1
|
Drummond PD, Morellini N, Visser E, Finch PM. Expression of Cutaneous Beta-2 Adrenoceptors Is Similar in Patients with Complex Regional Pain Syndrome and Pain-Free Controls. PAIN MEDICINE 2020; 21:1199-1207. [PMID: 31120123 DOI: 10.1093/pm/pnz110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Studies in rodents suggest that cutaneous beta-2 adrenoceptors (β2-ARs) mediate inflammation and pain after tissue injury and that inflammation and peripheral nerve injury trigger increases in neuronal β2-AR expression. Hence, the aim of this study was to investigate the expression of β2-ARs on keratinocytes and dermal nerves in patients with complex regional pain syndrome (CRPS). DESIGN, SETTING, AND SUBJECTS Fifty-eight patients with CRPS were recruited for this study. In addition, skin biopsies were obtained from 13 pain-free women and three pain-free men of similar age and sex distribution as the patients. METHODS Quantitative sensory tests for assessing sensitivity to pressure, pinprick, light touch, heat, and cold were administered, and skin biopsies were obtained from the affected and contralateral limbs. Skin biopsies were also obtained from a similar site on the dorsal hand or foot of pain-free controls. Immunohistochemistry and confocal microscopy were used to identify β2-ARs on keratinocytes, dermal nerves, and blood vessels in the skin samples. RESULTS The distribution of β2-ARs in keratinocytes and nerves was similar in the affected and contralateral limbs of patients and was similar for target cells in patients and controls. However, elevated β2-AR expression in reticular nerve bundles was associated with heightened sensitivity to heat pain. CONCLUSIONS These findings do not support a major role of cutaneous β2-ARs in CRPS. However, activation of neuronal β2-ARs may contribute to thermal hyperalgesia in a subgroup of patients. Whether activation of β2-ARs on keratinocytes mediates inflammation early in the course of CRPS requires further investigation.
Collapse
Affiliation(s)
- Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Natalie Morellini
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Eric Visser
- School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Philip M Finch
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Markowitz SM, Lerman BB. A contemporary view of atrioventricular nodal physiology. J Interv Card Electrophysiol 2018; 52:271-279. [DOI: 10.1007/s10840-018-0392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022]
|
3
|
Chon KH, Yang B, Posada-Quintero HF, Siu KL, Rolle M, Brink P, Birzgalis A, Moore LC. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice. J Diabetes Sci Technol 2014; 8:1157-67. [PMID: 25097056 PMCID: PMC4455481 DOI: 10.1177/1932296814545669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction.
Collapse
Affiliation(s)
- Ki H Chon
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Bufan Yang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Hugo F Posada-Quintero
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kin L Siu
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Peter Brink
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Aija Birzgalis
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Leon C Moore
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Pauza DH, Rysevaite K, Inokaitis H, Jokubauskas M, Pauza AG, Brack KE, Pauziene N. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol 2014; 75:188-97. [PMID: 25101952 DOI: 10.1016/j.yjmcc.2014.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/10/2014] [Accepted: 07/28/2014] [Indexed: 11/28/2022]
Abstract
Fluorescent immunohistochemistry on the cardiac conduction system in whole mount mouse heart preparations demonstrates a particularly dense and complex network of nerve fibres and cardiomyocytes which are positive to the hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4-positive cardiomyocytes) in the sinoatrial node region and adjacent areas around the root of right cranial vein. The present study was designed to investigate the morphologic and histochemical pattern of nerve fibres and HCN4-positive cardiomyocytes using fluorescent techniques and/or electron microscopy. Adrenergic and cholinergic nerve fibres together with HCN4-positive cardiomyocytes were identified using primary antibodies for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), and the HCN4 channel respectively. Amid HCN4-positive cardiomyocytes, fluorescence and electron microscopy data demonstrated a dense distribution of nerve fibres immunoreactive for ChAT and TH. In addition, novel electron microscopy data revealed that the mouse sinoatrial node contained exclusively unmyelinated nerve fibres, in which the majority of axons possess varicosities with clear mediatory vesicles that can be classified as cholinergic. Synapses occurred without any clear terminal connection with the effector cell, i.e. these synapes were of "en passant" type. In general, the morphologic pattern of innervation of mouse HCN4-positive cardiomyocytes identified using electron microscopy corresponds well to the dense network of nerve fibres demonstrated by fluorescent immunohistochemistry in mouse sinoatrial node and adjacent areas. The complex and extraordinarily dense innervation of HCN4-positive cardiomyocytes in mouse sinoatrial node underpins the importance of neural regulation for the cardiac conduction system. Based on the present observations, it is concluded that the occurrence of numerous nerve fibres nearby atrial cardiomyocytes serves as a novel reliable extracellular criterion for discrimination of SA nodal cardiomyocytes using electron microscopy.
