia (PIN) (n = 28), HS (n = 62), and CR tumors (n = 31). RESULTS We found a low cytoplasmic expression of IKKε in non-malignant tissue. HS tumors showed a significant increase in cytoplasmic IKKε expression compared to non-malignant tissues. CR tissues presented the highest cytoplasmic IKKε expression levels. We also report, for the first time, the presence of a nuclear localization of IKKε in prostate epithelial cells, in particular we observed an increase of IKKε nuclear localization in HS malignant tissues. Finally, we found a strong link between an increase of IKKε cytoplasmic expression in PCa and metastatic progression. CONCLUSION This study strongly suggests the role of IKKε as a PCa oncogene that may be involved in the emergence of a CR state.
Collapse
Affiliation(s)
- Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM)/Institut du Cancer de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Han J, Jogie-Brahim S, Harada A, Oh Y. Insulin-like growth factor-binding protein-3 suppresses tumor growth via activation of caspase-dependent apoptosis and cross-talk with NF-κB signaling. Cancer Lett 2011; 307:200-10. [PMID: 21536375 DOI: 10.1016/j.canlet.2011.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
Nuclear factor-kappaB (NF-κB) is constitutively activated in a variety of human cancers including prostate cancer and involved in tumorigenesis, tumor progression and chemo-resistance. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a potent tumor suppressor and is significantly suppressed in a variety of cancers. Diverse biological effects of IGFBP-3 have been reported to be both dependent and independent of the IGF/IGF-I receptor (IGF-IR) axis. The precise underlying mechanisms of IGF/IGF-IR-independent, antiproliferative actions of IGFBP-3 are yet to be elucidated. We found an inverse correlation between NF-κB activity and IGFBP-3 expression during prostate cancer progression using an in vitro prostate cancer progression model. Restoration of IGFBP-3 resulted in significant inhibition of constitutively elevated NF-κB activity in prostate cancer cells. IGFBP-3 further inhibited the expression of NF-κB-regulated angiogenic factors such as VEGF and IL-8, and cell adhesion molecules, ICAM-1 and VCAM-1. This inhibitory action of IGFBP-3 was IGF/IGF-IR-independent since IGFBP-3 mutant devoid of IGF binding affinity had a similar inhibitory effect. We identified that IGFBP-3 degrades the key NF-κB regulatory molecules-IκBα and p65-NF-κB proteins through activation of caspase-8 and -3/-7, thereby inhibiting elevated NF-κB activity in prostate cancer. Finally intratumoral administration of IGFBP-3 resulted in significant tumor suppression as well as sensitization of antitumor effect of doxorubicin. Our findings indicate that IGFBP-3 exerts antitumor effects via IGF-independent mechanisms which involve activation of caspase-dependent apoptosis and cross-talk with NF-κB signaling. The use of IGFBP-3 as a cancer therapeutic with this distinctive suppression mechanism may offer alternate means to treat chemotherapy resistant tumors.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298-0662, USA
| | | | | | | |
Collapse
|
48
|
Vernier M, Bourdeau V, Gaumont-Leclerc MF, Moiseeva O, Bégin V, Saad F, Mes-Masson AM, Ferbeyre G. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 2011; 25:41-50. [PMID: 21205865 DOI: 10.1101/gad.1975111] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.
Collapse
Affiliation(s)
- Mathieu Vernier
- Biochemistry Department, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Aziz MM, Takagi Y, Hashimoto N, Miyamoto S. Activation of Nuclear Factor κB in Cerebral Arteriovenous Malformations. Neurosurgery 2010; 67:1669-79; discussion 1679-80. [DOI: 10.1227/neu.0b013e3181fa00f1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
50
|
Kontos S, Sotiropoulou-Bonikou G, Kominea A, Melachrinou M, Balampani E, Bonikos D. Coordinated increased expression of Cyclooxygenase2 and nuclear factor κB is a steady feature of urinary bladder carcinogenesis. Adv Urol 2010; 2010:871356. [PMID: 20827306 PMCID: PMC2933857 DOI: 10.1155/2010/871356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The inescapable relationship between chronic inflammation and carcinogenesis has long been established. Our objective was to investigate COX-2 and NF-κB immunohistochemical expression in a large series of normal epithelium and bladder carcinomas. METHODS Immunohistochemical methodology was performed on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females with bladder carcinomas). RESULTS COX-2 expression is increased in the cytoplasm of bladder cells, during loss of cell differentiation (r(s) = 0.61, P-value < .001) and in muscle invasive carcinomas (P-value < .001). A strong positive association between tumor grade and nuclear expression of NFκB has been established. A positive correlation between COX-2 and nuclear NFκB immunoreactivity was observed. CONCLUSIONS The possible coordinated upregulation of NFκB and COX-2, during bladder carcinogenesis, indicates that agents inhibitors of these two molecules may represent a possible new treatment strategy, by virtue of their role in bladder carcinogenesis.
Collapse
Affiliation(s)
- Stylianos Kontos
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece, Department of Urology, General Hospital of Nikaia, 18543 Peiraeus, Greece.
| | | | | | | | | | | |
Collapse
|