1
|
Warke M, Sarkar D, Schaerer L, Vohs T, Techtmann S, Datta R. Comparative assessment of bacterial diversity and composition in arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, Pteris ensiformis Burm. CHEMOSPHERE 2023; 340:139812. [PMID: 37597630 DOI: 10.1016/j.chemosphere.2023.139812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The use of arsenic (As) for various industrial and agricultural applications has led to worldwide environmental contamination. Phytoremediation using hyperaccumulators is a sustainable soil As mitigation strategy. Microbial processes play an important role in the tolerance and uptake of trace elements such as in plants. The rhizospheric and endophytic microbial communities are responsible for accelerating the mobility of trace elements around the roots and the production of plant growth-promoting compounds and enzymes. Several studies have reported that the As hyperaccumulator, Pteris vittata L. (PV) influences the microbial community in its rhizosphere and roots. Deciphering the differences in the microbiomes of hyperaccumulators and non-accumulators is crucial in understanding the mechanism of hyperaccumulation. We hypothesized that there are significant differences in the microbiome of roots, rhizospheric soil, and bulk soil between the hyperaccumulator PV and a non-accumulator of the same genus, Pteris ensiformis Burm. (PE), and that the differential recruitment of bacterial communities provides PV with an advantage in As contaminated soil. We compared root endophytic, rhizospheric, and bulk soil microbial communities between PV and PE species grown in As-contaminated soil in a greenhouse setting. There was a significant difference (p < 0.001) in the microbiome of the three compartments between the ferns. Differential abundance analysis showed 328 Amplicon Sequence Variants (ASVs) enriched in PV compared to 172 in PE. The bulk and rhizospheric soil of both ferns were abundant in As-resistant genera. However, As-tolerant root endophytic genera were present in PV but absent in PE. Our findings show that there is a difference between the bacterial composition of an As hyperaccumulator and a non-accumulator species grown in As-contaminated soil. These differences need to be further explored to develop strategies for improving the efficiency of metal uptake in plants growing in As polluted soil.
Collapse
Affiliation(s)
- Manas Warke
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Tara Vohs
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA.
| |
Collapse
|
2
|
Lin W, Wang J, Ge J, Zhou R, Hu Y, Xiao L, Peng Q, Zheng Z. The activity of cuproptosis pathway calculated by AUCell algorithm was employed to construct cuproptosis landscape in lung adenocarcinoma. Discov Oncol 2023; 14:135. [PMID: 37481739 PMCID: PMC10363522 DOI: 10.1007/s12672-023-00755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Cuproptosis is a recently described copper-dependent cell death pathway. Consequently, there are still few studies on lung adenocarcinoma (LUAD)-related cuproptosis, and we aimed to deepen in this matter. In this study, data from 503 patients with lung cancer from the TCGA-LUAD cohort data collection and 11 LUAD single-cells from GSE131907 as well as from 10 genes associated with cuproptosis were analyzed. The AUCell R package was used to determine the copper-dependent cell death pathway activity for each cell subpopulation, calculate the CellChat score, and display cell communication for each cell subpopulation. The PROGENy score was calculated to show the scores of tumor-related pathways in different cell populations. GO and KEGG analyses were used to calculate pathway activity. Univariate COX and random forest analyses were used to screen prognosis-associated genes and construct models. The ssGSEA and xCell algorithms were used to calculate the immunocyte infiltration score. Based on data from the GDSC database, the drug sensitivity score was calculated using oncoPredict. Finally, in vitro experiments were performed to determine the role of TLE1, the most important gene in the prognostic model. The 11 LUAD single-cell samples were classified into 8 different cell populations, from which epithelial cells showed the highest copper-dependent cell death pathway activity. Epithelial cell subsets were significantly positively correlated with MAKP, hypoxia, and other pathways. In addition, cell subgroup communication showed highly active collagen and APP pathways. Using the Findmark algorithm, differentially expressed genes (DEGs) between epithelial and other cell types were identified. Combined with the bulk data in the TCGA-LUAD database, DEGs were enriched in pathways such as EGFR tyrosine kinase inhibitor resistance, Hippo signaling pathway, and tight junction. Subsequently, we selected 4 genes (out of 112) with prognostic significance, ANKRD29, RHOV, TLE1, and NPAS2, and used them to construct a prognostic model. The high- and low-risk groups, distinguished by the median risk score, showed significantly different prognoses. Finally, we chose TLE1 as a biomarker based on the relative importance score in the prognostic model. In vitro experiments showed that TLE1 promotes tumor proliferation and migration and inhibits apoptosis.
Collapse
Affiliation(s)
- Weixian Lin
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaren Wang
- The First Clinical Medical School, Southern Medical University, Guangdong, Guangzhou, China
| | - Jing Ge
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yahui Hu
- Department of Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lushan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Quanzhou Peng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Wang J, Li Z, Zhu Q, Wang C, Tang X. Review on arsenic environment behaviors in aqueous solution and soil. CHEMOSPHERE 2023; 333:138869. [PMID: 37156290 DOI: 10.1016/j.chemosphere.2023.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Arsenic pollution in environment has always been an important environmental problem that has attracted wide attention in recent years. Adsorption is one of the main methods of treatment for arsenic in the aqueous solution and soil because of the advantages of high efficiency, low cost and wide application. Firstly, this report summarizes the commonly and widely used adsorbent materials such as metal-organic frameworks, layered bimetallic hydroxides, chitosan, biochar and their derivatives. The adsorption effects and mechanisms of these materials are further discussed, and the application prospects of these adsorbents are considered. Meanwhile, the gaps and deficiencies in the study of adsorption mechanism was pointed out. Then, this study comprehensively evaluated the effects of various factors on arsenic transport, including (i) the effects of pH and redox potential on the existing form of As; (ii) complexation mechanism of dissolved organic matter and As; (iii) factors affecting the plant enrichment of As. Finally, the latest scientific researches on microbial remediation of arsenic and the mechanisms were summarized. The review finally enlightens the subsequent development of more efficient and practical adsorption material.
Collapse
Affiliation(s)
- Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Ciadamidaro L, Pfendler S, Girardclos O, Zappelini C, Binet P, Bert V, Khasa D, Blaudez D, Chalot M. Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. FRONTIERS IN PLANT SCIENCE 2022; 13:993301. [PMID: 36388565 PMCID: PMC9650387 DOI: 10.3389/fpls.2022.993301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
AIMS Afforestation of trace-element contaminated soils, notably with fast growing trees, has been demonstrated to be an attractive option for bioremediation due to the lower costs and dispersion of contaminants than conventional cleanup methods. Mycorrhizal fungi form symbiotic associations with plants, contributing to their tolerance towards toxic elements and actively participating to the biorestoration processes. The aim of this study was to deepen our understanding on the effects of mycorrhizal inoculation on plant development and fungal community at two trace-element contaminated sites (Pierrelaye and Fresnes-sur-Escaut, France) planted with poplar (Populus trichocarpa x Populus maximowiczii). METHODS The 2 sites were divided into 4 replicated field blocks with a final plant density of 2200 tree h-1. Half of the trees were inoculated with a commercial inoculum made of a mix of mycorrhizal species. The sites presented different physico-chemical characteristics (e.g., texture: sandy soil versus silty-loam soil and organic matter: 5.7% versus 3.4% for Pierrelaye and Fresnes-sur-Escaut, respectively) and various trace element contamination levels. RESULTS After 7 years of plantation, inoculation showed a significant positive effect on poplar biomass production at the two sites. Fungal composition study demonstrated a predominance of the phylum Ascomycota at both sites, with a dominance of Geopora Arenicola and Mortierella elongata, and a higher proportion of ectomycorrhizal and endophytic fungi (with the highest values observed in Fresnes-sur-Escaut: 45% and 28% for ECM and endophytic fungi, respectively), well known for their capacity to have positive effects on plant development in stressful conditions. Furthermore, Pierrelaye site showed higher frequency (%) of mycorrhizal tips for ectomycorrhizal fungi (ECM) and higher intensity (%) of mycorrhizal root cortex colonization for arbuscular mycorrhizal fungi (AMF) than Fresnes-sur-Escaut site, which translates in a higher level of diversity. CONCLUSIONS Finally, this study demonstrated that this biofertilization approach could be recommended as an appropriate phytomanagement strategy, due to its capacity to significantly improve poplar productivity without any perturbations in soil mycobiomes.