Collapse
Affiliation(s)
- Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kristina Rysevaite
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Marius Jokubauskas
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Audrys G Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kieran E Brack
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK
| | - Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Pauza DH, Saburkina I, Rysevaite K, Inokaitis H, Jokubauskas M, Jalife J, Pauziene N. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci 2013; 176:32-47. [PMID: 23403121 DOI: 10.1016/j.autneu.2013.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The mouse heart is a popular model to study the function and autonomic control of the specialized cardiac conduction system (CCS). However, the precise identity and anatomical distribution of the intrinsic cardiac nerves that modulate the function of the mouse CCS have not been adequately studied. We aimed at determining the organization and distribution of the intrinsic cardiac nerves that supply the CCS of the mouse. In whole mouse heart preparations, intrinsic neural structures were revealed by histochemical staining for acetylcholinesterase (AChE). Adrenergic, cholinergic and peptidergic neural components were identified, respectively, by immunohistochemical labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), calcitonin gene related peptide (CGRP), substance P (SP), and protein gene product 9.5 (PGP 9.5). Myocytes of the CCS were identified by immunolabeling of hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4). In addition, the presence of CCS myocytes in atypical locations was verified using fluorescent immunohistochemistry performed on routine paraffin sections. The results demonstrate that four microscopic epicardial nerves orientated toward the sinuatrial nodal (SAN) region derive from both the dorsal right atrial and right ventral nerve subplexuses. The atrioventricular nodal (AVN) region is typically supplied by a single intrinsic nerve derived from the left dorsal nerve subplexus at the posterior interatrial groove. SAN myocytes positive for HCN4 were widely distributed both on the medial, anterior, lateral and even posterior sides of the root of the right cranial (superior caval) vein. The distribution of HCN4-positive myocytes in the AVN region was also wider than previously considered. HCN4-positive cells and thin slivers of the AVN extended to the roots of the ascending aorta, posteriorly to the orifice of the coronary sinus, and even along both atrioventricular rings. Notwithstanding the fact that cholinergic nerve fibers and axons clearly predominate in the mouse CCS, adrenergic nerve fibers and axons are abundant therein as well. Altogether, these results provide new insight into the anatomical basis of the neural control of the mouse CCS.
Collapse
Affiliation(s)
- Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yoshihara T, Yonoki Y, Saito M, Nakahara T, Sakamoto K, Ishii K. Agonist-induced receptor internalization in Chinese hamster ovary cells stably co-expressing β(1)- and β(2)-adrenergic receptors. Biol Pharm Bull 2013; 36:114-9. [PMID: 23302644 DOI: 10.1248/bpb.b12-00595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
β(1)- and β(2)-Adrenergic receptors (β(1)-AR and β(2)-AR) are co-expressed in numerous tissues, for example, heart and bladder. They play a very important role in the responses of a variety of organs to sympathetic nerve stimulation. Recent studies suggest that many G protein-coupled receptors, such as β(1)-AR, β(2)-AR, μ opioid receptor and δ opioid receptor, can form homo- and heterooligomers. Previous studies demonstrated that the β(1)-AR and β(2)-AR formed dimers in living HEK 293 cells. The aim of the present study is to investigate whether such heterooligomerization affect the agonist-induced receptor internalization in the CHO-K1 cells stably co-expressing β(1)-AR and β(2)-AR. Using co-immunoprecipitation, we confirmed that β(1)-AR and β(2)-AR formed heterooligomers in the CHO-K1 cells. In cells co-expressing β(1)-AR and β(2)-AR, 30% of β(1)-AR was internalized by isoproterenol, whereas only 20% of β(1)-AR was internalized in cells expressing the β(1)-AR alone. Heterooligomerization did not affect the ratio of internalized β(2)-AR. Salmeterol, a specific β(2)-AR agonist, broke β(1)-AR/β(2)-AR heterooligomers, and induced β(2)-AR-specific internalization in cells co-expressing β(1)-AR and β(2)-AR. The present study demonstrated that heterooligomerization between β(1)-AR and β(2)-AR accelerates the isoproterenol-promoted internalization of the β(1)-AR, and that salmeterol induces β(2)-AR-specific internalization in Chinese hamster ovary (CHO) cells stably co-expressing β(1)-AR and β(2)-AR.
