1
|
Aczél T, Körtési T, Kun J, Urbán P, Bauer W, Herczeg R, Farkas R, Kovács K, Vásárhelyi B, Karvaly GB, Gyenesei A, Tuka B, Tajti J, Vécsei L, Bölcskei K, Helyes Z. Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J Headache Pain 2021; 22:117. [PMID: 34615455 PMCID: PMC8493693 DOI: 10.1186/s10194-021-01285-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Herczeg
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Bernadett Tuka
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
2
|
Aczél T, Kun J, Szőke É, Rauch T, Junttila S, Gyenesei A, Bölcskei K, Helyes Z. Transcriptional Alterations in the Trigeminal Ganglia, Nucleus and Peripheral Blood Mononuclear Cells in a Rat Orofacial Pain Model. Front Mol Neurosci 2018; 11:219. [PMID: 29997476 PMCID: PMC6028693 DOI: 10.3389/fnmol.2018.00219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Orofacial pain and headache disorders are among the most debilitating pain conditions. While the pathophysiological basis of these disorders may be diverse, it is generally accepted that a common mechanism behind the arising pain is the sensitization of extra- and intracranial trigeminal primary afferents. In the present study we investigated gene expression changes in the trigeminal ganglia (TRG), trigeminal nucleus caudalis (TNC) and peripheral blood mononuclear cells (PBMC) evoked by Complete Freund's Adjuvant (CFA)-induced orofacial inflammation in rats, as a model of trigeminal sensitization. Microarray analysis revealed 512 differentially expressed genes between the ipsi- and contralateral TRG samples 7 days after CFA injection. Time-dependent expression changes of G-protein coupled receptor 39 (Gpr39), kisspeptin-1 receptor (Kiss1r), kisspeptin (Kiss1), as well as synaptic plasticity-associated Lkaaear1 (Lkr) and Neurod2 mRNA were described on the basis of qPCR results. The greatest alterations were observed on day 3 ipsilaterally, when orofacial mechanical allodynia reached its maximum. This corresponded well with patterns of neuronal (Fosb), microglia (Iba1), and astrocyte (Gfap) activation markers in both TRG and TNC, and interestingly also in PBMCs. This is the first description of up- and downregulated genes both in primary and secondary sensory neurones of the trigeminovascular system that might play important roles in neuroinflammatory activation mechanisms. We are the first to show transcriptomic alterations in the PBMCs that are similar to the neuronal changes. These results open new perspectives and initiate further investigations in the research of trigeminal pain disorders.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Tibor Rauch
- Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Attila Gyenesei
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- MTA-PTE Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
3
|
Oterino A, Ruiz-Alegría C, Castillo J, Valle N, Bravo Y, Cayón A, Alonso A, Tejera P, Ruiz-Lavilla N, Muñoz P, Pascual J. GNAS1 T393C Polymorphism is Associated With Migraine. Cephalalgia 2016; 27:429-34. [PMID: 17388805 DOI: 10.1111/j.1468-2982.2007.01305.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Migraineurs have an interictal sympathetic nervous system (SNS) hypofunctionality and hypersensitivity to adrenergic amines. The GNAS1 T393C polymorphism has been associated with a distinct SNS sensitivity in healthy subjects. We tested GNAS1 T393C variant in two independent sets of subjects. In the case-control subset, 365 migraine patients [194 with aura (MA)] vs. 347 healthy controls were studied. A significant excess of the CC genotype was found in migraneurs (31.2%) as opposed to controls (20.2%; P = 0.003). Using a logistic regression model corrected for sex, the CC genotype conferred a general risk for migraine twice [odds ratio (OR) 1.79, 95% confidence interval (CI) 1.27-2.53; P = 0.001] higher than CT/TT genotypes. Using parents from 117 migraine families, a marginally significant trend for association could be observed ( P = 0.025), but the transmission disequilibrium test for alleles maternally transmitted failed to demonstrate familial association. In this subgroup, CC genotype conferred a risk for migraine over twice (OR 2.20; 95% CI 1.14-4.40; P = 0.019) higher than TT/TC genotypes. In conclusion, the GNAS1 T393C variant is associated with migraine, which suggests a genetic basis for its higher SNS sensitivity.
Collapse
Affiliation(s)
- A Oterino
- Service of Neurology, University Hospital Marqués de Valdecilla (UC), Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Plummer PN, Colson NJ, Lewohl JM, MacKay RK, Fernandez F, Haupt LM, Griffiths LR. Significant differences in gene expression of GABA receptors in peripheral blood leukocytes of migraineurs. Gene 2011; 490:32-6. [PMID: 21971078 DOI: 10.1016/j.gene.2011.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/19/2011] [Accepted: 08/25/2011] [Indexed: 01/29/2023]
Abstract
Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.