Collapse
Affiliation(s)
- Lisa Ciadamidaro
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphane Pfendler
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Girardclos
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Cyril Zappelini
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Philippe Binet
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Valerie Bert
- INERIS, Clean Technologies and Circular Economy Unit, SIT, Parc Technologique Alata, BP2, Verneuil-en- Halatte, France
| | - Damase Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | | | - Michel Chalot
- Laboratoire Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
- Université de Lorraine, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
5
|
Ortúzar M, Trujillo ME, Román-Ponce B, Carro L. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139850. [PMID: 32554115 DOI: 10.1016/j.scitotenv.2020.139850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 05/26/2023]
Abstract
Heavy metal pollution in the environment is an increasing problem due to natural and anthropogenic activities. The use of bacteria for bioremediation of soils contaminated with heavy metals has gained a lot of attention as it can be considered effective, economic and environmentally sustainable. In this work, we investigated the capacity of endophytic Micromonospora strains isolated from different legumes, to produce metallophores against a variety of heavy metals in vitro. Genome mining using available endophytic Micromonospora genome sequences revealed the presence of genes related to metal acquisition, iron metabolism and resistance to toxic compounds. In vitro production of metallophores demonstrated that all strains tested produced chelates against arsenic, cobalt, copper, chromium, iron, mercury, molybdenum, nickel, vanadium and zinc in different amounts. In addition, the plant growth promotion effect of strains GAR05 and PSN13 on Arabidopsis thaliana grown in the presence of several heavy metals was tested. Under these conditions, the plants inoculated with the strain GAR05 showed significant growth when compared to the control plants suggesting a plant growth promotion effect in the form of tolerance to the toxic substances. Furthermore, during this plant-bacterium interaction, a new bacterial structure named root-bead was observed on the roots of A. thaliana suggesting a strong interaction between the two organisms and a clear positive effect of the bacterium on the plant. Overall, these results highlight the potential use of endophytic Micromonospora strains for bacterial-assisted phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Martha E Trujillo
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain.
| | - Brenda Román-Ponce
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Lorena Carro
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Wang R, Huang J, Liang A, Wang Y, Mur LAJ, Wang M, Guo S. Zinc and Copper Enhance Cucumber Tolerance to Fusaric Acid by Mediating Its Distribution and Toxicity and Modifying the Antioxidant System. Int J Mol Sci 2020; 21:E3370. [PMID: 32397623 PMCID: PMC7247006 DOI: 10.3390/ijms21093370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Fusaric acid (FA), the fungal toxin produced by Fusarium oxysporum, plays a predominant role in the virulence and symptom development of Fusarium wilt disease. As mineral nutrients can be protective agents against Fusarium wilt, hydroponic experiments employing zinc (Zn) and copper (Cu) followed by FA treatment were conducted in a glasshouse. FA exhibited strong phytotoxicity on cucumber plants, which was reversed by the addition of Zn or Cu. Thus, Zn or Cu dramatically reduced the wilt index, alleviated the leaf or root cell membrane injury and mitigated against the FA inhibition of plant growth and photosynthesis. Cucumber plants grown with Zn exhibited decreased FA transportation to shoots and a 17% increase in toxicity mitigation and showed minimal hydrogen peroxide, lipid peroxidation level with the increased of antioxidant enzymes activity in both roots and leaves. Cucumber grown with additional Cu absorbed less FA but showed more toxicity mitigation at 20% compared to with additional Zn and exhibited decreased hydrogen peroxide level and increased antioxidant enzymes activity. Thus, adding Zn or Cu can decrease the toxicity of the FA by affecting the absorption or transportation of the FA in plants and mitigate toxicity possibly through chelation. Zn and Cu modify the antioxidant system to scavenge hydrogen peroxide for suppressing FA induction of oxidative damage. Our experiments could provide a theoretical basis for the direct application of micro-fertilizer as protective agents in farming.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Jian Huang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Aichen Liang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Ying Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (J.H.); (A.L.); (Y.W.); (S.G.)
| |
Collapse
|
7
|
García Martín JF, González Caro MDC, López Barrera MDC, Torres García M, Barbin D, Mateos PÁ. Metal Accumulation by Jatropha curcas L. Adult Plants Grown on Heavy Metal-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2020; 9:E418. [PMID: 32235440 PMCID: PMC7238061 DOI: 10.3390/plants9040418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022]
Abstract
Jatropha curcas has the ability to phytoextract high amounts of heavy metals during its first months just after seeding. Notwithstanding, there is scarce information about metal uptake by adult J. curcas plants. To shed light on this issue, 4-year-old J. curcas L. plants were planted in a soil mixture of peat moss and mining soil (high metals content), and the biomass growth and metal absorption during 90 days were compared with those of plants growing in peat moss. The main metal found in the mining soil was Fe (31985 mg kg-1) along with high amounts of As (23717 mg kg-1). After the 90-day phytoremediation, the plant removed 29% of Fe and 44% of As from the soil mixture. Results revealed that J. curcas L. translocated high amounts of metals to its aerial parts, so that translocation factors were much higher than 1. Because of the high translocation and bioaccumulation factors obtained, J. curcas L. can be regarded as a hyperaccumulator plant. Despite the great capacity of J. curcas L. to phytoremediate heavy-metal-contaminated soils, the main drawback is the subsequent handling of the metal-contaminated biomass, although some potential applications have been recently highlighted for this biomass.
Collapse
Affiliation(s)
- Juan Francisco García Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - María del Carmen González Caro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - María del Carmen López Barrera
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - Miguel Torres García
- Departamento de Ingeniería Energética. E.T.S. de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, Spain
| | - Douglas Barbin
- Department of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cidade Universitária, Campinas-SP 13083-862, Brazil
| | - Paloma Álvarez Mateos
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| |
Collapse
|
8
|
Gautam V, Sharma P, Bakshi P, Arora S, Bhardwaj R, Paray BA, Alyemeni MN, Ahmad P. Effect of Rhododendron arboreum Leaf Extract on the Antioxidant Defense System against Chromium (VI) Stress in Vigna radiata Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E164. [PMID: 32013242 PMCID: PMC7076638 DOI: 10.3390/plants9020164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/24/2023]
Abstract
In the current investigation, we studied role of Rhododendron leaf extract in Vigna radiata grown under chromium metal stress. We observed that seed treatment with Rhododendron leaf extract resulted in the recuperation of seedling growth under chromium toxicity. Seed treatment with Rhododendron leaf extract significantly improved the contents of anthocyanin and xanthophyll pigments under stress. The antioxidative defense system triggered after Rhododendron extract treatment, resulting in the increased actions of antioxidant enzymes. Oxidative stress induced by the assembly of reactive oxygen species was reduced after Rhododendron extract treatment under chromium toxicity as indicated by the enhanced contents of non-enzymatic antioxidants, namely ascorbic acid, tocopherol, and glutathione. Furthermore, Rhododendron leaf extract treatment under chromium metal stress also encouraged the biosynthesis of organic acids, polyphenols, as well as amino acids in Vigna radiata. Statistical analysis of the data with multiple linear regression also supported that Rhododendron leaf extract can effectively ease chromium metal-induced phytotoxicity in Vigna radiata.