Collapse
Affiliation(s)
- Takako Yoshihara
- Department of Molecular Pharmacology, School of Pharmaceurical Sciences, Kitasato University, 5–9–1 Shirokane, Minato-ku, Tokyo 108–8641, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, Pauza DH. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm 2011; 8:731-8. [PMID: 21232628 DOI: 10.1016/j.hrthm.2011.01.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND The intrinsic neural plexus of the mouse heart has not been adequately investigated despite the extensive use of this species in experimental cardiology. OBJECTIVE The purpose of this study was to determine the distribution of cholinergic, adrenergic, and sensory neural components in whole-mount mouse heart preparations using double immunohistochemical labeling. METHODS/RESULTS Intrinsic neurons were concentrated within 19 ± 3 ganglia (n = 20 mice) of varying size, scattered on the medial side of the inferior caval (caudal) vein on the right atrium and close to the pulmonary veins on the left atrium. Of a total of 1,082 ± 160 neurons, most somata (83%) were choline acetyltransferase (ChAT) immunoreactive, whereas 4% were tyrosine hydroxylase (TH) immunoreactive; 14% of ganglionic cells were biphenotypic for ChAT and TH. The most intense ChAT staining was observed in axonal varicosities. ChAT was evident in nerve fibers interconnecting intrinsic ganglia. Both ChAT and TH immunoreactivity were abundant within the nerves accessing the heart. However, epicardial TH-immunoreactive nerve fibers were predominant on the dorsal and ventral left atrium, whereas most ChAT-positive axons proceeded on the heart base toward the large intrinsic ganglia and on the epicardium of the root of the right cranial vein. Substance P-positive and calcitonin gene-related peptide-immunoreactive nerve fibers were abundant on the epicardium and within ganglia adjacent to the heart hilum. Small intensely fluorescent cells were grouped into clusters of 3 to 8 and were dispersed within large ganglia or separately on the atrial and ventricular walls. CONCLUSION Although some nerves and neuronal bundles of the mouse epicardial plexus are mixed, most express either adrenergic or cholinergic markers. Therefore, selective stimulation and/or ablation of the functionally distinct intrinsic neural pathways should allow the study of specific effects on cardiac function.