Collapse
Affiliation(s)
- Prue N Plummer
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Waldenlind E, Sjöstrand C. Pathophysiology of cluster headache and other trigeminal autonomic cephalalgias. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:389-411. [PMID: 20816439 DOI: 10.1016/s0072-9752(10)97033-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Elisabet Waldenlind
- Department of Neurology, Karolinska University Hospital/Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
6
|
Sjöstrand C, Duvefelt K, Steinberg A, Remahl IN, Waldenlind E, Hillert J. Gene Expression Profiling in Cluster Headache: A Pilot Microarray Study. Headache 2006; 46:1518-34. [PMID: 17115985 DOI: 10.1111/j.1526-4610.2006.00611.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cluster headache (CH) is a primary neurovascular headache disorder characterized by attacks of excruciating pain accompanied by ipsilateral autonomic symptoms. CH pathophysiology is presumed to involve an activation of hypothalamic and trigeminovascular systems, but inflammation and immunological mechanisms have also been hypothesized to be of importance. OBJECTIVE To identify differentially expressed genes during different clinical phases of CH, assuming that changes of pathophysiological importance would also be seen in peripheral venous blood. METHODS Blood samples were drawn at 3 consecutive occasions from 3 episodic CH patients: during attacks, between attacks and in remission, and at 1 occasion from 3 matched controls. Global gene expression was analyzed with microarray tehnology using the Affymetrix Human Genome U133 2.0 Plus GeneChip Set, covering more than 54,000 gene transcripts, corresponding to almost 22,000 genes. Quantitative RT-PCR on S100P gene expression was analyzed in 6 patients and 14 controls. RESULTS Overall, quite small differences were seen intraindividually and large differences interindividually. However, pairwise comparisons of signal values showed upregulation of several S100 calcium binding proteins; S100A8 (calgranulin A), S100A12 (calgranulin C), and S100P during active phase of the disease compared to remission. Also, annexin A3 (calcium-binding) and ICAM3 showed upregulation. BIRC1 (neuronal apoptosis inhibitory protein), CREB5, HLA-DQA1, and HLA-DQB1 were upregulated in patients compared to controls. The upregulation of S100P during attack versus remission was confirmed by quantitative RT-PCR analysis. CONCLUSIONS The S100A8 and S100A12 proteins are considered markers of non-infectious inflammatory disease, while the function of S100P is still largely unknown. Furthermore, upregulation of HLA-DQ genes in CH patients may also indicate an inflammatory response. Upregulation of these pro-inflammatory genes during the active phase of CH has not formerly been reported. Data from this pilot microarray study provide a basis for further studies in CH.
Collapse
Affiliation(s)
- Christina Sjöstrand
- Clinical Neuroscience--Neurology, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Meyer EL, Waldenlind E, Marcus C. beta-Receptor response to noradrenaline in cluster headache. A study of adipose tissue lipolysis. Cephalalgia 2006; 26:831-6. [PMID: 16776698 DOI: 10.1111/j.1468-2982.2006.01118.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown decreased lipolysis in both phases of cluster headache (CH), as an indication of a sympathetic dysregulation. Reduced lipolysis could be a result of diminished beta-receptor sensitivity in adipose tissue. The aim of this study was to measure the lipolytic response to noradrenaline in 10 CH patients in remission and in 10 healthy subjects, to estimate beta-receptor function. Microdialysis technique was used to measure the increase of glycerol, the end-product of lipolysis, during infusion of noradrenaline into the adipose tissue. Noradrenaline infusion resulted in a distinct elevation of glycerol. The average glycerol increase was significantly higher in CH patients (121% +/- 48) than in healthy subjects (77% +/- 41) (P < 0.05), which indicates increased beta-receptor response to noradrenaline in CH patients in remission. This may be due to up-regulated beta-receptor sensitivity, secondary to reduced sympathetic outflow and a primary autonomic disturbance in CH.
Collapse
Affiliation(s)
- E Laudon Meyer
- Department of Clinical Neuroscience, Division of Neurology at Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
8
|
Abstract
Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT(1B/1D) agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease.Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.
Collapse
Affiliation(s)
- Kelly L Rogers
- Genomics Research Centre, Griffith University Gold Coast, Gold Coast Mail Centre, Southport, Queensland 9726, Australia
| | | | | |
Collapse
|
9
|
McCarthy LC, Hosford DA, Riley JH, Bird MI, White NJ, Hewett DR, Peroutka SJ, Griffiths LR, Boyd PR, Lea RA, Bhatti SM, Hosking LK, Hood CM, Jones KW, Handley AR, Rallan R, Lewis KF, Yeo AJ, Williams PM, Priest RC, Khan P, Donnelly C, Lumsden SM, O'Sullivan J, See CG, Smart DH, Shaw-Hawkins S, Patel J, Langrish TC, Feniuk W, Knowles RG, Thomas M, Libri V, Montgomery DS, Manasco PK, Xu CF, Dykes C, Humphrey PP, Roses AD, Purvis IJ. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine. Genomics 2001; 78:135-49. [PMID: 11735220 DOI: 10.1006/geno.2001.6647] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Collapse
Affiliation(s)
- L C McCarthy
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Galeotti N, Ghelardini C, Zoppi M, Del Bene E, Raimondi L, Beneforti E, Bartolini A. Hypofunctionality of Gi proteins as aetiopathogenic mechanism for migraine and cluster headache. Cephalalgia 2001; 21:38-45. [PMID: 11298662 DOI: 10.1046/j.1468-2982.2001.00142.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The involvement of Gi proteins in the modulation of pain perception has been widely established, and mutations in G-proteins have already been identified as the aetiopathological cause of human diseases. The aim of the present study was to determine whether a deficiency or a hypofunctionality of the Gi proteins occurred in primary headache. The functionality and the level of expression of Gi proteins were investigated in lymphocytes from migraine without aura, migraine with aura and cluster headache sufferers. A reduced capability to inhibit forskolin-stimulated adenylyl cyclase activity in headache patients was observed. Migraine patients also showed basal adenosine cAMP levels about four times higher than controls. The reduced activity of Gi proteins seems not to be related to a reduction of protein levels since no significant reduction of the Gialpha subunits was observed. These results indicate Gi protein hypofunctionality as an aetiopathogenic mechanism in migraine and cluster headache.
Collapse
Affiliation(s)
- N Galeotti
- Department of Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|