Collapse
Affiliation(s)
- Vandana Gautam
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Bilal Ahmad Paray
- Zoology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
- Department of Botany, S.P. College, Srinagar 190001, India
| |
Collapse
|
9
|
Dong X, Yang F, Yang S, Yan C. Subcellular distribution and tolerance of cadmium in Canna indica L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109692. [PMID: 31585391 DOI: 10.1016/j.ecoenv.2019.109692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Canna indica L. is a promising species for heavy metal phytoremediation due to its fast growth rate and large biomass. However, few studies have investigated cadmium (Cd) tolerance mechanisms. In the present study, Canna plants were cultivated under hydroponic conditions with increasing Cd concentrations (0, 5, 10, 15 mg/L). We found that the plants performed well under 5 mg/L Cd2+ stress, but damage was observed under higher Cd exposure, such as leaf chlorosis, growth inhibition, a decreased chlorophyll content, and destruction of the ultrastructure of leaf cells. Additionally, Canna alleviated Cd toxicity to a certain extent. After Canna was exposed to 5, 10 and 15 mg/L Cd2+ for 45 d, the highest Cd concentration was exhibited in roots, which was almost 17-47 times the Cd concentration in leaves and 8-20 times that in stems. At the subcellular level, cellular debris and heat-stable proteins (HSPs) were the main binding sites for Cd, and the proportion of Cd in the two subcellular fractions accounted for 71.4-94.2% of the total Cd. Furthermore, we found that granules could participate in the detoxification process when Cd stress was enhanced. Our results indicated that Canna indica L. can tolerate Cd toxicity by sequestering heavy metals in root tissues, fencing out by cell wall, and binding with biologically detoxified fractions (granules and HSPs).
Collapse
Affiliation(s)
- Xiaoxia Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; China Everbright International Limited, 26/F, Block A, Orientel Xintiandi Plaza, No.1003, Shennan Avenue, Futian District, Shenzhen, China
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuping Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
10
|
Liu N, Dai J, Tian H, He H, Zhu Y. Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10343-10353. [PMID: 30761486 DOI: 10.1007/s11356-019-04448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation combined with amendments and stabilization technologies are two crucial methods to deal with soil contaminated with heavy metals. Copper (Cu) contamination in soil near Cu mines poses a serious threat to ecosystems and human health. This study investigated the effect of ethylenediaminetetraacetic acid (EDTA) and biochar (BC) on the accumulation and subcellular distribution of Cu in Amaranthus retroflexus L. to demonstrate the remediation mechanism of EDTA and BC at the cellular level. The role of calcium (Ca) in response to Cu stress in A. retroflexus was also elucidated. We designed a pot experiment with a randomized block of four Cu levels (0, 100, 200, 400 mg kg-1) and three treatments (control, amendment with EDTA, and amendment with BC). The subcellular components were divided into three parts (cell walls, organelles, and soluble fraction) by differential centrifugation. The results showed that EDTA amendment significantly increased (p < 0.05) the concentrations of Cu in root cell walls and all subcellular components of stems and leaves (cell walls, organelles, and the soluble fraction). EDTA amendment significantly increased (p < 0.05) the proportion of exchangeable fraction and carbonate fraction in the soil. While BC amendment significantly decreased (p < 0.05) the concentrations of Cu in root cell walls and the root soluble fraction, it had no significant effects on Cu concentrations in the subcellular components of stems and leaves. The results revealed that EDTA mainly promoted the transfer of Cu to aboveground parts and accumulation in subcellular components of stems and leaves, while BC mainly limited Cu accumulation in root cell walls and the root soluble fraction. Ca concentrations in cell walls of roots, stems, and leaves increased as the Cu stress increased in all treatment groups, indicating that Ca plays an important role in relieving Cu toxicity in Amaranthus retroflexus L.
Collapse
Affiliation(s)
- Na Liu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Haoqi Tian
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
| | - Huan He
- Department of Biology, Terrestrial Ecology Section, Copenhagen University, Universitsparken 15, 2100, Copenhagen, Denmark
| | - Yuen Zhu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China.
| |
Collapse
|
11
|
Claveria RJR, Perez TR, Perez REC, Algo JLC, Robles PQ. The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:185. [PMID: 30806800 DOI: 10.1007/s10661-019-7278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/29/2019] [Indexed: 05/21/2023]
Abstract
The mining activities in the Lepanto Cu-Au Mine which is situated within the Mankayan Mineral District in the Philippines have exposed the arsenic (As)-rich copper (Cu)-gold (Au) and polymetallic ores to surface conditions. Cu and As dispersal into nearby soils and waters could pose health hazards to the natural ecosystems and human settlements. The study focused on the identification of indigenous metallophytes thriving in the area as well as the bioavailability of Cu and As in soils and its implication to the growth of the indigenous plants. Particular interests were on plant species that are capable of Cu and As absorption and have potential applications to mine rehabilitation. The samples were analyzed for total Cu and As contents. The soil samples were also subjected to different physicochemical analyses such as pH, organic matter, and nutrient content. Fern species had relatively high Cu and As contents in their biomass than other plant species found in the study area. The Cu and As concentrations in the plants might have been strongly influenced by the bioavailability of the metal and metalloid which were dependent on the physicochemical properties of the soil such as pH, organic matter, and nutrient contents. These identified metallophytes namely Dicranopteris linearis, Histiopteris incisa, Pityrogramma calomelanos, Pteris vittata, Nephrolepis hirsutula, Pteris sp., Pinus sp., Thysanolaena latifolia, and Melastoma malabathricum have tolerated the different Cu and As concentrations in the soil thus could be useful and effective for ecological restoration as an option to post-mining rehabilitation.