Collapse
Affiliation(s)
- Kristina Rysevaite
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
8
|
Hernández-Ochoa EO, Prosser BL, Wright NT, Contreras M, Weber DJ, Schneider MF. Augmentation of Cav1 channel current and action potential duration after uptake of S100A1 in sympathetic ganglion neurons. Am J Physiol Cell Physiol 2009; 297:C955-70. [PMID: 19657060 DOI: 10.1152/ajpcell.00140.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A1, a 21-kDa dimeric Ca2+-binding protein of the EF-hand type, is expressed in cardiomyocytes and is an important regulator of heart function. During ischemia, cardiomyocytes secrete S100A1 to the extracellular space. Although the effects of extracellular S100A1 have been documented in cardiomyocytes, it is unclear whether S100A1 exerts modulatory effects on other tissues in proximity with cardiac cells. Therefore, we sought to investigate the effects of exogenous S100A1 on Ca2+ signals and electrical properties of superior cervical ganglion (SCG) neurons. Immunostaining and Western blot assays indicated no endogenous S100A1 in SCG neurons. Cultured SCG neurons took up S100A1 when it was present in the extracellular medium. Inside the cell exogenous S100A1 localized in a punctate pattern throughout the cytoplasm but was excluded from the nuclei. S100A1 partially colocalized with markers for both receptor- and non-receptor-mediated endocytosis, indicating that in SCG neurons multiple endocytotic pathways are involved in S100A1 internalization. In compartmentalized SCG cultures, axonal projections were capable of uptake and transport of S100A1 toward the neuronal somas. Exogenous S100A1 applied either extra- or intracellularly enhanced Cav1 channel currents in a PKA-dependent manner, prolonged action potentials, and amplified action potential-induced Ca2+ transients. NMR chemical shift perturbation of Ca2+-S100A1 in the presence of a peptide from the regulatory subunit of PKA verifies that S100A1 directly interacts with PKA, and that this interaction likely occurs in the hydrophobic binding pocket of Ca2+-S100A1. Our results suggest the hypothesis that in sympathetic neurons exogenous S100A1 may lead to an increase of sympathetic output.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hucker WJ, Nikolski VP, Efimov IR. Autonomic control and innervation of the atrioventricular junctional pacemaker. Heart Rhythm 2007; 4:1326-35. [PMID: 17905339 DOI: 10.1016/j.hrthm.2007.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND The main physiologic function of the AV junction is control of timing between atrial and ventricular excitation. However, under pathologic conditions, the AV junction may become the pacemaker of the heart. Unlike the well-characterized sinoatrial node (SAN), autonomic control of the AV junctional pacemaker has not been studied. OBJECTIVE The purpose of this study was to characterize the autonomic control and innervation of the AV junctional pacemaker. METHODS The response of rabbit AV junctional pacemaker to autonomic stimulation was investigated using optical mapping, autonomic modulation via subthreshold stimulation (n = 12), and quantitative immunohistochemistry (n = 5), and the density of parasympathetic and sympathetic innervation in optically mapped preparations was quantified. RESULTS Subthreshold stimulation applied adjacent to the conduction system in the triangle of Koch autonomically modulates the junctional rate, and parasympathetic and sympathetic components can be separated with atropine and the beta-blocker nadolol. Subthreshold stimulation increased the rate maximally to 2.1 +/- 0.4 times when applied with atropine. Unlike the SAN pacemaker, which shifts significantly in response to autonomic stimulation, the AV junctional pacemaker remains stationary (most often in the inferior nodal extension), moving in only 5% of subthreshold stimulation trials. Staining with tyrosine hydroxylase and choline acetyltransferase revealed heterogeneous innervation within the AV junction. CONCLUSION AV junctional rhythm can be autonomically modulated with subthreshold stimulation to produce junctional rates of 145 +/- 16 bpm (cycle length 412 +/- 29 ms), similar to sinus rates in rabbit. Unlike the SAN, the anatomic location of the AV junctional pacemaker is stable during autonomic modulation.
Collapse
Affiliation(s)
- William J Hucker
- Department of Biomedical Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
10
|
Yasuhara O, Matsuo A, Bellier JP, Aimi Y. Demonstration of Choline Acetyltransferase of a Peripheral Type in the Rat Heart. J Histochem Cytochem 2006; 55:287-99. [PMID: 17142806 DOI: 10.1369/jhc.6a7092.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.