Collapse
Affiliation(s)
- Rene Juna R Claveria
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines.
| | - Teresita R Perez
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - Rubee Ellaine C Perez
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - John Leo C Algo
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - Patricia Q Robles
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| |
Collapse
|
12
|
Álvarez-Mateos P, Alés-Álvarez FJ, García-Martín JF. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:886-895. [PMID: 30419444 DOI: 10.1016/j.jenvman.2018.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
This paper deals with the removal of heavy metals from marginal soil mixtures from the Cobre Las Cruces and Aznalcóllar mining areas containing high concentrations of metals (Cr, Fe, Ni, Cu, Zn, Cd, Hg, Pb and As) by means of phytoremediation using Jatropha curcas L., and the subsequent production of biocatalysts from the plant biomass. First, J. curcas L. was sowed in eight mixtures of these mining soils to study its adaption to these high-contaminated soils and its growth during 60 days in a greenhouse under conditions simulating the South of Spain's spring climate. Later, the most suitable soil mixtures for plant growth were used for 120-day phytoremediation under the same conditions. Heavy metal concentration in soils, roots, stems and leaves were measured by ICP-OES at the beginning, at the middle and at the end of the phytoremediation period, thus calculating the translocation and bioaccumulation factors. J. curcas L. was found to absorb great amounts of Fe (>3000 mg kg-1 plant) as well as notable amounts of Pb, Zn, Cu, Cr and Ni, and traces of As. Other metals with lower initial concentrations such as Cd, Hg and Sn were completely removed from soils. Finally, the plant biomass was subjected to pyrolysis to obtain catalytic biocarbons, assessing the optimal temperature for the pyrolytic process by means of thermogravimetric analysis and Raman spectroscopy.
Collapse
Affiliation(s)
- Paloma Álvarez-Mateos
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain
| | - Francisco-Javier Alés-Álvarez
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain
| | - Juan Francisco García-Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain.
| |
Collapse
|
13
|
Yang F, Yan C. Influence of titanium dioxide nanoparticles on the toxicity of arsenate in Nannochloropsis maritima. CHEMOSPHERE 2018; 209:191-200. [PMID: 29929125 DOI: 10.1016/j.chemosphere.2018.06.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Interest is growing in the role that nanoparticles play in modifying the biological effects of contaminants. This study aimed to determine whether nano-TiO2 exhibited pronounced influence on arsenate (As(V)) toxicity levels to the marine microalgae Nannochloropsis maritima. We compared individual and combined toxicity levels of As(V) and nano-TiO2 by assessing the inhibition percentages of algal growth. Compared to groups treated with As(V) alone, an EC50 of 53.0 mg/L decreased by 28.8% after the addition of nanoparticles. This enhanced toxicity was attributed to the inhibition of As methylation and the promotion of lipid peroxidation in the presence of nano-TiO2. Additionally, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) also showed that algal cells exhibited different degrees of shrinkage, that cell wall were destroyed in the process, and that the photosynthetic apparatus was virtually indiscernible after the addition of nano-TiO2. In addition, for low As(V) concentration exposure groups, nano-TiO2 could alleviate As(V) toxicity to some extent by reducing As sorption onto algal cells and subcellular distribution in organelles, but this alleviation effect could not protect against the combined toxicity (both As(V) and nano-TiO2) effect on N. maritima, which was verified by the higher inhibition percentage of the algal growth rate in the combined exposure group treatment compared to the As(V) exposure treatment alone. Our results suggest that more attention must be paid to the potential impact of nanoparticles on the bioavailability and biotransformation of contaminants in phytoplankton.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
14
|
Liu Y, Yu X, Feng Y, Zhang C, Wang C, Zeng J, Huang Z, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Gao S, Chen Q. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings. Sci Rep 2017; 7:14691. [PMID: 29089633 PMCID: PMC5665871 DOI: 10.1038/s41598-017-14407-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/09/2017] [Indexed: 01/24/2023] Open
Abstract
To date, several species of Asteraceae have been considered as Cd-accumulators. However, little information on the Cd tolerance and associated mechanisms of Asteraceae species Cosmos bipinnatus, is known. Presently, several physiological indexes and transcriptome profiling under Cd stress were investigated. C. bipinnatus exhibited strong Cd tolerance and recommended as a Cd-accumulator, although the biomasses were reduced by Cd. Meanwhile, Cd stresses reduced Zn and Ca uptake, but increased Fe uptake. Subcellular distribution indicated that the vacuole sequestration in root mainly detoxified Cd under lower Cd stress. Whilst, cell wall binding and vacuole sequestration in root co-detoxified Cd under high Cd exposure. Meanwhile, 66,407 unigenes were assembled and 41,674 (62.75%) unigenes were annotated in at least one database. 2,658 DEGs including 1,292 up-regulated unigenes and 1,366 down-regulated unigenes were identified under 40 μmol/L Cd stress. Among of these DEGs, ZIPs, HMAs, NRAMPs and ABC transporters might participate in Cd uptake, translocation and accumulation. Many DEGs participating in several processes such as cell wall biosynthesis, GSH metabolism, TCA cycle and antioxidant system probably play critical roles in cell wall binding, vacuole sequestration and detoxification. These results provided a novel insight into the physiological and transcriptome response to Cd in C. bipinnatus seedlings.
Collapse
Affiliation(s)
- Yujing Liu
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaofang Yu
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yimei Feng
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Zhang
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Qingbaijiang, 610300, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhuo Huang
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Suping Gao
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qibing Chen
- Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| |
Collapse
|
15
|
Vijayaraghavan K, Arockiaraj J, Kamala-Kannan S. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:537-544. [PMID: 27936895 DOI: 10.1080/15226514.2016.1267699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m3) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.
Collapse
Affiliation(s)
- K Vijayaraghavan
- a Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai , Tamil Nadu , India
| | - Jesu Arockiaraj
- b Division of Fisheries Biotechnology and Molecular Biology, Department of Biotechnology , Faculty of Science and Humanities, SRM University , Kattankulathur, Chennai , Tamil Nadu , India
| | - Seralathan Kamala-Kannan
- c Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| |
Collapse
|
16
|
Huang L, Zhang H, Song Y, Yang Y, Chen H, Tang M. Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. FRONTIERS IN PLANT SCIENCE 2017; 8:517. [PMID: 28443111 PMCID: PMC5385381 DOI: 10.3389/fpls.2017.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/23/2017] [Indexed: 05/11/2023]
Abstract
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils.
Collapse
Affiliation(s)
- Li Huang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Yingying Song
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Yurong Yang
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Ming Tang
- College of Forestry, Northwest A&F UniversityYangling, China
| |
Collapse
|
17
|
Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem 2016; 194:101-10. [DOI: 10.1016/j.foodchem.2015.07.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/25/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022]
|
18
|
Lai HY. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. CHEMOSPHERE 2015; 138:370-6. [PMID: 26133699 DOI: 10.1016/j.chemosphere.2015.06.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 05/24/2023]
Abstract
Impatiens (Impatiens walleriana) has been shown to be a potential cadmium (Cd) hyperaccumulator, but its mechanisms in accumulation and detoxification have not been reported. Rooted cuttings of Impatiens were planted in artificially Cd-contaminated soils for 50 days with total target concentrations of 0, 10, 20, 40, 80, and 120 mg/kg. The subcellular distribution and chemical forms of Cd in the different organs were analyzed after the pot experiment. Compared with the control group, various Cd treatments affected the growth exhibitions of Impatiens, but most of them were not statistically significant. The Cd accumulation of different organs increased with an increase in the soil Cd concentrations for most of the treatments, and it was in the decreasing order of root>stem>leaf. In the roots of Impatiens, Cd was mainly compartmentalized in the soluble fraction (Fs), which has a high migration capacity and will further translocate to the shoot. The Cd was mainly compartmentalized in the cell wall fraction (Fcw) in the shoots as a mechanism of tolerance. Most of the Cd in the various organs of Impatiens was mainly in the forms of pectate and protein-integrated (FNaCl), whereas a minor portion was a water soluble fraction (FW). The experimental results show that the Cd in the Fs, FW, and FNaCl in the roots of Impatiens had a high mobility and will further translocate to the shoot. They could be used to estimate the Cd accumulated in the shoots of Impatiens.
Collapse
Affiliation(s)
- Hung-Yu Lai
- Department of Post-Modern Agriculture, MingDao University, Changhua 52345, Taiwan.
| |
Collapse
|
19
|
Lutts S, Lefèvre I. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? ANNALS OF BOTANY 2015; 115:509-28. [PMID: 25672360 PMCID: PMC4332614 DOI: 10.1093/aob/mcu264] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/01/2014] [Accepted: 12/10/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. SCOPE Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. CONCLUSIONS Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.
Collapse
Affiliation(s)
- Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Isabelle Lefèvre
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
20
|
Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem 2014; 168:48-54. [PMID: 25172682 DOI: 10.1016/j.foodchem.2014.07.054] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022]
Abstract
The subcellular distribution and chemical forms of Cd were investigated in the edible seaweed, Porphyra yezoensis. The seaweed was exposed to different Cd concentrations (0.01, 0.05, 0.1, 0.5, 1.0 and 5.0mgl(-1)) for up to 96h. In both the controls (no Cd added) and treatment groups, 41.2-79.2% of Cd was localised in the cell wall, and the proportion of Cd in the cell wall increased with increasing concentrations of Cd and exposure time. In the control groups, 74.8% of Cd was extracted by 1M NaCl, followed by 2% acetic acid, HAC (18.9%). In the treatment groups, most Cd was extracted by 2% HAC. The proportion of Cd extracted by 2% HAC increased with exposure to increasing concentrations of Cd and over time. Cell wall deposition and forming of precipitates with phosphate may be a key strategy to reduce Cd toxicity in P. yezoensis.
Collapse
|
21
|
Change of Photosynthetic Gas Exchange and Chlorophyll Fluorescence of Cd-Sensitive Mutant Rice in Response to Cd Stress. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.807-809.336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth, photosynthetic gas exchange and chlorophyll fluorescence were investigated in wild type and mutant rice plants treated with 50 μmol L-1 Cd. The results showed that plant height, dry mass, and chlorophyll content decreased by Cd treatment, and the mutant showed more severe reduction than wild type rice. Net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (Gs), maximal photochemical efficiency of PSII (Fv/Fm), effective PSII quantum yield (ΦPS2), and photochemical quenching (qP) were decreased and intercellular CO2 concentration (Ci) and and non-photochemical quenching (qN) were enhanced in Cd-treated plants with the increasing of Cd exposure time, with changes in the mutant being more evident. The results suggest that Cd inhibits photosynthesis due to non-stomatal limitations and the response of PSII reaction centre and the mutant has less capacity of acclimation to Cd stress.
Collapse
|
22
|
Henson TM, Cory W, Rutter MT. Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS One 2013; 8:e63200. [PMID: 23667586 PMCID: PMC3646754 DOI: 10.1371/journal.pone.0063200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 04/03/2013] [Indexed: 11/24/2022] Open
Abstract
Plant populations may vary substantially in their tolerance for and accumulation of heavy metals, and assessment of this variability is important when selecting species to use in restoration or phytoremediation projects. We examined the population variation in cadmium tolerance and accumulation in a leguminous pioneer species native to the eastern United States, the partridge pea (Chamaecrista fasciculata). We assayed growth, reproduction and patterns of cadmium accumulation in six populations of C. fasciculata grown on a range of cadmium-contaminated soils. In general, C. fasciculata exhibited tolerance in low to moderate soil cadmium concentrations. Both tolerance and accumulation patterns varied across populations. C. fasciculata exhibited many characteristics of a hyperaccumulator species, with high cadmium uptake in shoots and roots. However, cadmium was excluded from extrafloral nectar. As a legume with tolerance for moderate cadmium contamination, C. fasciculata has potential for phytoremediation. However, our findings also indicate the importance of considering the effects of genetic variation on plant performance when screening plant populations for utilization in remediation and restoration activities. Also, there is potential for cadmium contamination to affect other species through contamination of leaves, fruits, flowers, pollen and root nodules.
Collapse
Affiliation(s)
- Tessa M. Henson
- Department of Biology, College of Charleston, Charleston, South Carolina, United States of America
| | - Wendy Cory
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina, United States of America
| | - Matthew T. Rutter
- Department of Biology, College of Charleston, Charleston, South Carolina, United States of America
| |
Collapse
|
23
|
Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals--concepts and applications. CHEMOSPHERE 2013; 91:869-81. [PMID: 23466085 DOI: 10.1016/j.chemosphere.2013.01.075] [Citation(s) in RCA: 1385] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 01/17/2013] [Accepted: 01/24/2013] [Indexed: 05/20/2023]
Abstract
The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Hazrat Ali
- Department of Biotechnology, University of Malakand, Chakdara 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | | | | |
Collapse
|
24
|
Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ. Comparison of early transcriptome responses to copper and cadmium in rice roots. PLANT MOLECULAR BIOLOGY 2013; 81:507-22. [PMID: 23400832 DOI: 10.1007/s11103-013-0020-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 05/22/2023]
Abstract
The phytotoxic effects of copper (Cu) and cadmium (Cd) on plant growth are well documented. However, Cu and Cd toxicity targets and the cellular systems contributing to acquisition of tolerance are not fully understood at the molecular level. We aimed to identify genes and pathways that discriminate the actions of Cu and Cd in rice roots (Oryza sativa L. cv. TN67). The transcripts of 1,450 and 1,172 genes were regulated after Cu and Cd treatments, respectively. We identified 882 genes specifically respond to Cu treatment, and 604 unique genes as Cd-responsive by comparison of expression profiles of these two regulated gene groups. Gene ontology analysis for 538 genes involved in primary metabolism, oxidation reduction and response to stimulus was changed in response to both metals. In the individual aspect, Cu specifically altered levels of genes involved in vesicle trafficking transport, fatty acid metabolism and cellular component biogenesis. Cd-regulated genes related to unfolded protein binding and sulfate assimilation. To further characterize the functions of vesicle trafficking transport under Cu stress, interference of excytosis in root tissues was conducted by inhibitors and silencing of Exo70 genes. It was demonstrated that vesicle-trafficking is required for mediation of Cu-induced reactive oxygen species (ROS) production in root tissues. These results may provide new insights into understanding the molecular basis of the early metal stress response in plants.
Collapse
Affiliation(s)
- Chung-Yi Lin
- Department of Life Sciences, National Cheng Kung University, No.1 University Road 701, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Mkandawire M, Dudel EG. Homeostatic regulation of elemental stoichiometry by Lemna gibba L. G3 when nutrient interact with toxic metals. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:456-464. [PMID: 22038689 DOI: 10.1007/s10646-011-0805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
We investigated responses of Lemna gibba L. to exposure to UO(2)(2+) and AsO(4)(3-) under variable PO(4)(3-) concentration. Total plant phosphorus (P(tot)) in L. gibba and accumulation of dissolved organic carbon (DOC) in the media were quantified and tested for correlation with plant yield and initial concentrations of PO(4)(3-), UO(2)(2+) and AsO(4)(3-). The accumulation of DOC in medium was high under low PO(4)(3-) supply and increased loading of either UO(2)(2+) or AsO(4)(3-). The P(tot) was low in high initial concentration of UO(2)(2+) and AsO(4)(3-) as well under acute low PO(4)(3-) supply. The DOC accumulation correlated negatively to the P(tot). This reveals interaction between PO(4)(3-) and UO(2)(2+) or AsO(4)(3-) in the medium interferes with the uptake process of PO(4) (3-). Hence, the DOC accumulation is exudation of low molecular weight organic substance by L. gibba in response to the reduced P(tot): biomass ratio (carbon in the yield) due to delimited acquisition of phosphorus from the medium. It is a homeostatic regulation of the stoichiometry, which is disturbed during the interaction between PO(4)(3-) and UO(2)(2+) or AsO(4)(3-). Further investigations are necessary to relate these interactions to traditional resource stoichiometry elements of C, N, and P.