Collapse
Affiliation(s)
- Osamu Yasuhara
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | | | | | | |
Collapse
|
11
|
Yoo S, Dobrzynski H, Fedorov VV, Xu SZ, Yamanushi TT, Jones SA, Yamamoto M, Nikolski VP, Efimov IR, Boyett MR. Localization of Na+ channel isoforms at the atrioventricular junction and atrioventricular node in the rat. Circulation 2006; 114:1360-71. [PMID: 16966585 DOI: 10.1161/circulationaha.106.613182] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The electrical activity of the atrioventricular node (AVN) is functionally heterogeneous, but how this relates to distinct cell types and the 3-dimensional structure of the AVN is unknown. To address this, we have studied the expression of Na(V)1.5 and other Na+ channel isoforms in the AVN. METHODS AND RESULTS The rat AVN was identified by Masson's trichrome staining together with immunolabeling of marker proteins: connexin40, connexin43, desmoplakin, atrial natriuretic peptide, and hyperpolarization-activated and cyclic nucleotide-gated channel 4. Na+ channel expression was investigated with immunohistochemistry with isoform-specific Na+ channel antibodies. Na(V)1.1 was distributed in a similar manner to Na(V)1.5. Na(V)1.2 was not detected. Na(V)1.3 labeling was present in nerve fibers and cell bodies (but not myocytes) and was abundant in the penetrating atrioventricular (AV) bundle and the common bundle but was much less abundant in other regions. Na(V)1.5 labeling was abundant in the atrial and ventricular myocardium and the left bundle branch. Na(V)1.5 labeling was absent in the open node, penetrating AV bundle, AV ring bundle, and common bundle but present at a reduced level in the inferior nodal extension and transitional zone. Na(V)1.6 was not detected. CONCLUSIONS Our findings provide molecular evidence of multiple electrophysiological cell types at the AV junction. Impaired AV conduction as a result of mutations in or loss of Na(V)1.5 must be the result of impaired conduction in the AVN inputs (inferior nodal extension and transitional zone) or output (bundle branches) rather than the AVN itself (open node and penetrating AV bundle).
Collapse
Affiliation(s)
- Shin Yoo
- Cardiovascular Research Group, School of Medicine, University of Manchester, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hucker WJ, Nikolski VP, Efimov IR. Optical mapping of the atrioventricular junction. J Electrocardiol 2006; 38:121-5. [PMID: 16226086 DOI: 10.1016/j.jelectrocard.2005.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
In the normal heart, the atrioventricular node (AVN) is part of the sole pathway between the atria and ventricles, and is responsible for the appropriate atrial-ventricular delay. Under normal physiological conditions, the AVN controls appropriate frequency-dependent delay of contractions. The AVN also plays an important role in pathology: it protects ventricles during atrial tachyarrhythmia, and during sinoatrial node failure the atrioventricular (AV) junction assumes the role of pacemaker. Finally, the AV junction provides an anatomic substrate for AV nodal reentrant tachycardia, which is the most prevalent supraventricular tachycardia in humans. Using fluorescent imaging with voltage-sensitive dye and immunohistochemistry, we have investigated the structure-function relationship of the atrioventricular (AV) junction during normal conduction, reentry, and junctional rhythm. We identified the site of origin of junctional rhythm at the posterior extension of the AV node (AVN) in 78% (n=23) of the studied hearts and we found that this pacemaker is sensitive to autonomic control. For instance, when the autonomic nervous system was activated using subthreshold stimulation, a transient accelerated junctional rhythm was observed when subthreshold stimulation was terminated. A very similar phenomenon is observed clinically during slow pathway ablations treating AV nodal reentrant tachycardia (AVNRT). The autonomic control of the AV junction was investigated using immunohistochemistry, showing that the AV junction of the rabbit is very densely innervated with both cholinergic and adrenergic neurons. The posterior AV nodal extension was similar to the compact AVN as determined by morphologic and molecular investigations. In particular, both the posterior extension and the compact node express the pacemaking channel HCN4 (responsible for the IF current) and neurofilament 160. In the rabbit heart, AV junction conduction, reentrant arrhythmia, and spontaneous rhythm are governed by heterogeneity of expression of several isoforms of gap junctions and ion channels, and these properties are regulated by the autonomic nervous system. Uniform neurofilament expression suggests that AV nodal posterior extensions are an integral part of the cardiac pacemaking and conduction system.
Collapse
Affiliation(s)
- William J Hucker
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
13
|
Shah P, Ellenbogen KA, Wood MA, Gilligan DM, Dan D. Identification of preferential sites of parasympathetic input to the atrioventricular node in man. Heart Rhythm 2005; 1:27-32. [PMID: 15851112 DOI: 10.1016/j.hrthm.2004.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/14/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The effects of subthreshold stimulation performed at various sites in the perinodal and posteroseptal space on atrioventricular (AV) nodal conduction were investigated. BACKGROUND The identification of specific or preferential sites of parasympathetic innervation to the AV node is suggested by observations made in both the animal and clinical laboratories. Pathologic studies of the parasympathetic innervation to the AV node show it is made up of serpiginous fibers traveling at highly specific sites within the myocardium endocardially towards the compact AV node. METHODS We utilized endocardial subthreshold stimulation to selectively identify and characterize AV nodal inputs. Fourteen patients (age: 56 +/- 4 years) undergoing electrophysiologic testing with or without radiofrequency ablation for supraventricular tachycardia were studied. A steerable quadripolar catheter was positioned in 3 to 9 locations in the region between the site recording the His bundle electrogram and the coronary sinus (CS) os under flouroscopic and electroanatomic guidance. We mapped anterosuperior sites at or near sites with His potential recordings, and up to 2 mm inferior to the His bundle recording, posteroseptal sites included the CS os and sites along the posterior, superior, and inferior border of the CS. Atrial pacing was performed at a cycle length 50 ms longer than Wenckebach cycle length. Subthreshold stimulation was applied at a frequency of 10 Hz and 20 Hz delivered to the distal electrode pair. AH and HV intervals were recorded before and during subthreshold stimulation. AH prolongation was defined as a reproducible increase in AH interval by >10 ms from a stable baseline AH interval. RESULTS Eight of 14 patients demonstrated prolongation of AV conduction at a mean of 1.75 +/- 0.2 sites. Mean AH prolongation was 56.4 +/- 13.0 ms (p = 0.02) from baseline. AH prolongation was achieved 15.4 +/- 1.8 mm below the His bundle recording in 7 patients, at the site of the His bundle recording in 3 patients, and along the posterior CS os border in 3 patients. CONCLUSION Subthreshold stimulation prolongs AV nodal conduction only at specific sites within the triangle of Koch, suggesting discrete parasympathetic endocardial inputs into the AV nodal region.
Collapse
Affiliation(s)
- Paresh Shah
- Department of Medicine (Cardiology), Medical College of Virginia, Richmond, 23298, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang Y, Mazgalev TN. Ventricular rate control during atrial fibrillation and AV node modifications: past, present, and future. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2004; 27:382-93. [PMID: 15009869 DOI: 10.1111/j.1540-8159.2004.00447.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia. Currently there are two broad strategic treatment options for AF: rhythm control and rate control. For rhythm control, the treatment is directed toward restoring and maintaining the sinus rhythm. For rate control, the intention is to slow ventricular rate while allowing AF to continue. In both cases anticoagulation therapy is recommended. The results of currently available clinical trials demonstrated clearly that rate control is not inferior to rhythm control. Thus, rate control is an acceptable primary therapy for many AF patients. The rate control can be achieved essentially by depressing or modifying the filtering properties of the atrioventricular (AV) node. This can be attained by medications that depress the impulse transmission within the AV node, by anatomic modification of the AV communications, as well as by autonomic manipulations that produce AV node negative dromotropic effect. We are reviewing current clinical and newer experimental modalities aimed at enhancing the lifesaving function of this remarkable nodal structure.