Collapse
Affiliation(s)
- Martin Mkandawire
- Institute of Materials Science and Max Bergmann Centre for Biomaterials, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
26
|
Biochemical and Functional Responses of Arabidopsis thaliana Exposed to Cadmium, Copper and Zinc. THE PLANT FAMILY BRASSICACEAE 2012. [DOI: 10.1007/978-94-007-3913-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
27
|
Liu Z, He X, Chen W. Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:698-705. [PMID: 21318389 DOI: 10.1007/s10646-011-0609-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
Hyperaccumulators are important in the phytoremediation of cadmium (Cd)-contaminated soil. In this study, Cd accumulation and the interactions between Cd and four other trace elements (Fe, Mn, Cu, and Zn) in Lonicera japonica Thunb. were investigated. As a result of exposure to soil containing 50 mg kg(-1) Cd, stem and shoot Cd concentrations reached 344.49 ± 0.71 and 286.12 ± 9.38 μg g(-1) DW respectively, without showing symptoms of visible damage to the plants. This suggests that L. japonica has a strong tolerance to Cd. It is proposed that trace metal elements are involved in the Cd-detoxification mechanisms shown by hyperaccumulators. There is a synergistic interaction in accumulation and translocation between Cd and Fe and a significantly negative correlation between Cd and Cu or Zn concentrations in L. japonica plant tissues. The imbalanced trace element concentrations influences detoxification processes to Cd, therefore, L. japonica could be considered as a new Cd-hyperaccumulator model to investigate the metal tolerance strategies of plants.
Collapse
Affiliation(s)
- Zhouli Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | | | | |
Collapse
|
28
|
Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:167-73. [PMID: 20633955 DOI: 10.1016/j.jplph.2010.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 05/20/2023]
Abstract
Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate Cd. An Arabidopsis CAX1 mutant (CAXcd), which confers enhanced Cd transport in yeast, was ectopically expressed in petunia to evaluate whether the CAXcd expression would enhance Cd tolerance and accumulation in planta. The CAXcd-expressing petunia plants showed significantly greater Cd tolerance and accumulation than the controls. After being treated with either 50 or 100μM CdCl(2) for 6 weeks, the CAXcd-expressing plants showed more vigorous growth compared with controls, and the transgenic plants accumulated significantly more Cd (up to 2.5-fold) than controls. Moreover, the accumulation of Cd did not affect the development and morphology of the CAXcd-expressing petunia plants until the flowering and ultimately the maturing of seeds. Therefore, petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation.
Collapse
Affiliation(s)
- Qingyu Wu
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Visioli G, Pirondini A, Malcevschi A, Marmiroli N. Comparison of protein variations in Thlaspi caerulescens populations from metalliferous and non-metalliferous soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:805-819. [PMID: 21166350 DOI: 10.1080/15226510903353138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work we analysed the protein variations which occurred in two Thlaspi caerulescens populations when subjected to 0 and 10 microM nickel (Ni) treatments: the Ni hyperaccumulator T. caerulescensfrom a metalliferous soil in Italy and T. caerulescens from Czech Republic, adapted to grow on a non-metalliferous soil. Ni accumulation in roots and shoots and the effect on growth and morphology were examined. Leaves proteins profiles of Ni treated and untreated samples were analysed by two dimensional liquid chromatography technique. From the comparison of more than 500 proteins, few differences were observed between treated and untreated plants of the same population. Differences were found between the two Thlaspi populations, instead. Proteins involved in transport, metal chelation, and signal transduction increased in abundance in the 10 microM Ni treated samples while, in condition of absence of Ni, proteins involved in sulphur metabolism, protection against reactive oxygen species and stress response showed to increase in abundance in the two populations. These proteins can be used as biomarkers both for monitoring biodiversity in indigenous plants and for selection of Ni phytoremediation plants.
Collapse
Affiliation(s)
- Giovanna Visioli
- Division of Genetics and Environmental Biotechnologies, Department of Environmental Sciences, University of Parma, Italy.
| | | | | | | |
Collapse
|
30
|
Fones H, Davis CAR, Rico A, Fang F, Smith JAC, Preston GM. Metal hyperaccumulation armors plants against disease. PLoS Pathog 2010; 6:e1001093. [PMID: 20838462 PMCID: PMC2936542 DOI: 10.1371/journal.ppat.1001093] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/10/2010] [Indexed: 12/05/2022] Open
Abstract
Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the 'elemental defense' hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro dose-response curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former lead-zinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants.
Collapse
Affiliation(s)
- Helen Fones
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Calum A. R. Davis
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Arantza Rico
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Fang Fang
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:81-7. [PMID: 19683362 DOI: 10.1016/j.jplph.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 05/20/2023]
Abstract
To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation.
Collapse
Affiliation(s)
- Rong-Rong Ying
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abaidoo RC, Keraita B, Drechsel P, Dissanayake P, Maxwell AS. Soil and Crop Contamination Through Wastewater Irrigation and Options for Risk Reduction in Developing Countries. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
33
|
Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas. J Radioanal Nucl Chem 2009. [DOI: 10.1007/s10967-009-0222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00254-008-1550-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. ACTA ACUST UNITED AC 2008; 112:1069-79. [DOI: 10.1016/j.mycres.2008.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/30/2008] [Accepted: 02/14/2008] [Indexed: 11/24/2022]
|
36
|
Wu JS, Ho TC, Chien HC, Wu YJ, Lin SM, Juang RH. Characterization of the high molecular weight Cd-binding complex in water hyacinth (Eichhornia crassipes) when exposed to Cd. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5806-5812. [PMID: 18582084 DOI: 10.1021/jf8011272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Water hyacinth ( Eichhornia crassipes) is a rapid-growing freshwater vascular plant that has been used to remove heavy metals in contaminated water. But the transportation and distribution of the absorbed heavy metal in the plant are not clear. In this study, water hyacinth was exposed to cadmium (Cd, 10 microM, pulse) and then transferred to a Cd-free solution (chase). The Cd content in the tissues was measured, and the Cd-binding complexes were isolated and identified. We found that (1) in two days, up to 80% of the Cd in the solution was absorbed by the plant, and the Cd could not be released back to the growth solution in the chase period; (2) approximately 1 mg of Cd was accumulated in the water hyacinth/g of dry weight in this condition; (3) invading Cd was bound rapidly as the low-molecular-weight (LMW) complex serving as the transient form for further sequestration; (4) the LMW complex in water hyacinth contained no phytochelatins and was different from the LMW complex in fission yeast; (5) the Cd absorbed in the plant was essentially stored in the high-molecular-weight (HMW) form after 1 week; (6) a small fraction of the absorbed Cd was found in the upper part of the plant (stem and leaves) in the form of complexes; (7) the HMW complex was composed of phytochelatins PC 3 and PC 4 primarily, with only a small amount of PC 2; (8) a rare PC-related peptide was found in the HMW complex that might be derived from PC 3. These observations contribute to the further understanding of water hyacinth in serving as an efficient and reliable accumulator for heavy metals.