Collapse
Affiliation(s)
- Youhua Zhang
- Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
15
|
Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative Assessment of β1- and β2-Adrenergic Receptor Homo- and Heterodimerization by Bioluminescence Resonance Energy Transfer. J Biol Chem 2002; 277:44925-31. [PMID: 12244098 DOI: 10.1074/jbc.m205767200] [Citation(s) in RCA: 407] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative bioluminescence resonance energy transfer (BRET) analysis was applied to the study of beta(1)- and beta(2)-adrenergic receptor homo- and heterodimerization. To assess the relative affinity between each of the protomers, BRET saturation experiments were carried out in HEK-293T cells. beta(1)- and beta(2)-adrenergic receptors were found to have similar propensity to engage in homo- and heterotropic interactions suggesting that, at equivalent expression levels of the two receptor subtypes, an equal proportion of homo- and heterodimers would form. Analysis of the data also revealed that, at equimolar expression levels of energy donor and acceptor, more than 80% of the receptor molecules exist as dimers and that this high incidence of receptor dimerization is insensitive to receptor density for expression levels varying between 1.4 and 26.9 pmol of receptor/mg of membrane protein. Taken together, these results indicate that most of the receptors expressed in cells exist as constitutive dimers and that, at least in undifferentiated fibroblasts, the proportion of homo- and heterodimers between the closely related beta(1)- and beta(2)-adrenergic receptors is determined by their relative levels of expression.
Collapse
MESH Headings
- Cell Line
- Dimerization
- Fluorescence Resonance Energy Transfer/methods
- Humans
- Luminescent Measurements
- Protein Structure, Quaternary
- Radioligand Assay
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Jean-François Mercier
- Département de Biochimie and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
16
|
Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M, Hébert TE. Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 2002; 277:35402-10. [PMID: 12140284 DOI: 10.1074/jbc.m204163200] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.
Collapse
MESH Headings
- Cell Line
- Dimerization
- Endocytosis
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunohistochemistry
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation
- Precipitin Tests
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Catherine Lavoie
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Québec, H1T 1C8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheng G, Wessels A, Gourdie RG, Thompson RP. Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart. Dev Dyn 2002; 223:119-33. [PMID: 11803575 DOI: 10.1002/dvdy.1244] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To investigate spatial and temporal distributions of apoptosis in the embryonic chick heart and its relation to different tissue types, we examined apoptosis in the embryonic chick heart from Hamburger and Hamilton stage 17 through 3 days after hatching. MF20 antibody, alpha-smooth muscle actin (SMA) antibody and EAP-300 antibody were applied to delineate specific cell types. During early development of the embryonic chick heart, very few apoptotic cells were detected. The first distinctive zone of apoptosis was observed in the outflow tract at stage 25. This focus was most prominent during septation of the pulmonary artery from the aorta (i.e., between stages 28 and 29), and diminished to virtually background level by stage 32, except in the subconal regions. Subsequently, remarkable apoptosis appeared in the atrioventricular cushions by stage 26, peaked at stages 29-31, and dropped significantly thereafter. Characteristic distribution patterns of apoptotic cells were also detected in the cardiac conduction tissues, including the His bundle, the bundle branches, and the ventricular trabeculae. After stage 36, cell death dropped to background level, except in developing coronary vessels. MF20 and TUNEL double staining revealed that apoptosis in cardiomyocytes was limited to a few specific regions, much less than in cushion tissues. SMA and TUNEL double staining demonstrated that vascular structures were the major foci of apoptosis from stage 40 to 44, whereas adjacent perivascular Purkinje cells displayed significantly less cell death at these stages. The characteristic spatiotemporal locations of apoptosis parallel the morphologic changes and tissue differentiation during heart development, suggesting that apoptosis is crucial to the transformation of the heart from a simple tube to a complex multichambered pump.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
18
|
Hiltunen JO, Laurikainen A, Airaksinen MS, Saarma M. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRalpha2. Dev Dyn 2000; 219:28-39. [PMID: 10974669 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1031>3.0.co;2-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of the GDNF family, which are important during peripheral nervous system development and kidney organogenesis, signal via Ret and GFRalpha receptors. Here we have studied their possible role in heart development. Gfra1 was expressed in the endocardial cushion mesenchyme at E12 and later, in the developing and mature valves, and in the walls of the aorta and the pulmonary trunk. Gfra2 was expressed in the outer layers of the aorta and pulmonary trunk and in the valves at E18-P60. Endocardial cells showed moderate Gfra2 mRNA and protein expression between E12 and E15. Gfra3 mRNA was detected, mainly postnatally, in scattered cells of the atria and the great vessels. In embryonic and postnatal rat cardiac ganglia, Ret and Gfra2 transcripts were seen in the neurons, whereas Gfra1 and Gfra3 mRNA were preferentially found in non-neuronal cells within the ganglia. GFRalpha2 immunoreactivity was seen in both cardiac ganglion neurons and their nerve fibers. There were no obvious non-neuronal defects in hearts of Ret-, GFRalpha1-, or GFRalpha2-deficient mice, suggesting that these receptors are not essential for gross cardiac development. However, E18 Ret-deficient mice exhibited a reduced volume of cardiac ganglia and cholinergic innervation of the ventricular conduction system. Moreover, adult Gfra2(-/-) mice showed reduced cholinergic innervation by 40% in their ventricles and by 60% in the ventricular conduction system. These findings indicate that GFRalpha2/Ret signaling is required for normal cholinergic innervation of heart.