Collapse
Affiliation(s)
- Jiann-Shing Wu
- Department of Biochemical Science and Technology and Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan 106
| | | | | | | | | | | |
Collapse
|
37
|
Roberts DA, Johnston EL, Poore AGB. Contamination of marine biogenic habitats and effects upon associated epifauna. MARINE POLLUTION BULLETIN 2008; 56:1057-1065. [PMID: 18405924 DOI: 10.1016/j.marpolbul.2008.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/02/2008] [Indexed: 05/26/2023]
Abstract
Habitat-forming organisms are frequently used as biomonitors in marine environments due to a widespread ability to accumulate toxic contaminants. Few studies, however, have considered the consequences of these accumulated contaminants on the abundant and diverse fauna associated with these habitats. In this review, we summarize research which has investigated the contamination of biogenic habitats (including seagrasses, macroalgae, ascidians, sponges and bivalve reefs) and the impact of this contamination on the habitat use, feeding behaviour and survival of associated epifauna. In many cases, ecological impacts upon epifauna are not simply predicted by levels of contamination in their habitat, but are determined by the foraging, feeding and reproductive behaviours of the inhabiting organisms. Thus, a thorough understanding of these ecological processes is essential in order to understand the effects of contaminants upon epifaunal communities. The scope of biomonitoring studies which assess the contamination of biogenic habitats should be expanded to include an assessment of potential effects upon associated epifauna. When combined with manipulative field experiments such an approach would greatly assist in our understanding of indirect effects of contaminants in these important benthic habitats.
Collapse
Affiliation(s)
- David A Roberts
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
38
|
Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. PLANT, CELL & ENVIRONMENT 2008; 31:123-143. [PMID: 17999660 DOI: 10.1111/j.1365-3040.2007.01746.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The metabolism of sulphur in angiosperms is reviewed under the aspect of exposure to ecologically relevant concentrations of sulphur, heavy metals and metalloids. Because of the inconsistent use of the term 'metal tolerance', in this review the degree of tolerance to arsenic and heavy metals is divided into three categories: hypotolerance, basal tolerance and hypertolerance. The composition of nutrient solutions applied to physiological experiments let see that the well-known interactions of calcium, sulphate and zinc supply with uptake of heavy metals, especially cadmium are insufficiently considered. Expression of genes involved in reductive sulphate assimilation pathway and enzyme activities are stimulated by cadmium and partially by copper, but nearly not by other heavy metals. The synthesis of the sulphur-rich compounds glucosinolates, metallothioneins and phytochelatins is affected in a metal-specific way. Phytochelatin levels are low in all metal(loid)-hypertolerant plant species growing in the natural environment on metal(loid)-enriched soils. If laboratory experiments mimic the natural environments, especially high Zn/Cd ratios and good sulphur supply, and chemical analyses are extended to more mineral elements than the single metal(loid) under investigation, a better understanding of the impact of metal(loid)s on the sulphur metabolism can be achieved.
Collapse
Affiliation(s)
- Wilfried H O Ernst
- Institute of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan (10851081) HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Dasgupta-Schubert N, Whelan T, Reyes MA, Lloren C, Brandt TT, Persans MW. Light quanta modulated characteristics of Ni uptake by Brassica juncea seedlings: the interdependence of plant metal concentration and biomass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:207-225. [PMID: 18246769 DOI: 10.1080/15226510701376059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of metal uptake and tolerance by the plant, have been investigated via the physiological response of Brassica juncea seedlings to Ni stress. The factorial growth experiments treated the Ni concentration in agar medium and the diurnal light quanta as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity in the root, as well as at the whole-plant level. The shoot mass index possibly is an indicator of the amount of shoot metal sequestration in B. juncea, as are the logarithmic variation of Cp with Cs and the power-law dependence of M on Cp. The sum total of these observations indicates that, for the Ni accumulating plant B. juncea, the overall metabolic allocation to either growth or metal tolerance of the plant is important. Neither a rapid biomass increase nor a high metal absorbed concentration favored the removal of high metal mass from the medium. Rather, the plants with a moderate rate of biomass growth and a moderate absorbed metal concentration demonstrated the ability to remove the maximum mass of metal from the medium. The implication of these results as related to the extant model of phyoextraction efficiency is discussed.
Collapse
Affiliation(s)
- N Dasgupta-Schubert
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
| | | | | | | | | | | |
Collapse
|
40
|
Molina JA, Oyarzun R, Esbrí JM, Higueras P. Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2006; 28:487-98. [PMID: 17013679 DOI: 10.1007/s10653-006-9058-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 07/19/2006] [Indexed: 05/12/2023]
Abstract
Although mercury (Hg) mining in the Almadén district ceased in May 2002, the consequences of 2000 years of mining in the district has resulted in the dissemination of Hg into the surrounding environment where it poses an evident risk to biota and human health. This risk needs to be properly evaluated. The uptake of Hg has been found to be plant-specific. To establish the different manners in which plants absorb Hg, we carried out a survey of Hg levels in the soils and plants in the most representative habitats of this Mediterranean area and found that the Hg concentrations varied greatly and were dependent on the sample being tested (0.13-2,695 microg g(-1) Hg). For example, the root samples had concentrations ranging from 0.06 (Oenanthe crocata, Rumex induratus) to 1095 (Polypogon monspeliensis) microg g(-1) Hg, while in the leaf samples, the range was from 0.16 (Cyperus longus) to 1278 (Polypogon monspeliensis) microg g(-1) Hg. There are four well-differentiated patterns of Hg uptake: (1) the rate of uptake is constant, independent of Hg concentration in the soil (e.g., Pistacia lentiscus, Quercus rotundifolia); (2) after an initial linear relationship between uptake and soil concentration, no further increase in Hg(plant) is observed (e.g., Asparagus acutifolius, Cistus ladanifer); (3) no increase in uptake is recorded until a threshold is surpassed, and thereafter a linear relationship between Hg(plant) and Hg(soil) is established (e.g., Rumex bucephalophorus, Cistus crispus); (4) there is no relationship between Hg(plant) and Hg(soil )(e.g., Oenanthe crocata and Cistus monspeliensis). Overall, the Hg concentrations found in plants from the Almadén district clearly reflect the importance of contamination processes throughout the study region.
Collapse
Affiliation(s)
- José Antonio Molina
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:907-20. [PMID: 16850314 DOI: 10.1007/s00122-006-0350-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 06/21/2006] [Indexed: 05/10/2023]
Abstract
Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).
Collapse
Affiliation(s)
- A X Deniau
- Ecology and Physiology of Plants, Vrije Universiteit Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Deckert J. Cadmium Toxicity in Plants: Is There any Analogy to its Carcinogenic Effect in Mammalian Cells? Biometals 2005; 18:475-81. [PMID: 16333748 DOI: 10.1007/s10534-005-1245-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/20/2005] [Indexed: 11/25/2022]
Abstract
Cadmium is a heavy metal, which is classified as a human carcinogen and is known to be toxic to plants. However, plants do not respond to this metal by massive cell proliferation. In this review the various aspects of cadmium toxicity in plants are compared to related processes in mammalian cells. The following issues are discussed: cellular uptake of Cd ions, their intracellular transport, the effects on cellular signaling, nucleic acids and proteins, modification of gene expression, cell cycle control and apoptosis. Reviewed data suggest that such features as: ability to remove the oxidized proteins, slightly different regulation of cell cycle genes, specific pattern of apoptosis, makes plants resistant to Cd(2+)-induced uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Joanna Deckert
- Laboratory of Plant Ecophysiology, Department of Biology, A.Mickiewicz University, Al. Niepodległości 14, 61-713 Poznań, Poland.
| |
Collapse
|
43
|
Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P. Nicotianamine Over-accumulation Confers Resistance to Nickel in Arabidopsis thaliana. Transgenic Res 2005; 14:739-48. [PMID: 16245165 DOI: 10.1007/s11248-005-7159-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Nicotianamine is a methionine derivative involved in iron homeostasis, able to bind various other metals in vitro. To investigate its role in vivo, we expressed a nicotianamine synthase cDNA (TcNAS1) isolated from the polymetallic hyperaccumulator Thlaspi caerulescens in Arabidopsis thaliana. Transgenic plants expressing TcNAS1 over-accumulated NA, up to 100-fold more than wild type plants. Furthermore, increased NA levels in different transgenic lines were quantitatively correlated with increased nickel tolerance. The tolerance to nickel is expressed at the cellular level in protoplast experiments and is associated with an increased NA content. We have also shown that the most NA-over accumulating line showed a high tolerance to nickel and a significant Ni accumulation in the leaves when grown on nickel-contaminated soil. Our results highlight a new potential role for nicotianamine in heavy metal tolerance at the cellular but also at the whole plant level, easily transposable to a non-tolerant non-hyperaccumulator species. These results open new perspectives for the modulation of nicotianamine content in plants for phytoremediation.
Collapse
Affiliation(s)
- Katia Pianelli
- UMR5004, Centre National de la Recherche Scientifique, Institut National pour la Recherche Agronomique, Ecole Nationale Supérieure d'Agronomie et Université Montpellier 2, cedex 5, F-34095, cc002 Montpellier, France
| | | | | | | | | |
Collapse
|
44
|
Dong R, Formentin E, Losseso C, Carimi F, Benedetti P, Terzi M, Schiavo FL. Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 2005; 32:527-33. [PMID: 15918023 DOI: 10.1007/s10295-005-0234-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Pteris vittata L. is a staggeringly efficient arsenic hyperaccumulator that has been shown to be capable of accumulating up to 23,000 microg arsenic g(-1), and thus represents a species that may fully exploit the adaptive potential of plants to toxic metals. However, the molecular mechanisms of adaptation to toxic metal tolerance and hyperaccumulation remain unknown, and P. vittata genes related to metal detoxification have not yet been identified. Here, we report the isolation of a full-length cDNA sequence encoding a phytochelatin synthase (PCS) from P. vittata. The cDNA, designated PvPCS1, predicts a protein of 512 amino acids with a molecular weight of 56.9 kDa. Homology analysis of the PvPCS1 nucleotide sequence revealed that it has low identity with most known plant PCS genes except AyPCS1, and the homology is largely confined to two highly conserved regions near the 5'-end, where the similarity is as high as 85-95%. The amino acid sequence of PvPCS1 contains two Cys-Cys motifs and 12 single Cys, only 4 of which (Cys-56, Cys-90/91, and Cys-109) in the N-terminal half of the protein are conserved in other known PCS polypeptides. When expressed in Saccharomyces cerevisae, PvPCS1 mediated increased Cd tolerance. Cloning of the PCS gene from an arsenic hyperaccumulator may provide information that will help further our understanding of the genetic basis underlying toxic metal tolerance and hyperaccumulation.
Collapse
Affiliation(s)
- Ruibin Dong
- Centro di Ricerca Interdipartimentale per le Biotechnologie Innovative, Universita' di Padova, Via G. Colombo 3, 35121 Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Molitor M, Dechamps C, Gruber W, Meerts P. Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. THE NEW PHYTOLOGIST 2005; 165:503-512. [PMID: 15720661 DOI: 10.1111/j.1469-8137.2004.01240.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Forty-seven populations of Thlaspi caerulescens in Luxembourg were characterised for population size, soil mineral element composition and other habitat characteristics. Foliar concentrations of eight elements were assessed in 15 populations in the field and in eight populations cultivated in zinc (Zn)-cadmium (Cd)-nickel (Ni)-enriched soil. T. caerulescens favoured stony soil developed on steep, south-facing Emsian shale outcrops. All soil samples were nonmetalliferous. Soil pH ranged from 4.2 to 6.9. Field-growing plants had very high concentrations of heavy metals in the leaves (Zn, 3000-13 000 mg kg(-1); Cd, 11-44 mg kg(-1); Ni, 38-473 mg kg(-1)). Positive soil-plant correlations existed for Zn and Mn. In cultivation, significant genetic variation was found for biomass and six of eight mineral elements. For Cd and Zn, variation range among 48 half-sib families was two-fold (Cd, 183-334 mg kg(-1); Zn, 8030-16 295 mg kg(-1)). Most of the variation occurred among populations, consistent with the selfing mating system of those populations. There was a tight Zn-Cd genetic correlation (r = +0.83, P < 0.0001). The significance of the results to the conservation of T. caerulescens in Luxembourg is briefly discussed.
Collapse
Affiliation(s)
- Mireille Molitor
- Laboratoire de Génétique et Ecologie Végétales (Jardin Massart), Université Libre de Bruxelles, Chaussée de Wavre 1850, B-1160 Brussels, Belgium
| | | | | | | |
Collapse
|
46
|
Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M. Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. THE NEW PHYTOLOGIST 2004; 164:289-295. [PMID: 33873551 DOI: 10.1111/j.1469-8137.2004.01178.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The cellular tolerance to nickel (Ni), zinc (Zn) and cadmium (Cd) of two poly-hyperaccumulators, Arabidopsis halleri and Thlaspi caerulescens, was investigated in order to compare their cellular phenotypes toward various metal ion exposures. • Protoplasts were kept for 24 h on solutions containing increasing concentrations of the metal ions, and a viability test was performed. Zinc loading of the protoplasts was investigated with Arabidopsis lyrata and A. halleri protoplasts using the Zn fluorescent indicator Newport green diacetate. • Only T. caerulescens protoplasts showed a clear tolerance to Ni. On the other hand, protoplasts from both hyperaccumulators displayed a very high and constitutive Zn tolerance and an inducible Cd tolerance. The vacuolar storage of Zn was confirmed, but no Zn accumulation at all was observed in A. halleri protoplasts after Zn exposure. • Specific metal tolerances were found at the cellular level in the hyperaccumulating plants, highlighting that specific adaptations to metal ions exist in the cells as well as in the whole plants.
Collapse
Affiliation(s)
- Laurence Marquès
- UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, CC002, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Magalie Cossegal
- UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, CC002, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Stéphanie Bodin
- UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, CC002, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Pierre Czernic
- UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, CC002, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Michel Lebrun
- UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, CC002, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
47
|
Affiliation(s)
- Robert S Boyd
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849-5407, USA (tel +1 334 8441626; fax +1 334 8441645; email )
| |
Collapse
|