Collapse
Affiliation(s)
- J O Hiltunen
- Program of Molecular Neurobiology, Institute of Biotechnology, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
19
|
Crick SJ, Sheppard MN, Ho SY, Anderson RH. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat 1999; 195 ( Pt 3):341-57. [PMID: 10580850 PMCID: PMC1468004 DOI: 10.1046/j.1469-7580.1999.19530341.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was prompted by the prospect of transgenic pigs providing donor hearts for transplantation in human recipients. Autonomic innervation is important for the control of cardiac dynamics, especially in the conduction system. Our objective was to assess the relative distribution of autonomic nerves in the pig heart, focusing initially on the conduction system but addressing also the myocardium, endocardium and epicardium (see Crick et al. 1999). Quantitative immunohistochemical and histochemical techniques were adopted. All regions of the conduction system possessed a significantly higher relative density of the total neural population immunoreactive for the general neuronal marker protein gene product 9.5 (PGP 9.5) than did the adjacent myocardium. A similar density of PGP 9.5-immunoreactive innervation was observed between the sinus node, the transitional region of the atrioventricular node, and the penetrating atrioventricular bundle. A differential pattern of PGP 9.5-immunoreactive innervation was present within the atrioventricular node and between the components of the ventricular conduction tissues, the latter being formed by an intricate network of Purkinje fibres. Numerous ganglion cell bodies were present in the peripheral regions of the sinus node, in the tissues of the atrioventricular groove, and even in the interstices of the compact atrioventricular node. Acetylcholinesterase (AChE)-containing nerves were the dominant subpopulation observed, representing 60-70% of the total pattern of innervation in the nodal tissues and penetrating atrioventricular bundle. Tyrosine hydroxylase (TH)-immunoreactive nerves were the next most abundant neural subpopulation, representing 37% of the total pattern of innervation in the compact atrioventricular node compared with 25% in the transitional nodal region. A minor population of ganglion cell bodies within the atrioventricular nodal region displayed TH immunoreactivity. The dominant peptidergic nerve supply possessed immunoreactivity for neuropeptide Y (NPY), which displayed a similar pattern of distribution to that of TH-immunoreactive nerve fibres. Calcitonin gene-related peptide (CGRP)-immunoreactive nerves represented 8-9% of the total innervation of the nodal tissues and penetrating atrioventricular bundle, increasing to 14-19% in the bundle branches. Somatostatin-immunoreactive nerve fibres were relatively sparse (4-13% of total innervation) and were most abundant in the nodes, especially the compact atrioventricular node. The total pattern of innervation of the porcine conduction system was relatively homogeneous. A substantial proportion of nerve fibres innervating the nodal tissues could be traced to intracardiac ganglia indicative of an extensive intrinsic supply. The innervation of the atrioventricular node and ventricular conduction tissues was similar to that observed in the bovine heart, but markedly different to that of the human heart. It is important that we are aware of these findings in view of the future use of transgenic pig hearts in human xenotransplantation.
Collapse
Affiliation(s)
- S J Crick
- Section of Paediatrics, National Heart & Lung Institute, Royal Brompton Campus, Imperial College of Science, Technology & Medicine, London, UK.
| | | | | | | |
Collapse
|